
Transition-based coobservability

in Distributed Discrete-Event Systems

by

Ying Huang

A thesis submitted to the

Department of Electrical and Computer Engineering

in conformity with the requirements for

the degree of Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

June 2005

Copyright c© Ying Huang, 2005

Abstract

For a given discrete-event plant G, to find decentralized supervisors that under their

control the system behaves exactly like the legal behavior E, there are two condi-

tions: controllability and coobservability. When E is controllable and observable

but not coobservable, communications of event occurrences between supervisors will

be needed. A new property called transition-based coobservability is defined and

it is proven that transition-based coobservability together with controllability are

necessary and sufficient conditions for solving the decentralized problem. To check

transition-based coobservability, an automaton, called a modified M-machine, is con-

structed. It is proven that the system is not transition-based coobservable if and

only if there is a path from the initial state to the marked state in this automaton.

An algorithm is also given to compute a communication protocol between supervi-

sors so that the system is transition-based coobservable and the communications are

consistent.

i

Acknowledgments

I would like to thank my supervisor Dr. Karen Rudie for her constant support,

encouragement and patience. Without her, this thesis would not have been completed.

Her enthusiasm and integral view of research has made a deep impression on me.

Besides being an excellent supervisor, Karen was as close as a good friend to me. I

am glad that I have come to get know her in my life.

I am indebted to Dr. Feng Lin from Wayne State University whose stimulating

suggestions helped me start this thesis. He also took effort in reading and providing

me with valuable comments on earlier version of this thesis.

I want to thank the DES group members—Lenko Grigorov, Michael Wood, Sarah

Whittaker, and Iakov Romanovski—for all their help, support, interest and valuable

comments to my work.

I appreciate the examiners of my thesis, especially Dr. K. Salomaa, for their

valuable comments during my defense.

I would like to thank Bernice Ison for her cheerful assistance.

I am grateful for receiving the McLaughlin Fellowship and additional financial

support from the Graduate School at Queen’s University.

Especially, I would like to give my special thanks to my husband for his love and

support and my baby girl Gloria who shows me what a miracle a life can be.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Main Contributions . 2

1.2 Thesis Outline . 2

2 Background and Related Concepts 3

2.1 Modelling Discrete-Event Systems 3

2.2 Partial Observation Control . 7

2.3 Transition-Based Coobservability . 11

3 Control with Unobservable Transitions 14

3.1 Motivation . 14

iii

3.2 Transition-Based DES Control . 16

3.3 A Simple Example . 33

4 Checking Transition-Based Coobservability 37

4.1 The Modified M-Machine . 37

4.2 Using the Modified M-Machine to Check

Transition-Based Coobservability . 46

5 Communication in Distributed DES Control 67

5.1 Communication Consistency . 68

5.2 An Algorithm for Communication . 71

5.3 An Example . 78

6 Conclusions and Future Work 94

Bibliography 96

iv

List of Tables

4.1 Shorthand Symbol for Different Scenarios 43

4.2 Transition Table of M̃ . 44

4.3 Simplified Transition Table of M̃ . 45

v

List of Figures

2.1 An Example of Transition-Based Projection 12

3.1 Legal Automaton E . 15

3.2 Plant G . 15

3.3 Supervisor . 15

3.4 Plant G . 33

3.5 Legal behavior E . 34

3.6 NFA of Supervisor 1 . 35

3.7 Supervisor 1 . 35

3.8 NFA of Supervisor 2 . 35

3.9 Supervisor 2 . 36

4.1 Plant G . 40

4.2 Legal behavior E . 41

4.3 A Portion of the Modified M-machine M̃ for Example 4.1 42

5.1 Plant and Legal Automaton in Example of Section 5.3 79

5.2 A Portion of the Modified M-machine M̃0 80

5.3 NFA of Eε
2, Iteration 1 . 82

vi

5.4 DFA of Ẽε
2, Iteration 1 . 83

5.5 A Portion of the Modified M-machine M̃1 84

5.6 NFA of Eε
1, Iteration 2 . 85

5.7 DFA of Ẽε
1, Iteration 2 . 86

5.8 A Portion of the Modified M-machine M̃2 87

5.9 A Portion of the Modified M-machine M̃3 91

5.10 Supervisor 1 in Example of Section 5.3 (a): NFA of Supervisor 1 (b):

DFA of Supervisor 1 . 92

5.11 Supervisor 2 in Example of Section 5.3 (a): NFA of Supervisor 2 (b):

DFA of Supervisor 2 . 93

vii

Chapter 1

Introduction

People used beacon towers to deliver messages more than 2000 years ago. Telephone,

one of the most important communication styles nowadays, was invented by Graham

Bell in 1876. Today the internet makes the world smaller and more interesting by

allowing the exchange of information in no time. Communication, as an incredibly

powerful force, is transforming human life from ancient to modern. In this thesis, we

show how communication can be applied to a type of discrete-event system (DES) to

help solve its control problem.

A DES is a system that changes its state upon the occurrence of an event. The

states in the system have symbolic values instead of numerical values as in tradi-

tional continuous systems. Almost 30 years ago, Ramadge and Wonham initiated the

framework of modelling and synthesis of controllers (supervisors) for discrete-event

systems [8]. The standard formulation of DES control has been widely extended in a

number of ways which include modular supervisory control, hierarchical supervisory

control, timed DES, dynamic DES and partial observation control. We deal with

partial observation DES control in this thesis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Main Contributions

The main contributions of this thesis are:

• A definition of transition-based coobservability. It is proved to be a necessary

property to solve the decentralized supervisory control problem when commu-

nications between supervisors are involved.

• A method for checking transition-based coobservability.

• An algorithm to find a consistent communication protocol between two super-

visors so that they cooperate to ensure legal behavior.

1.2 Thesis Outline

Chapter 2 presents some background material on discrete-event systems in gen-

eral, with the focus on supervisory control with partial observation. A definition

of transition-based coobservability is given. Chapter 3 gives a theorem that demon-

strates the relationship between transition-based coobservability and decentralized

supervisory control problems. The proof of the theorem is also given in this sec-

tion, along with a simple example. Chapter 4 presents a special automaton named

a modified M-machine which can be used to check the property of transition-based

coobservability. Chapter 5 gives an algorithm that uses the modified M-machine to

find a consistent communication solution which solves a type of decentralized supervi-

sory control problem. The last Chapter contains discussion of the thesis and possible

future work.

Chapter 2

Background and Related Concepts

2.1 Modelling Discrete-Event Systems

A DES is an abstract process that is being characterized by sequences of actions or

events. When the system operates freely, without any interference or control, we call

it a plant. A plant may generate some undesirable sequences, called illegal behavior.

There are several formalisms used to model DESs. The most explicit model is the

finite state machine (FSM). A FSM always resides in one of its finite number of states.

The transitions between states are associated with events. The alphabet represents

the set of all events that can possibly happen in the plant.

Formally a plant is modelled as

G = (Σ, QG, δG, qG0)

where Σ is the alphabet, QG is a finite set of states, δG is a transition function

Σ×QG → QG, and qG0 is the initial state of the plant.

3

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 4

For any event σ ∈ Σ, qG ∈ QG, when we say δG(σ, qG) is defined we mean when

the plant resides at state qG, event σ may happen and after σ happens the plant will

change to state δG(σ, qG). When δG(σ, qG) is defined, we write δG(σ, qG)!.

The transition function δG can be naturally extended to a partial function Σ∗×QG

such that

δG(ε, qG) := qG

(∀t ∈ Σ∗)(∀σ ∈ Σ) δG(tσ) := δG(σ, δG(t, qG0))

where ε represents the empty string and Σ∗ represents all possible finite strings over

Σ union ε.

The language generated by a plant G (also called the closed behavior of G),

denoted by L(G), is a language

L(G) := {t | t ∈ Σ∗, δG(t, qG0)!}

This language represents all possible sequences that the plant G can generate.

If we denote concatenation of two strings s and t by st, then s is called a prefix

of the string st. Therefore each nonempty string s ∈ Σ∗ has at least two prefixes: ε

and s.

For a language L ∈ Σ∗, L̄ is the set of all prefix of strings in L, formally it is

defined as

L̄ = {s ∈ Σ∗ | ∃t ∈ Σ∗, st ∈ L}

A language is prefix-closed if L = L̄. The language generated by a plant G is

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 5

always prefix-closed.

An uncontrolled plant may generated undesired behaviors. We use an automaton,

called E, to represent the legal behavior of a plant G:

E = (Σ, QE, δE, qE0)

The language generated by E is denoted by L(E).

To force a plant G to behave in a legal way, we need a controller or supervisor,

named S, to control some event occurrences based on its view of the plant’s behavior.

The supervisor may not have the ability to control all the events in the alphabet Σ,

therefore Σ is partitioned into two disjoint subsets Σc and Σuc, which comprise the

controllable events and the uncontrollable events, respectively.

Formally, a supervisor S is a pair (T, ψ), where T is an automaton and ψ is a

feedback map:

T = (Σ, X, ξ, x0)

where Σ is the same alphabet as in G, X is the state space of the supervisor, ξ is the

transition function, and x0 is the initial state.

The feedback map ψ is defined as follows:

ψ : Σ×X → {0, 1}

For all σ ∈ Σuc, x ∈ X, ψ(σ, x) = 1

For all σ ∈ Σc, x ∈ X, ψ(σ, x) ∈ {0, 1},

where the number 0 represents a disable control action and the number 1 represents

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 6

an enable action. The supervisor S keeps track of events occurring in G. The feedback

map indicates whether σ should be disabled at the corresponding state in G.

With the supervision of S, a plant G behaves in a constrained way which is

described by an automaton S/G:

S/G := (Q×X,Σ, (δ × ξ)ψ, (q0, x0))

where (δ × ξ)ψ : Σ×Q×X → Q×X is defined as follows:

(δ × ξ)ψ(σ, q, x) :=

 (δ(σ, q), ξ(σ, x)), if δ(σ, q)!, ξ(σ, x))! and ψ(σ, x) = 1;

undefined, otherwise.

The centralized control problem was introduced by Ramadge and Wonham [6]:

Given a plant G over alphabet Σ (with controllable events Σc), given some

language L(E) ⊆ L(G), find a supervisor S such that L(S/G) = L(E).

It was proven that the necessary and sufficient condition to solve the above prob-

lem is controllability. A language K ⊆ L(G) is a controllable sublanguage of L(G)

if

K̄Σuc ∩ L(G) ⊆ K̄

If we think of K as the legal language L(E), controllability can be explained

informally as follows: the legal language is controllable if for any sequence t that

starts as a legal sequence (t ∈ K̄), the occurrence of an uncontrollable event (σ ∈ Σuc)

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 7

following that sequence that is possible (sσ ∈ L(G))) will not lead the sequence out

of the legal range (sσ ∈ K̄).

2.2 Partial Observation Control

In the real world, a supervisor may not observe all the events that a plant generates

due to distance, environment or other reasons. The alphabet Σ is partitioned into

two disjoint sets: Σo (observable events) and Σuo (unobservable events),where

Σ = Σo ∪ Σuo

Supervisory control under partial observation was proposed by Lin and Wonham

[5]. To formally describe what a supervisor “sees”, we use a mapping called the

natural (canonical) projection P : Σ∗ → Σ∗
o which is defined as follows:

P (ε) = ε

P (σ) = ε, σ ∈ Σ\Σo

P (σ) = σ, σ ∈ Σo

P (tσ) = P (t)P (σ), t ∈ Σ∗, σ ∈ Σ

Informally speaking, P erases all unobservable events from a sequence and keeps

observable events in the same order.

A prefix-closed language K is observable with respect to G and P if for all t, t′ ∈

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 8

Σ∗, σ ∈ Σ,

P (t) = P (t′) ⇒ (t′σ ∈ K ∧ t ∈ K ∧ tσ ∈ L(G) ⇒ tσ ∈ K)

Decentralized discrete-event system control problem was first proposed in [2] and

[13]. This type of problem is in a setting when a plant needs more than one partial

observation supervisor to achieve the desired behavior. Suppose we need n supervisors

and Supervisor i only observes some set Σi,o ∈ Σ, projection Pi is defined for each

Supervisor i, where i = 1, ..., n:

Pi(ε) = ε

Pi(σ) = ε, σ ∈ Σ\Σi,o

Pi(σ) = σ, σ ∈ Σi,o

Pi(tσ) = Pi(t)Pi(σ), t ∈ Σ∗, σ ∈ Σ

When a supervisor can only control some subset of controllable events, we call it

a local supervisor; otherwise, it is a global one. The set of controllable events of a

supervisor may not be the same as the set of observable events, i.e., a supervisor has

the ability to disable an event even if it cannot “see” it.

In this thesis, we consider two local supervisors S1 = (T1, φ) and S2 = (T2, ψ)

acting on a plant G, where T1 = (X,Σ, δ, x0) and T2 = (Y,Σ, η, y0). The conjunction

of S1 and S2 [7] is the supervisor

S1 ∧ S2 := (T1 × T2, φ ∗ ψ),

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 9

where

T1 × T2 := (X × Y,Σ, δ × η, (x0, y0))

The new supervisor’s transition function and feedback map are defined as follows.

For σ ∈ Σ, x ∈ X and y ∈ Y ,

(δ × η)(σ, x, y) :=

 (δ(σ, x), η(σ, y)), if δ(σ, x)! ∧ η(σ, y)!;

undefined, otherwise.

(φ× ψ)(σ, x, y) :=

 disable, if φ(σ, x) = disable ∨ ψ(σ, y) = disable ;

enable, otherwise.

Under the control of S1 ∧ S2, an event is allowed to happen only when both

supervisors enable it; if either S1 or S2 issues a disablement command, the event will

be disabled.

The decentralized problem is described in [13]:

Given a plant G over an alphabet Σ, a prefix-closed language L(E) such

that ∅ 6= L(E) ⊆ L(G), and sets Σ1,c, Σ2,c, Σ1,o, Σ2,o ⊆ Σ, do there exist

supervisors S1 and S2 such that S1 ∧ S2 is a supervisor for G and

L(S1 ∧ S2/G) = L(E)

.

Here, for i = 1, 2, local supervisor Si can observe only events in Σi,o and

can control only events in Σi,c.

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 10

This problem is solved in [2, 13]. Supervisors exist if the system satisfies con-

trollability and coobservability. The definition of controllability can be found in [6].

Informally, it says that events that could take a sequence outside the legal language

can always be disabled.

Given G over an alphabet Σ, sets Σ1,c, Σ2,c, Σ1,o, Σ2,o ⊆ Σ, projection P1 : Σ∗ →

Σ∗
1,o, P2 : Σ∗ → Σ∗

2,o, a prefix-closed language K ⊆ L(G) is coobservable with respect

to G, P1, P2 if for all s, s′, s′′ ∈ Σ∗,

P1(s) = P1(s
′) ∧ P2(s) = P2(s

′′) =⇒

(∀σ ∈ Σ1,c ∩ Σ2,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′σ, s′′σ ∈ L(E) ⇒ sσ ∈ L(E)

(conjunct 1)

∧ (∀σ ∈ Σ1,c \ Σ2,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′σ ∈ L(E) ⇒ sσ ∈ L(E)

(conjunct 2)

∧ (∀σ ∈ Σ2,c \ Σ1,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′′σ ∈ L(E) ⇒ sσ ∈ L(E)

(conjunct 3)

Since supervisors only have partial observation of the plant, they may not distin-

guish sequences which look the same to them but require different control actions.

With this in mind, we can interpret coobservability as follows. If the event needed to

be disabled is controllable by both supervisors (i.e., conjunct 1), then we only need

one of the supervisors to be able to have a clear view of the strings s, s′, s′′ to take

control action of σ. If the event is only controllable by one supervisor (i.e., conjunct

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 11

2 and conjunct 3), then that supervisor’s view must be sufficient to make the control

decision.

2.3 Transition-Based Coobservability

When controllability and observability are satisfied but coobservability is not satisfied

in decentralized problems, it means that if given more information supervisors could

have a clearer view of the plant and make the right control actions. One of the

solutions is to involve communications between two supervisors, i.e., upon an event

occurring, the supervisor who can “see” it communicates the event label to the other

supervisor so that the other supervisor also “knows” it is happening. In this thesis,

we sometimes use an expression such as “a transition (1, α, 2) is communicated from

Supervisor 1 to Supervisor 2”, which is shorthand for “when Supervisor 1 observes

the occurrence of α from state 1 (which will lead Supervisor 1 to state 2), Supervisor

1 will communicate symbol α to Supervisor 2”.

With communications, a supervisor has a direct observation through its own view

and also it has an indirect “observation” by the communications of specific event

occurrences from other supervisors. We can, therefore, say the observation is no

longer based on events but on transitions. A supervisor may not see α from state a

but may “see” α from state b. According to this change, we modified projection P

to a transition-based projection PG so that it still captures the supervisor’s view.

Given an automaton G = (Σ, QG, δG, qG0), we identify some of its transitions as

observable and the rest as unobservable. This yields two disjoint sets: δo, the set of

observable transitions, and δuo, the set of unobservable transitions.

Transition-based projection PG : Σ×QG → Σ is defined as follows.

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 12

For σ ∈ Σ, q ∈ QG,

PG(ε, q) := ε

PG(σ, q) :=

 σ if (q, σ, δG(q, σ)) ∈ δo

ε otherwise

PG can be extended to a function on Σ∗ ×QG as follows.

For s ∈ Σ∗, σ ∈ Σ, q ∈ QG,

PG(sσ, q) = PG(s, q)PG(σ, δG(s, q))

That is, the transition-based projection of a sequence is made up of the transition-

based projection for each event occurring along that sequence. For example, as shown

in Figure 2.1, in the sequence αβγα, (1, β, 2) and (3, α, 4) are unobservable,

PG(αβγα, 0) = PG(α, 0)PG(β, 1)PG(γ, 2)PG(α, 3)

= αγ

0 1 2 3 4
α β γ α

unobservable transition

Figure 2.1: An Example of Transition-Based Projection

CHAPTER 2. BACKGROUND AND RELATED CONCEPTS 13

Coobservability can also be modified to transition-based coobservability. The defi-

nition of transition-based coobservability is as follows. Given a plant G over alphabet

Σ, a legal automaton E such that L(E) ⊆ L(G), sets Σ1,c,Σ2,c ⊆ Σ, transition-based

projections P1,G : Σ∗ × QE → Σ∗, P2,G : Σ∗ × QE → Σ∗, the language L(E) is

transition-based coobservable w.r.t. G,P1,G, P2,G if for all s, s′, s′′ ∈ Σ∗,

P1,G(s, q0) = P1,G(s′, q0) ∧ P2,G(s, q0) = P2,G(s′′, q0) =⇒

(∀σ ∈ Σ1,c ∩ Σ2,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′σ, s′′σ ∈ L(E) ⇒ sσ ∈ L(E)

∧ (∀σ ∈ Σ1,c \ Σ2,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′σ ∈ L(E) ⇒ sσ ∈ L(E)

∧ (∀σ ∈ Σ2,c \ Σ1,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′′σ ∈ L(E) ⇒ sσ ∈ L(E)

Chapter 3

Control with Unobservable

Transitions

3.1 Motivation

To motivate our formulation of decentralized supervisory control with transition-

based observability, we consider the automaton in Figure 3.1 as the legal automaton

E, and the plant to be controlled as displayed in Figure 3.2.

To construct a proper supervisor, a supervisor must satisfy the condition that if

a transition is unobservable to the supervisor, then it will not change state upon the

occurrence of this transition. By intuition, we construct supervisors by replacing the

event labels of all unobservable transitions in E with ε, which will produce a nonde-

terministic finite-state automaton (NFA). Then we convert the NFA to an equivalent

deterministic finite-state automaton (DFA) [3] and at each state add self-loops for

events left undefined by the partial transition function. This yields a supervisor

whose transition function is now fully defined, as displayed in Figure 3.3.

14

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

α

α

α α

α

β

β

β

γ

γ

γ

σ

σ

σ

Unobservable transition

Figure 3.1: Legal Automaton E

α, β, σ, γ0

Figure 3.2: Plant G

α, β, γ, σ

α, β, γ, σ

β, σ, γ α, β, γ β, σ

α σ
α

γ1 2 4 3 5 6
7 8

9 10 11
13 14

15

12

Figure 3.3: Supervisor

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 16

If two sequences have the same transition-based projection, then they should lead

to the same state in the supervisor, because if the supervisor cannot distinguish two

strings, it should take the same control action upon the occurrence of either sequence.

In the above example, αβσγ and βασα look the same to the supervisor, i.e., from its

point of view ασ is observed in both cases. However, in the structure of the supervisor,

αβσγ leads to state {12} and βασα leads to state {15}. The reason for this confusion

is because a sequence the supervisor recognized does not correspond to the same

sequence that occurred in the system. After the two sequences happen in the system,

the supervisor should actually reach the same state, namely {(9),(10),(11),(13),(14)},

instead of two different states. Consequently, in the closed-loop system, we will

consider where in a supervisor the projected version of a sequence leads, not where

the original sequence leads. The next section details our decentralized supervisory

controlled system.

3.2 Transition-Based DES Control

Consider a discrete-event system to be controlled that is represented by an automaton

G = (Σ, QG, δG, qG0)

The legal behavior of the system is also characterized by an automaton

E = (Σ, QE, δE, qE0)

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 17

where all states in QE are reachable.

Since L(E) ⊆ L(G), we can assume that E is a subautomaton of G [1], such that

QE ⊆ QG (3.1)

qE0 = qG0 (3.2)

δE(t, qE0) = δG(t, qG0) , for all t ∈ L(E). (3.3)

Consider two supervisors acting on G,

S1 = (T1, ψ1), S2 = (T2, ψ2)

where Ti(i = 1, 2) is an automaton

Ti = (Xi,Σ, ξi, x0,i)

and ψi is the feedback map. It is assumed that ξi is a fully defined function.

The behavior of the supervised system, denoted by L(S1 ∧ S2/G), is defined re-

cursively as follows:

ε ∈ L(S1 ∧ S2/G)

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 18

(∀s ∈ Σ∗, σ ∈ Σ)sσ ∈ L(S1 ∧ S2/G) ⇐⇒ sσ ∈ L(G) ∧ s ∈ L(S1 ∧ S2/G)

∧ ψ1(σ, ξ1((P1,G(s, qE0)), x0,1)) = enable

∧ ψ2(σ, ξ2((P2,G(s, qE0)), x0,2)) = enable

where for i = 1, 2, ξi(Pi,G(s, qE0), x0,i) is the transition function associated with Si

with transition-based projection as one of its argument. Since supervisor Si will make

transitions based partly on events it directly observes and partly on event occurrences

communicated to it, we will not be interested in whether Si recognizes a sequence s

(in the automata theory sense) but rather to which state the “visible” events lead.

The function ξi(Pi,G(s, qE0), x0,i) captures this notion, i.e., it defines where in Si the

visible part of a sequence leads.

The closed-loop behavior L(S1 ∧ S2/G) is governed not only by G and the super-

visors, but also by where a sequence of events leads to in the supervisors. Since two

sequences that have the same transition-based projection will lead to the same state

in the supervisor, the decentralized controlled system is implemented in a feasible

way.

The prototype of Theorem 1 is Theorem 4.1 in [13].

Theorem 1. Given a plant G and a nonempty prefix-closed legal language L(E),

there exist two supervisors S1 and S2 who have transition-based partial observation of

the system, and guarantee L(S1 ∧ S2/G) = L(E) if and only if L(E) is controllable

and transition-based coobservable with respect to G and Pi,G.

Proof

First we prove necessity: If there exist supervisors S1, S2 that make L(S1∧S2/G) =

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 19

L(E), then L(E) is controllable and transition-based coobservable.

To show that L(E) is controllable, we need

¯L(E)Σuc ∩ L(G) ⊆ ¯L(E)

Take s ∈ ¯L(E), σ ∈ Σuc, such that sσ ∈ L(G)

s ∈ ¯L(E) ⇒ s ∈ L(E) (L(E) = ¯L(E) by assumption)

⇒ s ∈ L(S1 ∧ S2/G) and ψi(σ, ξi(Pi,G(s, qE0), x0,i)) = enable, for i = 1, 2

(Since σ ∈ Σuc)

⇒ sσ ∈ L(S1 ∧ S2/G)

⇒ sσ ∈ L(E)

Secondly, we prove that L(E) is transition-based coobservable with regard to P1,G

and P2,G.

By contradiction, suppose L(E) is not transition-based coobservable, then there

exist s, s′, s′′ ∈ Σ∗, σ ∈ Σ such that at least one conjunct in the definition of transition-

based coobservability fails to hold.

Conjunct 1 fails:

If conjunct 1 fails, that means for sequences s ,s′ and s′′ such that P1,G(s, qE0) =

P1,G(s′, qE0) and P2,G(s, qE0) = P2,G(s′′, qE0), there exists σ ∈ Σ1,c ∩ Σ2,c such that

s′σ, s′′σ ∈ ¯L(E), s ∈ ¯L(E), sσ ∈ L(G), but sσ /∈ ¯L(E).

s, s′, s′′ ∈ ¯L(E) ⇒ s, s′, s′′ ∈ L(S1 ∧ S2/G)

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 20

P1,G(s, qE0) = P1,G(s′, qE0) ⇒ ξ1(P1,G(s, qE0), x0,1) = ξ1(P1,G(s′, qE0), x0,1) (3.4)

s′σ ∈ ¯L(E) ⇒ s′σ ∈ L(S1 ∧ S2/G)

⇒ ψ1(σ, ξ1(P1,G(s′, qE0), x0,1)) = enable (3.5)

Substituting (3.4) into (3.5),we have

ψ1(σ, ξ1(P1,G(s, qE0), x0,1)) = enable (3.6)

Similarly,

P2,G(s, qE0) = P2,G(s′′, qE0) and s′′σ ∈ ¯L(E) ⇒ ψ2(σ, ξ2(P2,G(s, qE0), x0,2)) = enable

(3.7)

From (3.6), (3.7) , sσ ∈ L(G) and s ∈ L(S1 ∧ S2/G)

⇒ sσ ∈ L(S1 ∧ S2/G)

⇒ sσ ∈ ¯L(E)

which contradicts our starting assumption.

Conjunct 2 fails:

If conjunct 2 fails, that means for some sequences s and s′ such that P1,G(s, qE0) =

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 21

P1,G(s′, qE0), there exists σ ∈ Σ1,c \ Σ2,c such that s′σ ∈ ¯L(E), s ∈ ¯L(E), sσ ∈ L(G),

but sσ /∈ ¯L(E).

s, s′ ∈ ¯L(E) ⇒ s, s′ ∈ L(S1 ∧ S2/G)

sσ /∈ ¯L(E) ⇒ sσ /∈ L(S1 ∧ S2/G)

⇒ ψ1(σ, ξ1(P1,G(s, qE0), x0,1)) = disable

or ψ2(σ, ξ2(P2,G(s, qE0), x0,2)) = disable

(since sσ ∈ L(G) and s ∈ L(S1 ∧ S2/G)) (3.8)

Because σ /∈ Σ2,c, ψ2(σ, ξ2(P2,G(s, qE0), x0,2)) = enable. Then

ψ1(σ, ξ1(P1,G(s, qE0), x0,1)) = disable (by (3.8)) (3.9)

P1,G(s, qE0) = P1,G(s′, qE0) ⇒ ξ1(P1,G(s, qE0), x0,1) = ξ1(Pi,G(s′, qE0), x0,1)

⇒ ψ1(σ, ξ1(Pi,G(s, qE0), x0,1)) = ψ1(σ, ξ1(Pi,G(s′, qE0), x0,1))

⇒ ψ1(σ, ξ1(Pi,G(s′, qE0), x0,1)) = disable (by (3.9))

⇒ s′σ /∈ L(S1 ∧ S2/G)

⇒ s′σ /∈ ¯L(E) (contradiction of the assumption s′σ ∈ Ē)

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 22

Conjunct 3 fails: analogous to the case of conjunct 2 failing.

Now we proof sufficiency: If L(E) is controllable and transition-based coobservable

with regard to G, P1,G and P2,G, then there exist two supervisors S1 and S2 that

guarantee L(S1 ∧ S2/G) = L(E).

Before the proof, we need to construct supervisors S1 and S2.

For i = 1, 2,

Ti := (Xi,Σ, ξi, x0,i)

where Xi is the set of nonempty subsets of QE, Σ is the same alphabet as the plant

G. Transition function ξi and initial state x0,i are defined as follows.

For all σ ∈ Σ, for all xi ∈ Xi,

ξi(σ, xi) :=


{δE(s, q)|s ∈ Σ∗, q ∈ xi, Pi,G(s, q) = σ}

if this is not empty

xi otherwise

x0,i := {δE(s, qE0)|s ∈ Σ∗, Pi,G(s, qE0) = ε}

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 23

The feedback map ψi is defined as follows:

(∀σ ∈ Σi,c, xi ∈ Xi)ψi(σ, xi) = enable⇔ (∃q ∈ xi) δE(σ, q) is defined.

(∀σ /∈ Σi,c, xi ∈ Xi)ψi(σ, xi) = enable

The controllers S1 and S2 constructed here keep track of all strings that could have

been generated so far.

The following claim indicates that if s is a sequence in the legal language E, the

state where s leads to is a substate of where the transition-based projection of s leads

to in the transition structure of supervisor Si.

Claim 1. For all s ∈ Σ∗,

δE(s, qE0) ∈ ξi(Pi,G(s, qE0), x0,i)

Proof. By induction on the length of strings.

Basis: Take s ∈ Σ∗, |s| = 0, s = ε

ξi(ε, x0,i) = x0,i (by definition of ξi)

Pi,G(ε, qE0) = ε⇒ δE(ε, qE0) ∈ x0,i

⇒ δE(ε, qE0) ∈ ξi(ε, x0,i)

Inductive hypothesis:

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 24

Assume for all s ∈ Σ∗, |s| ≤ n, (n ≥ 0)

δE(s, qE0) ∈ ξi(Pi,G(s, qE0), x0,i)

We need to prove for any σ ∈ Σ, s ∈ Σ∗,|s| ≤ n,

δE(sσ, qE0) ∈ ξi(Pi,G(sσ, qE0), x0,i)

In this thesis, we use δi,o to represent the set of transitions in G which are observ-

able to Supervisor i (i = 1, 2) and δi,uo for the unobservable transition set. Any transi-

tion (δE(s, qE0), σ, δE(sσ, qE0)) in E corresponds to the transition (δG(s, qG0), σ, δG(sσ, qG0))

in G (by (3.1), (3.2) and (3.3)). Therefore, each transition in E is either in δi,o or in

δi,uo. We will use these two sets in the following discussion to characterize a transi-

tion in E. Also, each state qE of E corresponds to a state qG of G, so we also abuse

notation by sometimes using a state in QG as the second argument to Pi,G(·, ·).

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 25

case 1: (δE(s, qE0), σ, δE(sσ, qE0)) ∈ δi,o.

(δE(s, qE0), σ, δE(sσ, qE0))) ∈ δi,o ⇒ Pi,G(σ, δE(s, qE0)) = σ

and δE(s, qE0) ∈ ξi(Pi,G(s, qE0), x0,i)

(by inductive hypothesis)

⇒ δE(σ, δE(s, qE0)) ∈ ξi(σ, ξi(Pi,G(s, qE0), x0,i))

(by definition of ξi)

⇒ δE(sσ, qE0) ∈ ξi(Pi,G(sσ, qE0), x0,i)

(by definition of ξi and the fact that

(δE(s, qE0), σ, δE(sσ, qE0)) ∈ δi,o)

case 2: (δE(s, qE0), σ, δE(sσ, qE0)) /∈ δi,o.

Since Pi,G(sσ, qE0) = Pi,G(s, qE0), ξi(Pi,G(sσ, qE0), x0,i) = ξi(Pi,G(s, qE0), x0,i).

Suppose the last transition in s visible to Si is an event γ from the state to which

sequence t leads. In this case, s can be represented as tγt′, where t ∈ Σ∗ and t′ ∈ Σ∗.

Then sσ can be represented as tγt′σ and

Pi,G(γ, δE(t, qE0)) = γ and Pi,G(t′σ, δE(tγ, qE0)) = ε

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 26

Pi,G(γt′σ, δE(t, qE0)) = γ

and δE(t, qE0) ∈ ξi(Pi,G(t, qE0), x0,i) (by inductive hypothesis |t| < n)

⇒ δE(γt′σ, δE(t, qE0)) ∈ ξi(γ, ξi(Pi,G(t, qE0), x0,i)) (by definition of ξi)

⇒ δE(sσ, qE0) ∈ ξi(γ, ξi(Pi,G(t, qE0), x0,i))

⇒ δE(sσ, qE0) ∈ ξi(Pi,G(tγ, qE0), x0,i)

(since Pi,G(tγ, qE0) = Pi,G(t, qE0)γ, because

(δE(t, qE0), γ, δ(tγ, qE0)) ∈ δi,o)

⇒ δE(sσ, qE0) ∈ ξi(Pi,G(tγt′σ, qE0), x0,i)

(since Pi,G(tγt′σ, qE0) = Pi,G(tγ, qE0))

⇒ δE(sσ, qE0) ∈ ξi(Pi,G(sσ, qE0), x0,i)

The next claim asserts that for any two states in E combined together in a single

state of the supervisor, there exist two distinct sequences in L(E) leading to the states

that have the same transition-based projection.

Claim 2. For any state q ∈ E, for any string s ∈ L(E), if q ∈ ξi(Pi,G(s, qE0), x0,i),

then there exists an s′ ∈ Σ∗ such that δE(s′, qE0) = q and Pi,G(s, qE0) = Pi,G(s′, qE0).

Proof. We prove by induction on the length of string s.

Basis:

Take s ∈ L(E), |s| = 0, s = ε, and q ∈ ξi(Pi,G(s, qE0), x0,i). Then

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 27

Pi,G(s, qE0) = ε⇒ ξi(Pi,G(s, qE0), x0,i) = x0,i

⇒ there exists s′ ∈ Σ∗, Pi,G(s′, qE0) = ε and δE(s′, qE0) = q

(by the definition of x0,i)

⇒ Pi,G(s, qE0) = Pi,G(s′, qE0)

Inductive hypothesis:

Suppose for all s ∈ L(E), |s| ≤ n, n ≥ 0, for all q̂ ∈ QE, if q̂ ∈ ξi(Pi,G(s, qE0), x0,i),

then there exists s′ ∈ Σ∗ such that δE(s′, qE0) = q̂ and Pi,G(s, qE0) = Pi,G(s′, qE0).

Then we consider q ∈ ξi(Pi,G(sσ, qE0), x0,i), where σ ∈ Σ.

Case 1: (δE(s, qE0), σ, δE(sσ, qE0)) /∈ δi,o

Since Pi,G(sσ, qE0) = Pi,G(s, qE0), then ξi(Pi,G(s, qE0), x0,i) = ξi(Pi,G(sσ, qE0), x0,i).

By the inductive hypothesis, for all q in ξi(Pi,G(s, qE0), x0,i), which is also in

ξi(Pi,G(sσ, qE0), x0,i), there exists s′ such that δE(s′, qE0) = q and Pi,G(s, qE0) = Pi,G(s′, qE0),

i.e., Pi,G(sσ, qE0) = Pi,G(s′, qE0)

Case 2: (δE(s, qE0), σ, δE(sσ, qE0)) ∈ δi,o

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 28

q ∈ ξi(Pi,G(sσ, qE0), x0,i)

⇒ q ∈ ξi(σ, ξi(Pi,G(s, qE0), x0,i))

⇒ q = δE(t, q′) for some q′ ∈ ξi(Pi,G(s, qE0), x0,i) and Pi,G(t, q′) = σ

(by the definition of ξi)

Since δE(t, q′) is defined and all states of E are reachable, there exists a sequence

t′ in L(E) such that δE(t′, qE0) = q′ and Pi,G(t′, qE0) = Pi,G(s, qE0) (by the inductive

hypothesis).

Let s′ = t′t, then δE(t′t, qE0) = q and

Pi,G(t′t, qE0) = Pi,G(t′, qE0)Pi,G(t, q′)

= Pi,G(s, qE0)σ

= Pi,G(sσ, qE0)

Now we continue the proof. We need to show if legal language L(E) is controllable

and transition-based coobservable with regard to G,P1,G, and P2,G, then the two

supervisors S1, S2 we have constructed guarantee that L(S1 ∧ S2/G) = L(E).

We proceed by induction on the length of strings.

Basis:

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 29

Take s ∈ Σ∗, |s| = 0, s = ε

L(E) 6= ∅ ⇒ δE(ε, qE0) is defined

⇒ δE(ε, qE0) ∈ x0,i (by definition of x0,i and the fact that Pi,G(ε, qE0) = ε)

⇒ x0,i is nonempty

⇒ ε ∈ L(S1 ∧ S2/G)

L(E) 6= ∅ ⇒ ε ∈ L(E)

So, ε ∈ L(S1 ∧ S2/G) ⇔ ε ∈ L(E).

Inductive hypothesis: Assume for all s ∈ Σ∗, |s| < n(n ≥ 0)

s ∈ L(S1 ∧ S2/G) ⇔ s ∈ L(E)

We need to show that for all σ ∈ Σ

sσ ∈ L(S1 ∧ S2/G) ⇔ sσ ∈ L(E)

Suppose δE(s, qE0) = xE, ξ1(P1,G(s, qE0), x0,1) = xa, ξ2(P2,G(s, qE0), x0,2) = xb. By

Claim 1, xE ∈ xa and xE ∈ xb.

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 30

Case 1: σ ∈ Σ1,c ∩ Σ2,c

sσ ∈ L(E) ⇒ sσ ∈ L(G) and sσ ∈ L(E) and s ∈ L(E)

⇒ sσ ∈ L(G) and sσ ∈ L(E) and s ∈ L(S1 ∧ S2/G) (by inductive hypothesis)

⇒ sσ ∈ L(G) and s ∈ L(S1 ∧ S2/G) and sσ ∈ L(E) and

ψ1(σ, xa) = enable and ψ2(σ, xb) = enable

(Because sσ ∈ L(E), δE(σ, xE) is defined. By the definition of ψi,

ψ1(σ, xa) = enable and ψ2(σ, xb) = enable.)

⇒ sσ ∈ L(S1 ∧ S2/G)

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 31

sσ ∈ L(S1 ∧ S2/G) ⇒ sσ ∈ L(G) and s ∈ L(S1 ∧ S2/G)

and ψ1(σ, ξ1(P1,G(s, qE0), x0,1)) = enable

and ψ2(σ, ξ2(P2,G(s, qE0), x0,2)) = enable

⇒ sσ ∈ L(G) and s ∈ L(E) (by inductive hypothesis)

and there exists x′ ∈ ξ1(P1,G(s, qE0), x0,1),

such that δE(σ, x′) is defined;

and there exists x′′ ∈ ξ2(P2,G(s, qE0), x0,2),

such that δE(σ, x′′) is defined

(by definition of ψi and σ ∈ Σ1,c ∩ Σ2,c)

⇒ sσ ∈ L(G) and s ∈ L(E)

and there exists x′ ∈ QE such that δE(σ, x′) is defined

and there exists s′ ∈ L(E) such that δE(s′, qE0) = x′

and P1,G(s′, qE0) = P1,G(s, qE0)

and there exists x′′ ∈ QE such that δE(σ, x′′) is defined

and there exists s′′ ∈ L(E) such that δE(s′′, qE0) = x′′

and P2,G(s′′, qE0) = P2,G(s, qE0)

(by Claim 2)

⇒ sσ ∈ L(G) and s ∈ L(E) and there exists s′, such that s′σ ∈ L(E)

and there exists s′′, such that s′′σ ∈ L(E)

and P1,G(s′, qE0) = P1,G(s, qE0) and P2,G(s′′, qE0) = P2,G(s, qE0)

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 32

⇒ there exist s′, s′′ ∈ Σ∗, such that P1,G(s′, qE0) = P1,G(s, qE0)

and P2,G(s′′, qE0) = P2,G(s, qE0) and

s ∈ L(E) and sσ ∈ L(G) and s′σ ∈ L(E) and s′′σ ∈ L(E)

⇒ sσ ∈ L(E) (by transition-based coobservability)

Case 2: σ ∈ Σ1,c, σ /∈ Σ2,c

sσ ∈ L(E) ⇒ sσ ∈ L(G) and sσ ∈ L(E) and s ∈ L(E)

⇒ sσ ∈ L(G) and sσ ∈ L(E)

and s ∈ L(S1 ∧ S2/G) (by inductive hypothesis)

⇒ sσ ∈ L(G) and s ∈ L(S1 ∧ S2/G) and sσ ∈ L(E) and ψ1(σ, xa) = enable

(Since sσ ∈ L(E), δE(σ, xE) is defined. By the definition of ψ1,

ψ1(σ, xa) = enable. Since σ /∈ Σ2,c, ψ2(σ, xa) = enable.)

⇒ sσ ∈ L(S1 ∧ S2/G)

The other direction, sσ ∈ L(S1∧S2/G) ⇒ sσ ∈ L(E), follows the same reasoning

as in Case 1.

Case 3: σ ∈ Σ2,c, σ /∈ Σ1,c

Analogous to Case 2.

Case 4: σ /∈ Σ1,c, σ /∈ Σ2,c

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 33

The proof that sσ ∈ L(E) ⇒ sσ ∈ L(S1 ∧ S2/G) follows the same reasoning as in

Case 2.

sσ ∈ L(S1 ∧ S2/G) ⇒ sσ ∈ L(G) and s ∈ L(S1 ∧ S2/G)

⇒ sσ ∈ L(G) and s ∈ L(E) (by inductive hypothesis)

⇒ sσ ∈ L(E) (by property of controllability: ¯L(E)Σu,c ∩ L(G) ⊆ ¯L(E))

3.3 A Simple Example

Consider the plant G shown in Figure 3.4 and the legal behavior E shown in Figure

3.5. Suppose Σ1,o = Σ1,c = {α, γ} and Σ2,o = Σ2,c = {β, γ}.

0

1

4

3

2

α

β

γ

γ

γ

β

γ

α

α,β

α,β

α,β,γ

Figure 3.4: Plant G

The legal language L(E) is not coobservable with respect to G because P1(αβ) =

P1(α) but αβγ /∈ ¯L(E), αγ ∈ ¯L(E). Supervisor 1 cannot determine whether α

happens or αβ happens, but it should disable γ after αβ happens and enable γ after

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 34

1

0

2

3

4

α

α
β

β γ

γγ

α,β

α,β

α,β,γ

Figure 3.5: Legal behavior E

α happens. The same problem exists for Supervisor 2: it needs to disable γ after αβ

happens and enable γ after β, but αβ and β look the same to Supervisor 2. Since

we model the control actions of two supervisors operating in parallel, at least one

supervisor needs to disable γ after αβ occurs.

Now we consider if (1, β, 4) is communicated from Supervisor 2 to Supervisor

1, i.e., we can say that Supervisor 1 “observes” β when the system is in state 1.

According to our supervisor construction in the proof of Theorem 1, we construct

two supervisors as follows.

For Supervisor 1, we replace all event labels in unobservable transitions with ε.

This is displayed in Figure 3.6.

Then we convert the NFA of Figure 3.6 to its equivalent DFA (Figure 3.7), and

add self-loops to those events not defined so that the automaton is fully defined.

Now we do the analogous operations to get Supervisor 2.

Supervisor 2 is displayed in Figure 3.9.

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 35

0

1

2

3

4

α

α

αα
β

γ

γ

γ

ε

α,γ

Figure 3.6: NFA of Supervisor 1

α

α

β

γ γ

0 2

1 2 4

0 3 1 3 3

α,β,γα,ββ,γ

α,γ α,β,γ

β

Figure 3.7: Supervisor 1

0

1

2

3

4

γ

γ

γε

β

β

β

β

β, γ

Figure 3.8: NFA of Supervisor 2

CHAPTER 3. CONTROL WITH UNOBSERVABLE TRANSITIONS 36

0

0

1

2

2

3 33

4

α

β

β

γ

γ

α, γ

α, β, γ

α, β, γα, β

Figure 3.9: Supervisor 2

For Supervisor 1, the transition-based projection of αβ leads to state {4}. Ac-

cording to the definition of ψ1, ψ1(γ, {4}) = disable. For Supervisor 2, the transition-

based projection of αβ leads to state {2,4} and according to the definition of ψ2,

ψ2(γ, {2, 4}) = enable. So, the overall joint control action is to disable γ after αβ

occurs. In other words, with the communication from Supervisor 2 to Supervisor 1,

the system is transition-based coobservable.

Chapter 4

Checking Transition-Based

Coobservability

As we know from the preceding section, transition-based coobservability is one of the

essential conditions for decentralized supervisory control with communications. In

[11], an automaton, called an M-machine, is constructed to check coobservability. The

M-machine traces all the possible sequences ambiguous to supervisors, then checks

if those sequences violate the property of coobservability of L(E) with regard to G.

In this section, we will modify the structure of the M-machine so that it will check

transition-based coobservability.

4.1 The Modified M-Machine

Given G = (Σ, QG, δG, qG0) and E = (Σ, QE, δE, qE0), where E is a subautomaton of

G, we construct an automaton M̃(G,E) which is similar to M in [11]. There is only

one marked state which is denoted by d, and called the dump state.

37

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 38

The automaton M̃ is defined by

M̃ := (Σ× {0, 1, ..., 7}, QM̃ , δM̃ , qM̃0 , Q
M̃
m)

where

QM̃ := QE ×QE ×QE ×QG ∪ {d}

qM̃0 := (qE0 , q
E
0 , q

E
0 , q

G
0)

QM̃
m := {d}.

Before defining the transition function δM̃ , we first define a transition type. In

particular, each transition will be labelled by an event label from Σ and a number,

called a transition type, from 0 to 7. The numbers will be used to track sequences

ambiguous to the supervisors. The following list defines transition types.

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 39

(q1, q2, q3, q4) σ, 1−→ (δE(σ, q1), q2, q3, q4) (if δE(σ, q1) is defined)

(q1, q2, q3, q4) σ, 2−→ (q1, δ
E(σ, q2), q3, q4) (if δE(σ, q2) is defined)

(q1, q2, q3, q4) σ, 3−→ (q1, q2, δ
E(σ, q3), δ

G(σ, q4)) (if δE(σ, q3) is defined

and δG(σ, q4) is defined)

(q1, q2, q3, q4) σ, 4−→ (δE(σ, q1), δ
E(σ, q2), δ

E(σ, q3), δ
G(σ, q4)) (if δE(σ, q1) is defined

and δE(σ, q2) is defined and δE(σ, q3) is defined

and δG(σ, q4) is defined)

(q1, q2, q3, q4) σ, 5−→ (q1, δ
E(σ, q2), δ

E(σ, q3), δ
G(σ, q4)) (if δE(σ, q2) is defined

and δE(σ, q3) is defined and δG(σ, q4) is defined)

(q1, q2, q3, q4) σ, 6−→ (δE(σ, q1), q2, δ
E(σ, q3), δ

G(σ, q4)) (if δE(σ, q1) is defined

and δE(σ, q3) is defined and δG(σ, q4) is defined)

(q1, q2, q3, q4) σ, 7−→ (δE(σ, q1), δ
E(σ, q2), q3, q4) (if δE(σ, q1) is defined

and δE(σ, q2) is defined)

(q1, q2, q3, q4) σ, 0−→ d if



σ ∈ Σc

δE(σ, q1) is defined if σ ∈ Σ1,c

δE(σ, q2) is defined if σ ∈ Σ2,c

δE(σ, q3) is not defined

δG(σ, q4) is defined

(4.1)

For example, a transition from state (q1, q2, q3, q4) to state (δE(σ, q1), q2, q3, q4) on

event σ will be a type 1 transition.

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 40

The aim of the M-machine is to trace all the possible sequences that could happen

in the system and look the same to the supervisors, then check if any of these sequences

violate transition-based coobservability. Therefore it keeps three copies of the legal

automaton E and one copy of the plant G. For any three sequences s, s′, and s′′

which makes P1,G(s, qE0) = P1,G(s′, qE0) and P2,G(s, qE0) = P2,G(s′′, qE0), they would end

up in a state of M̃ where the first component of the state records where s′ leads to in

E and the second component records where s′′ leads to in E and the third component

records where s leads to in E. For a state (q1, q2, q3, q4), if an event σ doesn’t lead to

the dump state, we only add transitions from the state with event label σ when σ is

defined in q1, q2 and q3 in E and q4 in G.

Let us use the same example as in Section 3.3, namely, the example shown in

Figures 3.4 and 3.5 (as reproduced in Figures 4.1 and 4.2), to explain how to construct

the automaton M̃ , then we show how, in general, M̃ can be used to check transition-

based coobservability. In this example, Σ1,c = Σ1,o = {α, γ} and Σ2,c = Σ2,o = {β, γ}.

0

1

4

3

2

α

β

γ

γ

γ

β

γ

α

α,β

α,β

α,β,γ

Figure 4.1: Plant G

The initial state of M̃ is (qE0 , q
E
0 , q

E
0 , q

G
0), i.e., state (0, 0, 0, 0) in this example.

Since α from state 0 in E is defined and observable only by Supervisor 1 , s′, s′′, s

could be

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 41

1

0

2

3

4

α

α
β

β γ

γγ

α,β

α,β

α,β,γ

Figure 4.2: Legal behavior E

s′ = ε, s′′ = α, s = ε (4.2)

s′ = α, s′′ = α, s = α (4.3)

s′ = α, s′′ = ε, s = α (4.4)

For (4.2), α only happens in the second copy of E and there is no event happening

in the first and the third copies. However s and s′ look the same to Supervisor 1,

P1,G(s′, 0) = ε and P1,G(s, 0) = ε, therefore P1,G(s′, 0) = P1,G(s, 0) = ε; and s and

s′′ look the same to the Supervisor 2, P2,G(s′′, 0) = ε and P2,G(s, 0) = ε, therefore

P2,G(s′′, 0) = P2,G(s, 0) = ε. By the same reasoning, the cases for (4.3) and (4.4)

guarantee that P1,G(s, qE0) = P1,G(s′, qE0) and P2,G(s, qE0) = P2,G(s′′, qE0). The three

cases are of transition type 2, 4 and 6, respectively, so they lead to (0, 1, 0, 0), (1, 1, 1, 1)

and (1, 0, 1, 1), respectively (Figure 4.3).

From state (0, 1, 0, 0), since β from state 0 of E is only observable by Supervisor

2 and β from state 1 of E is observable by both Supervisor 1 and Supervisor 2

after communication, the transitions from (0, 1, 0, 0) with event label β include the

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 42

(0, 0, 0, 0)

(0, 1, 0, 0)(1, 1, 1, 1) (1, 0, 1, 1)

(1, 4, 1, 1)(0, 4, 1, 1) (1, 1, 0, 0)

β, 1 β, 4 β, 5

α, 2
α, 6 α, 4

Figure 4.3: A Portion of the Modified M-machine M̃ for Example 4.1

following three cases, where the three events in each line show whether β really occurs

or not in each copy of E:

β, ε, ε (4.5)

β, β, β (4.6)

ε, β, β (4.7)

For (4.6), namely when β occurs in all three copies, since δE(s′, qE0) = 0 and

δE(s′′, qE0) = 1 and δE(s, qE0) = 0, then P1,G(β, δE(s′, qE0)) = P1,G(β, δE(s, qE0)) = ε

and P2,G(β, δE(s′′, qE0)) = P2,G(β, δE(s, qE0)) = β. The three cases are of transition

type 1, 4 and 5, respectively, and lead to three different new states in M̃ , as seen

in Figure 4.3. The cases for (4.5) and (4.7) follow the same arguments. Following

similar operations, we could construct the entire automaton M̃ .

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 43

Scenario Shorthand Symbol
(δE(s′, q0), σ, δ

E(σ, δE(s′, q0))) ∈ δ1,o ∩ δ2,o 1A
(δE(s′, q0), σ, δ

E(σ, δE(s′, q0))) ∈ δ1,o\δ2,o 1B
(δE(s′, q0), σ, δ

E(σ, δE(s′, q0))) ∈ δ2,o\δ1,o 1C
(δE(s′, q0), σ, δ

E(σ, δE(s′, q0))) /∈ δ2,o ∪ δ1,o 1D
(δE(s′′, q0), σ, δ

E(σ, δE(s′′, q0))) ∈ δ1,o ∩ δ2,o 2A
(δE(s′′, q0), σ, δ

E(σ, δE(s′′, q0))) ∈ δ1,o\δ2,o 2B
(δE(s′′, q0), σ, δ

E(σ, δE(s′′, q0))) ∈ δ2,o\δ1,o 2C
(δE(s′′, q0), σ, δ

E(σ, δE(s′′, q0)))) /∈ δ2,o ∪ δ1,o 2D
(δE(s, q0), σ, δ

E(σ, δE(s, q0))) ∈ δ1,o ∩ δ2,o 3A
(δE(s, q0), σ, δ

E(σ, δE(s, q0))) ∈ δ1,o\δ2,o 3B
(δE(s, q0), σ, δ

E(σ, δE(s, q0))) ∈ δ2,o\δ1,o 3C
(δE(s, q0), σ, δ

E(σ, δE(s, q0))) /∈ δ2,o ∪ δ1,o 3D

Table 4.1: Shorthand Symbol for Different Scenarios

Generally, for each of the three sequences s′, s′′, and s which make P1,G(s, qE0) =

P1,G(s′, qE0) and P2,G(s, qE0) = P2,G(s′′, qE0), if an event σ happens after the sequence,

it could be observable by Supervisor 1 or Supervisor 2 or both supervisors or neither

of the supervisors. Each scenario is identified by a symbol, as summarized in Table

4.1. We use δ1,o to represent the set of observable transitions to Supervisor 1 and δ2,o

for the observable transitions set of Supervisor 2.

As we can see from Table 4.1 , since each of sσ, s′σ and s′′σ has 4 possibilities, the

total number of possible combinations for a triple (sσ, s′σ, s′′σ) is 64. Now in Table

4.2 we define δM̃ according to the 64 cases, where the numbers on the right side of

each case represent the transition types.

To get a feel for Table 4.2, let us return to Example 4.1 of Figure 4.3. From state

(0, 0, 0, 0), since (0, α, 1) ∈ δ1,o\δ2,o, the scenarios are represented by 1B, 2B, and

3B. From Table 4.2, category 1B, 2B, 3B corresponds to transition types 2, 4 and 6.

From state (0,1,0,0), since (0, β, 2) ∈ δ2,o\δ1,o and (1, β, 4) ∈ δ1,o ∪ δ2,o, the scenarios

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 44

1A,2A,3A 4 1A,2A,3B 6 1A,2A,3C 5 1A,2A,3D 3
1A,2B,3A 2 1A,2B,3B 2,4,6 1A,2B,3C 2 1A,2B,3D 2,3,5
1A,2C,3A 4 1A,2C,3B 6 1A,2C,3C 5 1A,2C,3D 3
1A,2D,3A 2 1A,2D,3B 2,4,6 1A,2D,3C 2 1A,2D,3D 2,3,5

1B,2A,3A 4 1B,2A,3B 6 1B,2A,3C 5 1B,2A,3D 3
1B,2B,3A 2 1B,2B,3B 2,4,6 1B,2B,3C 2 1B,2B,3D 2,3,5
1B,2C,3A 4 1B,2C,3B 6 1B,2C,3C 5 1B,2C,3D 3
1B,2D,3A 2 1B,2D,3B 2,4,6 1B,2D,3C 2 1B,2D,3D 2,3,5

1C,2A,3A 1 1C,2A,3B 1 1C,2A,3C 1,4,5 1C,2A,3D 1,3,6
1C,2B,3A 1,2,7 1C,2B,3B 1,2,7 1C,2B,3C 1,2,7 1C,2B,3D 1,2,3,4,5,6,7
1C,2C,3A 1 1C,2C,3B 1 1C,2C,3C 1,4,5 1C,2C,3D 1,3,6
1C,2D,3A 1,2,7 1C,2D,3B 1,2,7 1C,2D,3C 1,2,7 1C,2D,3D 1,2,3,4,5,6,7

1D,2A,3A 1 1D,2A,3B 1 1D,2A,3C 1,4,5 1D,2A,3D 1,3,6
1D,2B,3A 1,2,7 1D,2B,3B 1,2,7 1D,2B,3C 1,2,7 1D,2B,3D 1,2,3,4,5,6,7
1D,2C,3A 1 1D,2C,3B 1 1D,2C,3C 1,4,5 1D,2C,3D 1,3,6
1D,2D,3A 1,2,7 1D,2D,3B 1,2,7 1D,2D,3C 1,2,7 1D,2D,3D 1,2,3,4,5,6,7

Table 4.2: Transition Table of M̃

are 1C, 2A and 3C which map to transition types 1, 4, and 5.

In Table 4.2, it is easy to notice that some parts of the table are the same as other

parts. If we separate the table into sixteen blocks and each block has four lines as

shown in the table, then the transition types are the same for the same location in

blocks (1,1) and (1,2); in blocks (1,2) and (2,2); in blocks (1,3) and (2,3); in blocks

(1,4) and (2,4); in blocks (3,1) and (4,1); in blocks (3,2) and (4,2); in blocks (3,3)

and (4,3); and in blocks (3,4) and (4,4). To see why this is so, consider, for example,

blocks (1,1) and (1,2): The only difference between the scenarios is that in block

(1,1) the first scenario is 1A and in block (1,2) it is 1B. Since 1A denotes σ after

s′ is observable by both Supervisor 1 and Supervisor 2, and 1B denotes σ after s′ is

observable only by Supervisor 1, and for s′ it only matters what Supervisor 1 sees,

therefore they will have the same transition types. Analogously, since for s′′ it only

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 45

Scenarios Transition Types
1A(1B),2A(2C),3A 4
1A(1B),2A(2C),3B 6
1A(1B),2A(2C),3C 5
1A(1B),2A(2C),3D 3
1A(1B),2B(2D),3A 2
1A(1B),2B(2D),3B 2,4,6
1A(1B),2B(2D),3C 2
1A(1B),2B(2D),3D 2,3,5
1C(1D),2A(2C),3A 1
1C(1D),2A(2C),3B 1
1C(1D),2A(2C),3C 1,4,5
1C(1D),2A(2C),3D 1,3,6
1C(1D),2B(2D),3A 1,2,7
1C(1D),2B(2D),3B 1,2,7
1C(1D),2B(2D),3C 1,2,7
1C(1D),2B(2D),3D 1,2,3,4,5,6,7

Table 4.3: Simplified Transition Table of M̃

matters what Supervisor 2 sees, 2A and 2C will have the same transition types and

2B and 2D will have the same transition types if the other two scenarios are the

same, which explains why the first line and the third line in each block have same

transition types, and the second line and the fourth line are same. Therefore, we can

simplify Table 4.2 to Table 4.3.

We also note that transition type 0 is not in Table 4.2; it leads to the dump state

which is also the only marked state in M̃ .

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 46

4.2 Using the Modified M-Machine to Check

Transition-Based Coobservability

Now we show how the automaton M̃ we constructed in Section 1 can be used to check

transition-based coobservability. The approach we take is based heavily on that of

[11, 12].

Proposition 1. Given plant G and legal behavior L(E), L(E) is not transition-based

coobservable w.r.t. G and Pi,G iff there is a path from the initial state to the dump

state d in M̃ .

Proof. If:

If there exists a path to the dump state in the automaton M̃ , then we need to prove

that E is not transition-based coobservable w.r.t. G and Pi,G.

Suppose the sequence leading to the dump state is s∗σ, where s∗ ∈ Σ∗, and σ ∈ Σ.

We extract s, s′ and s′′ from s∗, then prove these strings s, s′ and s′′ violate coob-

servability. The rules to produce s, s′ and s′′ are as follows. First we define the

following filters from Σ× {1, 2, ...7} to Σ ∪ {ε}:

F1(σ, i) :=


σ if i = 1, 4, 6, 7

ε otherwise

F2(σ, i) :=


σ if i = 2, 4, 5, 7

ε otherwise

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 47

F3(σ, i) :=


σ if i = 3, 4, 5, 6

ε otherwise

Where the transition type i is understood, we use Fj(σ) instead of Fj(σ, i) (j =

1, 2, 3).

The mappings F1, F2 and F3 can be extended to sequences of events in the natural

way, namely,

Fi(ε) := ε i = 1, 2, 3

and for s ∈ Σ∗, σ ∈ Σ

Fi(sσ) := Fi(s)Fi(σ) i = 1, 2, 3

Now we use the Fi(i = 1, 2, 3) to extract our counterexample triple:

s := F3(s
∗)

s′ := F1(s
∗)

s′′ := F2(s
∗)

The following results prove that the s, s′ and s′′ we get from the above operations

is a counterexample to transition-based coobservability. Note that in the claims that

follow, a hypothesis that some string is in L(M̃)\Lm(M̃) means that the string does

not lead to the state {d} in M̃ . Consequently, we can assume that the last transition

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 48

in the string falls into one of the 64 categories given in Table 4.2.

Claim 3. For s∗ ∈ L(M̃)\Lm(M̃), F3(s
∗) ∈ L(E) and if s∗ leads to state (q1, q2, q3, q4)

in M̃ then F3(s
∗) leads to q3 in E and F3(s

∗) leads to q4 in G.

Proof. By induction on the length of s∗.

Basis:

|s∗| = 0 ⇒ s∗ = ε

⇒ s∗ leads to (qE0 , q
E
0 , q

E
0 , q

G
0) in M̃

F3(s
∗) = F3(ε) = ε which leads to qE0 in E and qG0 in G.

Inductive hypothesis:

Suppose for all |s∗| ≤ n (n ≥ 0), F3(s
∗) ∈ L(E) and if s∗ leads to (q1, q2, q3, q4) in

M̃ , then F3(s
∗) leads to q3 in E and F3(s

∗) leads to q4 in G.

First we consider where F3(s
∗) leads to in E.

Take s∗ = s̄σ̄ where |s̄| = n. If s̄ leads to (q1, q2, q3, q4) in M̃ , then F3(s
∗) leads to

q3 in E by the inductive hypothesis.

Case 1: F3(σ̄) = ε

F3(σ̄) = ε⇒ F3(s̄σ̄) = F3(s̄)

⇒ F3(s̄σ̄) ∈ L(E) (by inductive hypothesis)

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 49

Because F3(σ̄) = ε, σ̄ results from a transition whose type is 1, 2, or 7 where

the third argument in the 4-tuple state (q1, q2, q3, q4) does not change. The sequence

F3(s̄σ̄) leads to the same state q3 in E as F3(s̄) leads to.

Case 2: F3(σ̄) = σ̄

Since F3(σ̄) = σ̄ results from a transition type 3, 4, 5 or 6 and in each of those

transition types, δE(σ̄, q3) is defined and since F3(s̄) ends at q3 and F3(s̄) ∈ L(E) (by

the inductive hypothesis), we can deduce that F3(s̄)σ̄ ∈ L(E), i.e., F3(s̄σ̄) ∈ L(E).

By the inductive hypothesis F3(s̄) leads to q3 in E. Since δE(σ̄, q3) is defined,

F3(s̄)σ̄ leads to δE(σ̄, q3), which is the third argument of the 4-tuple state to which

s̄σ̄ leads in M̃ .

Now we check where F3(s
∗) leads to in G. Since the fourth arguments in the

4-tuple states of M̃ change only when the third arguments do, F3(s
∗) leads to q4 in

G.

Claim 4. For s∗ ∈ L(M̃)\Lm(M̃), F1(s
∗) ∈ L(E) and if s∗ leads to state (q1, q2, q3, q4)

in M̃ then F1(s
∗) leads to q1 in E.

Proof. Analogous to Claim 1.

Claim 5. For s∗ ∈ L(M̃)\Lm(M̃), F2(s
∗) ∈ L(E) and if s∗ leads to state (q1, q2, q3, q4)

in M̃ then F2(s
∗) leads to q2 in E.

Proof. Analogous to Claim 1.

Claim 6. For s∗ ∈ L(M̃)\Lm(M̃), P1,G(F3(s
∗), qE0) = P1,G(F1(s

∗), qE0).

Proof. By induction on the length of s∗.

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 50

Basis:

|s∗| = 0 ⇒ s∗ = ε

⇒ F1(s
∗) = F3(s

∗) = ε

⇒ P1,G(F3(s
∗), qE0) = P1,G(F1(s

∗), qE0) = ε

Inductive hypothesis:

Suppose for all |s∗| ≤ n, n ≥ 0, P1,G(F3(s
∗), qE0) = P1,G(F1(s

∗), qE0).

Take s∗ = s̄σ̄ where |s̄| = n. Then,

P1,G(F1(s̄σ̄), qE0) = P1,G(F1(s̄)F1(σ̄), qE0)

= P1,G(F1(s̄), q
E
0)P1,G(F1(σ̄), δE(F1(s̄), q

E
0)) (4.8)

P1,G(F3(s̄σ̄), qE0) = P1,G(F3(s̄), q
E
0)P1,G(F3(σ̄), δE(F3(s̄), q

E
0)) (4.9)

By the inductive hypothesis,

P1,G(F1(s̄), q
E
0) = P1,G(F3(s̄), q

E
0) (4.10)

For simplicity, we define q := δE(F3(s̄), q
E
0) and q′ := δE(F1(s̄), q

E
0) (which, by

Claim 1 and Claim 2, are well-defined).

So, to prove P1,G(F1(s̄σ̄), qE0) = P1,G(F3(s̄σ̄), qE0), by (4.8), (4.9) and (4.10), we

need to show

P1,G(F1(σ̄), q′) = P1,G(F3(σ̄), q)

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 51

Because s∗ = s̄σ̄ is a sequence in M̃ not leading to {d}, δE(σ̄, q′) is defined and the

transition leading to it could have 4 possibilities, namely, (q′, σ̄, δE(σ̄, q′)) ∈ δ1,o∩ δ2,o,

(q′, σ̄, δE(σ̄, q′)) ∈ δ1,o\δ2,o, (q′, σ̄, δE(σ̄, q′)) ∈ δ2,o\δ1,o, or (q′, σ̄, δE(σ̄, q′)) /∈ δ1,o ∪ δ2,o,

and so could (q, σ̄, δE(σ̄, q)), so we need to check 16 cases.

Case 1: (q′, σ̄, δE(σ̄, q′)) ∈ δ1,o ∩ δ2,o ∧ (q, σ̄, δE(σ̄, q)) ∈ δ1,o ∩ δ2,o

According to the structure of M̃ as given in Table 4.1, we need to check categories

with scenarios 1A and 3A. From the definition of the transition function of M̃ (Table

4.3), a transition type 2 or 4 would occur.

For transition type 4, F1(σ̄) = F3(σ̄) = σ̄,

P1,G(F1(s̄σ̄), qE0) = P1,G(F1(s̄), q
E
0)P1,G(σ̄, q′) (by (4.8))

= P1,G(F1(s̄), q
E
0)σ̄ (since (q′, σ̄, δE(σ̄, q′)) ∈ δ1,o ∩ δ2,o)

P1,G(F3(s̄σ̄), qE0) = P1,G(F3(s̄), q
E
0)P1,G(σ̄, q) (by (4.9))

= P1,G(F3(s̄), q
E
0)σ̄ (since (q, σ̄, δE(σ̄, q)) ∈ δ1,o ∩ δ2,o)

Therefore, P1,G(F1(s̄σ̄), qE0) = P1,G(F3(s̄σ̄), qE0) (by (4.10)).

For transition type 2, F1(σ̄) = F3(σ̄) = ε.

By (4.10), P1,G(F1(s̄σ̄), qE0) = P1,G(F3(s̄σ̄), qE0).

Case 2: (q′, σ̄, δE(σ̄, q′)) ∈ δ1,o ∩ δ2,o ∧ (q, σ̄, δE(σ̄, q)) ∈ δ1,o\δ2,o

According to Table 4.1 and Table 4.3, possible transition types are 2, 4, or 6.

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 52

For transition type 2, F1(σ̄) = F3(σ̄) = ε. For types 4 and 6, F1(σ̄) = F3(σ̄) = σ̄.

They all follow the same arguments as in Case 1.

Case 3: (q′, σ̄, δE(σ̄, q′)) ∈ δ1,o ∩ δ2,o ∧ (q, σ̄, δE(σ̄, q)) ∈ δ2,o\δ1,o

According to Table 4.1 and Table 4.3, possible transition types are 2 or 5.

For transition type 2, F1(σ̄) = F3(σ̄) = ε. It follows the same reasoning as in

Case 1.

For transition type 5, F1(σ̄) = ε and F3(σ̄) = σ̄. Then,

P1,G(F1(σ̄), q′) = ε

P1,G(F3(σ̄), q) = P1,G(σ̄, q) = ε (since (q, σ̄, δE(σ̄, q)) ∈ δ2,o\δ1,o)

Therefore,

P1,G(F1(s̄σ̄), qE0) = P1,G(F3(s̄σ̄), qE0) (by (4.8), (4.9) and (4.10))

Case 4: (q′, σ̄, δE(σ̄, q′)) ∈ δ1,o ∩ δ2,o ∧ (q, σ̄, δE(σ̄, q)) /∈ δ2,o ∪ δ1,o

According to Table 4.1 and Table 4.3, possible transition types are 2, 3, or 5.

For types 3 and 5, F1(σ̄) = ε and F3(σ̄) = σ̄. The argument follows the same

reasoning as in Case 3 for transition type 5.

For transition type 2, F1(σ̄) = F3(σ̄) = ε. It follows the same reasoning as in

Case 1.

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 53

Case 5: (q′, σ̄, δE(σ̄, q′)) ∈ δ2,o\δ1,o ∧ (q, σ̄, δE(σ̄, q)) ∈ δ1,o\δ2,o

According to Table 4.1 and Table 4.3, possible transition types are 1, 2 or 7.

For transition types 1 and 7, F1(σ̄) = σ̄ and F3(σ̄) = ε. Then,

P1,G(F1(σ̄), q′) = P1,G(σ̄, q′) = ε (since (q′, σ̄, δE(σ̄, q′)) ∈ δ2,o\δ1,o)

P1,G(F3(σ̄), q) = ε

Therefore,

P1,G(F1(s̄σ̄), qE0) = P1,G(F3(s̄σ̄), qE0) (by (4.8), (4.9) and (4.10))

For transition type 2, F1(σ̄) = F3(σ̄) = ε, therefore it follows the same arguments

as in Case 1.

The proofs for the remaining 11 cases are analogous to cases 1–5; consequently,

the proofs are omitted.

Claim 7. For s∗ ∈ L(M̃)\Lm(M̃), P2,G(F3(s
∗), qE0) = P2,G(F2(s

∗), qE0).

Proof. The proof follows the same argument as Claim 4.

By claims 1, 2, and 3, we know that s, s′, s′′ ∈ L(E) and s, s′, s′′ end in q3, q1

and q2 in E respectively. As we assumed at the outset, s∗σ leads to the dump state.

Therefore, by the definition of δM̄ , δE(σ, q3) is not defined (sσ /∈ L(E)); δG(σ, q4) is

defined (sσ ∈ L(G)); δE(σ, q1) is defined (s′σ ∈ L(E)), if σ ∈ Σ1,c; δ
E(σ, q2) is defined

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 54

(s′′σ ∈ L(E)), if σ ∈ Σ2,c. By Claim 4 and Claim 5, P1,G(s′, qE0) = P1,G(s, qE0) and

P2,G(s′′, qE0) = P2,G(s, qE0). All of the above indicate that s, s′, s′′ violate transition-

based coobservability.

Only If: Assume E is not transition-based coobservable w.r.t. G and Pi,G. We

need to prove that there exists a path in M̃ that leads to the dump state.

First we need to show that M̃ keeps track of all possible occurrences of strings

s, s′, s′′ in its 4-tuple states such that P1,G(s, qE0) = P1,G(s′, qE0) and P2,G(s, qE0) =

P2,G(s′′, qE0). The following claim is at the heart of the proof.

Claim 8. Given s, s′, s′′ ∈ L(E) such that P1,G(s, qE0) = P1,G(s′, qE0) and P2,G(s, qE0) =

P2,G(s′′, qE0), then there exists a sequence s∗ ∈ L(M̃)\Lm(M̃) such that F1(s
∗) =

s′, F2(s
∗) = s′′, and F3(s

∗) = s.

Proof. By induction on the length of string s.

Basis: Suppose |s| = 0, then s = ε.

Since s = ε, we can assume s′, s′′ have the following forms:

s′ = s′(1)s′(2)...s′(m) (m is a natural number)

where for i = 1, ...,m, s′(i) ∈ Σ, and

(qE0 , s
′(1), δE(s′(1), qE0)) /∈ δ1,o

and for i > 2,

(δE(s′(1)...s′(i− 1), qE0), s′(i), δE(s′(i), δE(s′(1)...s′(i− 1), qE0)) /∈ δE1,o

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 55

i.e., s′ is a sequence that Supervisor 1 can not see, and

s′′ = s′′(1)s′′(2)...s′(n) (n is a natural number)

where for j = 1, ..., n, s′′(j) ∈ Σ, and

(qE0 , s
′′(1), δE(s′′(1), qE0)) /∈ δ2,o

and for j > 2,

(δE(s′′(1)...s′′(j − 1), qE0), s′′(j), δE(s′′(j), δE(s′′(1)...s′′(j − 1), qE0)) /∈ δE2,o

i.e., s′′ is a sequence that Supervisor 2 can not see.

We define a path s∗ in M̃ as

(qE0 , q
E
0 , q

E
0 , q

G
0 ,)(s

′(1), 1)
−−−−−→

...(s′(m), 1)
−−−−−−→

(s′′(1), 2)
−−−−−−→

...(s′′(n), 2)
−−−−−−→

(q1, q2, q3, q4)

where (q1, q2, q3, q4) is not the dump state.

We claim s∗ = s′s′′ is a sequence generated by M̃ . Because

(qE0 , s
′(1), δE(s′(1), qE0)) /∈ δ1,o, by Table 4.1, it can be represented as 1C or 1D. In

either case, transition type 1 can occur (by checking Table 4.3). And since s′ ∈ L(E),

m transitions of type 1 are allowed in M̃ . Since transition type 1 does not change the

second argument in the 4-tuple state, the second value in the 4-tuple state is still qE0 .

Because (qE0 , s
′′(1), δE(s′′(1), qE0)) /∈ δ2,o, by checking Table 4.1, it can be represented

by 2B or 2D. From the definition of M̃ (Table 4.3), transition type 2 can occur.

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 56

Since s′′ ∈ L(E), we can add n transitions of type 2 after s′.

Since F1 erases transition type 2, F1(s
′s′′) = s′; F2 erases transition type 1, so

F2(s
′s′′) = s′; F3 erases transition types 1 and 2, so F3(s

′s′′) = ε = s.

Inductive hypothesis:

Suppose the claim holds for all s ≤ n, n > 0. Consider t = sσ where |s| = n, σ ∈ Σ

and there exist t, t′, t′′ ∈ L(E) so that P1,G(t, qE0) = P1,G(t′, qE0) and P2,G(t, qE0) =

P2,G(t′′, qE0).

Case 1: (δE(s, qE0), σ, δE(σ, δE(s, qE0))) ∈ δ1,o ∩ δ2,o

Since P1,G(t, qE0) = P1,G(t′, qE0), t′ can be represented as s′σv′ where P1,G(s, qE0) =

P1,G(s′, qE0), (δE(s′, qE0), σ, δE(σ, δE(s′, qE0))) ∈ δ1,o and v′ is a sequence unobservable

to Supervisor 1 s′σ denoted by v′(0)v′(1)...v′(k).

Since P2,G(t, qE0) = P2,G(t′′, qE0), t′′ can be represented as s′′σv′′ where P2,G(s, qE0) =

P2,G(s′′, qE0), (δE(s′′, qE0), σ, δE(σ, δE(s′′, qE0))) ∈ δ2,o and v′′ is an unobservable se-

quence to Supervisor 2 denoted by v′′(0)v′′(1)...v′′(l).

From the inductive hypothesis, because P1,G(s, qE0) = P1,G(s′, qE0) and P2,G(s, qE0) =

P2,G(s′′, qE0), there exists a sequence s∗ ∈ L(M̃)\Lm(M̃) such that

F3(s
∗) = s

F1(s
∗) = s′

F2(s
∗) = s′′

Assume s∗ ends at (q1, q2, q3, q4) in M̃ . From Claim 1, Claim 2 and Claim 3, s′

leads to q1 in E, s′′ leads to q2, and s leads to q3 in E and to q4 in G. Because

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 57

t′ = s′σv′ ∈ L(E), and L(E) is prefix-closed, s′σ ∈ L(E), which, in turn, implies

that δE(σ, q1) is defined. By the same reasoning, δE(σ, q2) and δE(σ, q3) are also

defined. As we assumed before, E is a sub-automaton of G, so sσ ∈ L(E) implies

that sσ ∈ L(G), which means δG(σ, q4) is also defined.

Since σ is observable by Supervisor 1 after s′, it corresponds to either scenario 1A

or 1B from Table 4.1; since σ is observable by Supervisor 2 after s′′, it corresponds

to either scenario 2A or 2C; and since σ is observable by both Supervisor 1 and

Supervisor 2 after s, it corresponds to scenario 3A. Therefore after s∗ occurs, four

categories are possible: 1A, 2A, 3A; 1A, 2C, 3A; 1B, 2A, 3A; or 1B, 2C, 3A. From

Table 4.3, in all of the cases, transition type 4 could happen, i.e., s∗(σ, 4) is a legitimate

path in M̃ and it leads to state (δE(σ, q1), δ
E(σ, q2), δ

E(σ, q3), δ
G(σ, q4)).

If we add

(v′(0), 1)(v′(1), 1)...(v′(k), 1)(v′′(0), 2)(v′′(1), 2)...(v′′(l), 2)

after s∗(σ, 4), it is still a legitimate path in M̃ and will not lead to the dump state,

following the same reasoning as we used in the basis step.

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 58

F3(s
∗σv′v′′) = F3(s

∗)F3(σ)F3(v
′v′′)

= sF3(σ)F3(v
′v′′) (by inductive hypothesis)

= sσF3(v
′v′′) (σ comes from transition type 4)

= sσ (all transitions in v′ are type 1, all transitions in v′′ are

type 2 and F3 erases both)

= t

F1(s
∗σv′v′′) = F1(s

∗)F1(σ)F1(v
′v′′)

= s′F1(σ)F1(v
′v′′) (by inductive hypothesis)

= s′σF1(v
′v′′) (σ comes from transition type 4)

= s′σv′ (all transitions in v′ are type 1, all transitions in v′′ are

type 2 and F1 erases v′′)

= t′

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 59

F2(s
∗σv′v′′) = F2(s

∗)F2(σ)F2(v
′v′′)

= s′′F2(σ)F2(v
′v′′) (by inductive hypothesis)

= s′′σF2(v
′v′′) (σ comes from transition type 4)

= s′′σv′′ (all transitions in v′ are type 1, all transitions in v′′ are

type 2 and F2 erases v′)

= t′′

Case 2: (δE(s, qE0), σ, δE(σ, δE(s, qE0))) ∈ δ1,o\δ2,o

Since P1,G(t, qE0) = P1,G(t′, qE0), t′ can be represented as s′σv′ where P1,G(s, qE0) =

P1,G(s′, qE0), (δE(s′, qE0), σ, δE(σ, δE(s′, qE0))) ∈ δ1,o and v′ is a sequence unobservable

to Supervisor 1 denoted by v′(0)v′(1)...v′(k).

Since (δE(s, qE0), σ, δE(σ, δE(s, qE0))) /∈ δ2,o, P2,G(t, qE0) = P2,G(s, qE0). Since P2,G(t, qE0) =

P2,G(t′′, qE0), this means P2,G(s, qE0) = P2,G(t′′, qE0).

The strings s, s′, and t′′ satisfy the inductive hypothesis. So there is a sequence

s∗ ∈ L(M̃)\Lm(M̃), such that

F3(s
∗) = s

F1(s
∗) = s′

F2(s
∗) = t′′

Assume s∗ ends in (q1, q2, q3, q4) in M̃ . From Claim 1, Claim 2 and Claim 3, s′

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 60

leads to q1 in E, and s leads to q3 in E and to q4 in G. Because t′ = s′σv′ ∈ L(E), and

L(E) is prefix-closed, s′σ ∈ L(E), which, in turn, implies that δE(σ, q1) is defined.

Since t = sσ ∈ L(E), by the same reasoning, δE(σ, q3) is also defined. As we assumed

before, E is a sub-automaton of G, so sσ ∈ L(E) implies that sσ ∈ L(G), which

means δG(σ, q4) is also defined.

Since σ is observable by Supervisor 1 after s′, it corresponds to either 1A or 1B

from Table 4.1; since σ is observable only by Supervisor 1 after s, it corresponds to

3B. From Table 4.3, in each category with scenarios 1A and 3B or scenarios 1B and

3B, transition type 6 can occur, i.e., s∗(σ, 6) is a legitimate path in M̃ and it leads

to (δE(σ, q1), q2, δ
E(σ, q3), δ

G(σ, q4)).

Then we add (v′(0), 1)(v′(1), 1)...(v′(k), 1) following s∗(σ, 6), which is still a legit-

imate path in M̃ .

F3(s
∗σv′) = F3(s

∗)F3(σ)F3(v
′)

= sF3(σ)F3(v
′) (by inductive hypothesis)

= sσF3(v
′) (σ comes from transition type 6)

= sσ (all transitions in v′ are type 1 and F3 erases type 1 transitions)

= t

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 61

F1(s
∗σv′) = F1(s

∗)F1(σ)F1(v
′)

= s′F1(σ)F1(v
′) (by inductive hypothesis)

= s′σF1(v
′) (σ comes from transition type 6)

= s′σv′ (all transitions in v′ are type 1 and F1 preserves type 1 transitions)

= t′

F2(s
∗σv′) = F2(s

∗)F2(σ)F2(v
′)

= t′′F2(σ)F2(v
′) (by inductive hypothesis)

= t′′F2(v
′) (σ comes from transition type 6, F2 erases it)

= t′′ (all transitions in v′ are type 1 and F2 erases type 1 transitions)

Case 3: (δE(s, qE0), σ, δE(σ, δE(s, qE0))) ∈ δ2,o\δ1,o

Since (δE(s, qE0), σ, δE(σ, δE(s, qE0))) /∈ δ1,o, P1,G(t, qE0) = P1,G(s, qE0). Since P1,G(t, qE0) =

P1,G(t′, qE0), this means P1,G(s, qE0) = P1,G(t′, qE0).

Since P2,G(t, qE0) = P2,G(t′′, qE0), t′′ can be represented as s′′σv′′ where P2,G(s, qE0) =

P2,G(s′′, qE0), (δE(s′′, qE0), σ, δE(σ, δE(s′′, qE0))) ∈ δ2,o and v′′ is a sequence unobservable

to Supervisor 2 denoted by v′′(0)v′′(1)...v′(l).

Since the strings s, t′, and s′′ satisfy the inductive hypothesis, there is a sequence

s∗ ∈ L(M̃)\Lm(M̃), such that

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 62

F3(s
∗) = s

F1(s
∗) = t′

F2(s
∗) = s′′

Assume s∗ ends in (q1, q2, q3, q4) in M̃ . Using reasoning analogous to that for Case

1 and Case 2, we can see that δE(σ, q2), δ
E(σ, q3) and δG(σ, q4) are defined.

Since σ is observable by Supervisor 2 after s′′, it corresponds to either 2A or

2C according to Table 4.1; since σ is observable only by Supervisor 2 after s, it

corresponds to 3C. From Table 4.3, in each category with scenarios 2A and 3C or

scenarios 2C and 3C, transition type 5 can occur, i.e., s∗(σ, 5) is a legitimate path in

M̃ and it leads to state (q1, δ
E(σ, q2), δ

E(σ, q3), δ
G(σ, q4)).

Then we add (v′′(0), 2)(v′(1), 2)...(v′′(l), 2) following s∗(σ, 5), which is still a legit-

imate path in M̃ .

F3(s
∗σv′′) = F3(s

∗)F3(σ)F3(v
′′)

= sF3(σ)F3(v
′′) (by inductive hypothesis)

= sσF3(v
′′) (σ comes from transition type 5)

= sσ (all transitions in v′′ are type 2 and F3 erases transition type 2)

= t

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 63

F1(s
∗σv′′) = F1(s

∗)F1(σ)F1(v
′′)

= t′F1(σ)F1(v
′′) (by inductive hypothesis)

= t′F1(v
′′) (σ comes from transition type 5)

= t′ (all transitions in v′′ are type 1 and F1 erases transition type 1)

F2(s
∗σv′′) = F2(s

∗)F2(σ)F2(v
′′)

= s′′F2(σ)F2(v
′′) (by inductive hypothesis)

= s′′σF2(v
′′) (σ comes from transition type 5)

= s′′σv′′ (all transition in v′′ are type 2 and F2 preserves transition type 2)

= t′′

Case 4: (δE(s, qE0), σ, δE(σ, δE(s, qE0))) /∈ δ1,o ∪ δ2,o

Since (δE(s, qE0), σ, δE(σ, δE(s, qE0))) /∈ δ1,o, P1,G(t, qE0) = P1,G(s, qE0). Since P1,G(t, qE0) =

P1,G(t′, qE0), this means P1,G(s, qE0) = P1,G(t′, qE0).

Since (δE(s, qE0), σ, δE(σ, δE(s, qE0))) /∈ δ2,o, P2,G(t, qE0) = P2,G(s, qE0). Since P2,G(t, qE0) =

P2,G(t′′, qE0), this means P2,G(s, qE0) = P2,G(t′′, qE0).

So s, t′, and t′′ satisfy the inductive hypothesis. Therefore, there is a sequence

s∗ ∈ L(M̃)\Lm(M̃), such that

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 64

F3(s
∗) = s

F1(s
∗) = t′

F2(s
∗) = t′′

Assume s∗ ends in (q1, q2, q3, q4) in M̃ . Using reasoning analogous to that for Case

1 and Case 2, we can see δE(σ, q3) and δG(σ, q4) are defined.

Since σ is not observable by either Supervisor 1 or Supervisor 2 after s, it corre-

sponds to 3D from Table 4.1. From Table 4.3, in each category with scenario 3D,

transition type 3 can occur, i.e., s∗(σ, 3) is a legitimate path in M̃ and it leads to

(q1, q2, δ
E(σ, q3), δ

G(σ, q4)).

F3(s
∗σ) = F3(s

∗)F3(σ)

= sF3(σ) (by inductive hypothesis)

= sσ (σ comes from transition type 3)

= t

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 65

F1(s
∗σ) = F1(s

∗)F1(σ)

= t′F1(σ) (by inductive hypothesis)

= t′ (σ comes from transition type 3, F1 erases it)

F2(s
∗σ) = F2(s

∗)F2(σ)

= t′′F2(σ) (by inductive hypothesis)

= t′′ (σ comes from transition type 3, F2 erases it.)

Now we return to the proof of Proposition 1. Since E is not transition-based

coobservable w.r.t. G and Pi,G (i = 1, 2), one of the three conjuncts of transition-based

coobservability would fail. Therefore there exist s, s′, s′′ ∈ Ē such that P1,G(s, q0) =

P1,G(s′, q0) and P2,G(s, q0) = P2,G(s′′, q0) and either one of the following three cases

exists:

CHAPTER 4. CHECKING TRANSITION-BASED COOBSERVABILITY 66

(∃σ ∈ Σ1,c ∩ Σ2,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′σ, s′′σ ∈ L(E) but sσ /∈ L(E) (4.11)

(∃σ ∈ Σ1,c \ Σ2,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′σ ∈ L(E) but sσ /∈ L(E) (4.12)

(∃σ ∈ Σ2,c \ Σ1,c) s ∈ L(E) ∧ sσ ∈ L(G) ∧ s′′σ ∈ L(E) but sσ /∈ L(E) (4.13)

By Claim 6, there exists s∗ ∈ L(M̃)\Lm(M̃) such that F1(s
∗) = s′, F2(s

∗) = s′′,

and F3(s
∗) = s. Suppose s∗ leads to (q1, q2, q3, q4) in M̃ . By Claim 1, Claim 2, and

Claim 3, s, s′, s′′ lead to states q3, q1, q2 in E, respectively, and s leads to state q4 in

G.

Suppose that (4.11) is the situation that violates transition-based coobservability.

Then δE(σ, q1) is defined, δE(σ, q2) is defined, δG(σ, q4) is defined, but δE(σ, q3) is not

defined. By the definition of when δM̃ leads to the dump state in M̃ , as seen in (4.1),

the sequence s∗σ leads to the dump state. The cases for (4.12) and (4.13) follow

similar reasoning.

Chapter 5

Communication in Distributed

DES Control

In Chapter 3, we proved that if the legal behavior L(E) is controllable with regard to

the plant G, then the condition needed to implement the control by two decentralized

supervisors is transition-based coobservability. If a system is not coobservable—which

is based on the events each supervisor directly observes, then transition-based coob-

servability could be used in an approach that incorporates communication between

supervisors, as follows. First one would find a set of transitions whose observation

would make the system transition-based coobservable. Then, one would develop a

communication scheme whereby each supervisor sends the other supervisor informa-

tion that conveys when transitions in the aforementioned set occur.

The recent model for communication [10] is that two supervisors cooperate to

perform a system-level task. It is assumed that we already know the supervisors’

structure. In this scenario, the aim of communication between supervisors is making

them know where they are at at all times without any control action.

67

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 68

In this chapter, an algorithm is given to exploit a theoretical solution to solve the

control and communication problem. Our approach of decentralized control and com-

munication is based on traditional decentralized discrete-event system control [13].

When controllability is satisfied and coobservability is not satisfied, we involve com-

munication between supervisors to ensure transition-based coobservability. We use a

modified M-machine to check transition-based coobservability and find a transition to

be communicated step by step until transition-based coobservability is finally satis-

fied. The detailed computing procedure will be explained in Section 5.2. In summary,

we are interested in when communication between supervisors can solve decentralized

DES control problems, instead of ensuring that each supervisor always knows which

state it is at. So far, we have not attempted to optimize our algorithm to make it

usable in practical applications and we do not know the scalability of our algorithm.

In this chapter, we first discuss, in detail, some issues related to communication.

Then we give an algorithm to find a communication protocol between two supervisors.

At the end we use an example to explain how the algorithm works.

5.1 Communication Consistency

Finding a suitable communication protocol is not trivial. Since a supervisor can only

observe some of the events occurring, it can not distinguish some of the states in the

system. Therefore, it must make the same communications in the states which look

the same to it. This is a property called consistency.

Take the example in Section 3.3: If Supervisor 2 communicates β at State 1 of the

plant G, it also needs to communicate β at State 0, since it does not observe whether

α happens in State 0. To Supervisor 2, State 0 and State 1 are indistinguishable.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 69

Therefore, if transition (1, β, 4) needs to be communicated to satisfy transition-based

coobservability, we also add (0, β, 2) to the communication protocol to ensure com-

munication consistency.

In [10], a function N12(V12, V21) is given to compute minimal additional communi-

cation needed to make Supervisor 1 consistent given that V12 is the set of transitions

Supervisor 1 communicates to Supervisor 2 and V21 is the set Supervisor 2 commu-

nicates to Supervisor 1. Here we use a similar function N12 to represent the same

procedure as in [10].

The notation used in the following function is as follows. The parameter

V21 = {(q, σ, δE(q, σ)), ...)}

is a set of transitions in E whose event labels will be communicated from Supervisor

2 to Supervisor 1. Supervisor 1 can see only the events in Σ1,o by direct observation

and the events occurring in V21 by communication. We replace all other unobservable

transitions in E by the empty string ε. The resulting automaton

Eε
1(V21) = (Σ, QE, δε1, q0)

is an NFA. It is Supervisor 1’s view of the legal automaton E. We then transform

Eε
1 from an NFA to a DFA, an operation we denote by DA. The resulting DFA is

denoted by Ẽ1:

Ẽ1(V21) = DA(Eε
1(V21)) := (Σ, Q̃E, δ̃1, q̃0)

The automaton Eε
2(V12) and Ẽ2(V12) are defined by interchanging 1 and 2 in the

above definitions.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 70

Function N12(V12, V21)

/*V12 is the set of transitions whose event labels are communicated from Supervisor 1

to Supervisor 2. V21 is the set of transitions whose event labels are communicated

from Supervisor 2 to Supervisor 1.*/

Input: E = (Σ, QE, δE, qE0), V12, V21

Output: N12

/*N12 is the set of transitions whose event labels need to be communicated from

Supervisor 1 to Supervisor 2 to guarantee consistency for Supervisor 1.*/

1. N12 := ∅

2. Transition (Eε
1):=∅

3. For all (q, σ, δE(q, σ)) ∈ Transition(E) do

If σ ∈ Σ\Σ1,o ∧ (q, σ, δE(q, σ) /∈ V21)

Transition(Eε
1) := Transition(Eε

1) ∪ {(q, ε, δE(q, σ))}

else

Transition(Eε
1) := Transition(Eε

1) ∪ {(q, σ, δE(q, σ))}

4. Eε
1 := {Σ, QE, T ransition(Eε

1), q
E
0 }

5. Ẽε
1 := DA{Eε

1} = {Σ, Q̃1, δ̃1, ˜q1,0}

6. W12 := ∅

7. For all q̃ ∈ Q̃1, do

If (∃q, q′ ∈ q̃)(q, σ, δE(q, σ)) /∈ W12 ∪ V12 ∧ (q′, σ, δE(q′, σ)) ∈ W12 ∪ V12,

then N12 := N12 ∪ {(q, σ, δE(q, σ))}

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 71

8. If N12 6= W12, then W12 := N12, go to 7;

else return.

The fact that the additional transitions to be communicated, determined by the

functions N12 and N21, guarantee each supervisor’s consistency is proved in [10],

because the legal automaton E we used as input is just a special case of the parameter

R = R1 ×R2 used in [10].

5.2 An Algorithm for Communication

Let us assume that the system is globally observable, i.e., with Σo = Σ1,o∪Σ2,o, L(E)

is observable with respect to the plant G and projection P : Σ∗ → Σ∗
o. Therefore,

if each supervisor communicates whatever it observes to the other supervisor, the

system is surely transition-based coobservable. However, since communications may

be costly, we only want communications necessary to ensure transition-based coob-

servability and consistency, in another words, a minimal communications set. A set

of communications is called minimal when it (a) satisfies consistency, (b) provides

enough information to solve the control problem and (c) no subset of it satisfies (a)

and (b) [10].

An algorithm was proposed in [10] that finds the minimal communication pair

between two supervisors so that they each always know at which state they are all

the time. The modelling framework is that two supervisors cooperate to perform a

system-level job.

In [4], another more general approach for minimal communication in a distributed

discrete-event system is proposed. Instead of each supervisor always knowing its

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 72

current state, it always “observes” the event labelling of a specific set of transitions.

This set is named essential transitions. In that paper, the essential transitions are

prescribed at the outset and the paper focuses on an algorithm for guaranteeing a

consistent minimal communication scheme that ensures all essential transitions are

observed.

Now we propose an algorithm to find essential transitions to guarantee transition-

based coobservability. The communication protocol found here guarantees consis-

tency. It remains to be investigated whether our algorithm yields a minimal commu-

nication scheme.

We denote by com12 the communication set of transitions from Supervisor 1 to

Supervisor 2; com21 is the set of transitions from Supervisor 2 to Supervisor 1.

Informally speaking, the strategy is as follows. Initially, com12 and com21 are

set to be empty, then we start to construct the M-machine M̃0. (Because there are

no communications yet, we check coobservability using the M-machine, which is a

special case of the modified M-machine.) If there is a sequence sMσ leading to the

dump state, which means E is not coobservable, we stop the construction process.

If σ ∈ Σ1,c \ Σ2,c, which means the second condition of coobservability is violated,

i.e., Supervisor 1 doesn’t have enough information to distinguish s and s′ which look

the same to it but require different control actions. We extract s and s′ from sM .

To make Supervisor 1 distinguish s and s′, we choose an event of a transition from

either s or s′ which is observed by Supervisor 2 to be communicated to Supervisor

1, i.e., add the transition to com21. On the other hand, if σ ∈ Σ2,c \ Σ1,c, we choose

an event of a transition from either s or s′′ and add the transition to com12, by the

same reasoning. If σ ∈ Σ1,c ∪ Σ2,c, then we randomly follow either of the above two

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 73

cases. We use functions named C12 and C21 to find the transitions that need to be

communicated.

After we update com12 or com21, we need to check consistency by using N21 or

N12. Then we start constructing a new modified M-machine M̃1 until we hit the

dump state, and follow the same process as above. In the setting of this algorithm,

when we construct M̃i, we don’t need to consider all the 64 cases in the transition

table (Table 4.2). For example, case 1A, 2A, 3D will not happen. The scenario 3D

means the transition (δE(s, q0), σ, δ
E(σ, δE(s, q0))) is unobservable by both supervi-

sors, therefore the event σ is unobservable by both supervisors since a supervisor’s

observation is based only on its direct observation and on communications from the

other supervisor. All cases with D as one of the scenarios will not happen except case

1D, 2D, 3D. By the same reasoning, scenario B and C would not appear in the same

case. Consequently, we need only consider 16 of the original 64 cases; it is impossible

for the other 48 cases to occur.

The program stops when M̃i doesn’t have a dump state. The last pair of updated

transitions sets (com12, com21) is a consistent communication protocol. However, the

communication pair may not be a minimal one, because the algorithm is iterative.

A transition added to keep a supervisor’s consistency may not be necessary if the

supervisor gets more information about the plant in subsequent iterations.

In the function C21 which will be defined below, we borrow a concept from [9],

called a maximal-P pair, to mark the last place two sequences look alike to a global

observer.

Denote by P the projection from Σ∗ to (Σ1,o ∪ Σ2,o)
∗. Then a maximal-P pair of

(s, s′) is a pair of sequences (t, t′) in Σ∗, where t ∈ s̄, t′ ∈ s̄′, P (t) = P (t′) and @σ ∈ Σ

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 74

such that tσ ∈ s̄ and P (tσ) = P (t′) or t′σ ∈ s̄′ and P (t) = P (t′σ).

We also represent s and s′ as s(1)s(2)... and s′(1)s′(2).... To simplify the no-

tation of a transition in sequences s, s′, we use δE[s(k)] to represent the transition

(δE(s(1)..s(k − 1), qE0), s(k), δE(s(1)..s(k), qE0)) (if k ≥ 2) and (qE0 , s(1), δ
E(s(1), qE0))

(if k = 1) in the following definition of function C21. We call the k in δE[s(k)] the

index number of the transition.

Function C21(s, s
′)

/* s, s′ are sequences in L(E) that are indistinguishable to Supervisor 1. */

Input: s, s′

Output: T21

/* T21 is a transition whose event label needs to be communicated from Supervisor

2 to Supervisor 1 so that Supervisor 1 can distinguish sequences s and s′ after the

communication. */

1. /* If (t, t′) is the maximal-P pair of (s, s′), then r is the length of t, r′ is the

length of t′. The index i will be used to mark the first transition observable

to Supervisor 1 after t in s , and the index j will be used to mark the first

transition observable to Supervisor 1 after t′ in s′. */

r = 0, r′ = 0, i = 1, j = 1

2. Find the maximal-P pair of (s, s′): (t, t′).

r = |t|, r′ = |t′|

3. In sequence s, find the next transition observable to Supervisor 1 after t, δE|s(i)|.

In sequence s′, find the next transition observable to Supervisor 1 after t′,

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 75

δE|s(j)|.

4. Construct two sets of transitions X1, X2.

/* The set X1 is a set containing all the transitions after t and before transition

δE|s(i)| in s. The set X2 is a set containing all the transitions after t′ and before

transition δE|s(j)| in s′. */

X1 = {δE[s(r + 1)], δE[s(r + 2)], ..., δE[s(i− 1)]}

If r + 1 > a− 1, then X1 = ∅.

X2 = {δE[s′(r + 1)], δE[s′(r + 2)], ..., δE[s(b− 1)]}

If r + 1 > b− 1, then X2 = ∅.

5. Select a transition x from X1 \ X2 or from X2 \ X1 which is observable by

Supervisor 2 and such that no other transition in X1 \ X2 or X2 \ X1 has a

higher index number.

Let T21 = x.

The function works as follows: The pair of sequences (t, t′) we get from step 2

is the maximal-P pair of the sequences (s, s′). Index i marks the first observable

transition to Supervisor 1 after t and index j marks the first observable transition

to Supervisor 1 after t′. Since the aim of the function is to find a transition in s or

s′ so that Supervisor 1 can distinguish these two sequences, we select a transition

between index r to i in sequence s or between index r′ to j in sequence s′ which

satisfies the following conditions: (1) the transition is observable to Supervisor 2 but

not observable to Supervisor 1, (2) if it is a transition from s, it should not be a

transition in s′ between index r′ and j and vise versa, because communicating such

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 76

a transition would not help Supervisor 1 to distinguish the two sequences. We select

a transition satisfying the above conditions with the highest index. The function

C12(s, s
′′) is defined in a similar way by interchanging 1 and 2 and using s′′ to replace

s′ everywhere in the above function.

The overall algorithm is shown here. We call it Main algorithm.

Main

Input: G, E

/* G is the plant and E is the legal automaton.*/

Output: com12, com21

/*com12 is the communication set from Supervisor 1 to Supervisor 2 and com21 is the

communication set from Supervisor 2 to Supervisor 1./*

1. com∗
12 = ∅, com∗

21i = ∅, i = 0

2. Start constructing M̃i(G,E, com
∗
12, com

∗
21) from the initial state, add reachable

states using a depth-first search or a breadth-first search.

If the dump state is reached, then stop the construction process.

If no dump state is reached after the whole construction, com12 = com∗
12 and

com21 = com∗
21, the algorithm terminates.

3. Obtain the sequence sMσ leading to the dump state.

Case 1: σ ∈ Σ1,c \ Σ2,c

extract s, s′ from sM ,

/* T21 is a transition communicated from Supervisor 2 to Supervisor 1 so Su-

pervisor 1 can distinguish sequences s and s′. */

T21 = C21(s, s
′).

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 77

com∗
21 = com∗

21 ∪ {T21}

/* check consistency using N21*/

com∗
21 = N21(com

∗
21, com

∗
12) ∪ com∗

21

i = i+ 1

go to 2.

Case 2: σ ∈ Σ2,c \ Σ1,c

extract s, s′′ from sM ,

/* T12 is a transition communicated from Supervisor 1 to Supervisor 2 so Su-

pervisor 2 can distinguish sequences s and s′′. */

T12 = C12(s, s
′′)

com∗
12 = com∗

12 ∪ {T12}

/* check consistency using N12 */

com∗
12 = N12(com

∗
12, com

∗
21) ∪ com∗

12

i = i+ 1

go to 2.

Case 3: σ ∈ Σ2,c ∪ Σ1,c

follow either Case 1 or Case 2.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 78

5.3 An Example

We illustrate the mechanics of the algorithm with an example. Consider the finite-

state automata G and E given in Figure 5.1. The dotted lines are the illegal transi-

tions, i.e., the transitions not in E. The alphabet Σ is {a, b, c, g}. Two supervisors

have only partial observation

Σ1,o = {a, g}, Σ2,o = {b, c}

and partial control

Σ1,c = {a, g, }, Σ2,c = {b, c}

.

We start the Main algorithm by constructing M̃0 which is the same as the M-

machine since there is no communication yet. Suppose the procedure finds a sequence

sMσ leading to the dump state of M̃0 as shown in Figure 5.2.

Since sMσ = (b, 5)(a, 6)(b, 1)(a, 0) and σ = a ∈ Σ1,c \ Σ2,c, we extract s and s′

using Fi (i = 1, 3) as in Chapter 4. We get

s = ba

s′ = ab

By function C21(s, s
′), after step 2 finishes, we find the sequences t and t′ that

form the maximal-P pair of (s, s′): t = ε and t′ = ε. Therefore, r = r′ = 0. The next

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 79

0

1 2

3 4

5 6

7 8

c,g

a b

b

b

b

b

a

a

c

cc

gg

a,c,g
a,c,g

a,b,g

a,b

a,c,g b,c,g

b,c

a,g

Figure 5.1: Plant and Legal Automaton in Example of Section 5.3

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 80

a,4

b,5

0,0,0,0

0,2,2,2

1,2,4,4

3,2,4,4

b,1
b,5

b,4

a,2

a,6

b,4
b,1

a,0

dump

Figure 5.2: A Portion of the Modified M-machine M̃0

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 81

transition observable to Supervisor 1 but not observable to Supervisor 2 in sequence

s is (δE(b, qE0), a, δE(ba, qE0)), which is (2, a, 4), i.e., the index i = 2. The transition

before that which is observable to Supervisor 2 but not observable to Supervisor

1 is (0, b, 2), therefore X1 = {(0, b, 2)}. Since in s′ the next transition observable

to Supervisor 1 but not observable to Supervisor 2 from index r′ = 0 is the first

transition, we set j = 1. Because r′ + 1 > j − 1, X2 = ∅. There is only one element

in X1 and X2 = ∅. We set T21 = (0, b, 2) and add it to com∗
21.

With com∗
21 = {(0, b, 2)}, com∗

12 = ∅, we perform the function N21(V21, V12) where

V21 = com∗
21 and V12 = com∗

12. First, we create Eε
2 (steps 2–4 of the function) by

starting from E and replacing the event labels of the transitions that are not in Σ2,o

and not in V12 with ε. This is displayed in Figure 5.3.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 82

0

1 2

3 4

6

87

5

b

b

ε

c

b,c

b,c

c

ε b

cε

c c

ε

cc

b

b

Figure 5.3: NFA of Eε
2, Iteration 1

Then we transform the nondeterministic finite automaton into an equivalent de-

terministic finite automaton, which is displayed in Figure 5.4.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 83

2,4,6,7,80,1 2,3,4,5,6

2,4,6,72,4,62,4,6,8

b

c b

b

b

b

c

c b
c

c

c

Figure 5.4: DFA of Ẽε
2, Iteration 1

We compute N21 in steps 6–8 of Function N21 using Ẽε
2. By searching at all q̃ ∈ Q̃1

where 0 is an element of q̃, there is one state: {0, 1}. Since (0, b, 2) ∈ V12 ∪W12, but

(1, b, 3) /∈ V12 ∪W12, we add (1, b, 3) to N21. After updating W21 in step 8 of function

N21, nothing needs to be added to N21 for the next iteration of step 7. By now, the

communication sets are: com∗
21 = {(0, b, 2), (1, b, 3)}, com∗

12 = ∅.

With the new communication pair, we start constructing a new modified M-

machine M̃1. Suppose sMσ = (a, 6)(b, 4)(a, 2)(c, 4)(b, 0) is the first sequence in com-

puting M̃1 which ends at the dump state as shown in Figure 5.5.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 84

dump

0,0,0,0

6,4,6,6

3,4,3,3

3,2,3,3

1,0,1,1

a,4
a,2

a,6

b,4

a,4

a,2

a,6

c,1
c,4

c,5

b,0

Figure 5.5: A Portion of the Modified M-machine M̃1

Since sMσ = (a, 6)(b, 4)(a, 2)(c, 4)(b, 0) and σ = b ∈ Σ2,c \ Σ1,c, we extract s and

s′′ using Fi (i = 2, 3) as in Chapter 4. We get

s = abc

s′′ = bac

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 85

By function C12(s, s
′′), after step 2 finishes, we have r = r′ = 0. The next transition

observable to Supervisor 2 but not observable to Supervisor 1 in sequence s is

(δE(a, qE0), b, δE(ab, qE0)), which is (1, b, 3). The transition right before that which is

observable to Supervisor 1 but not observable to Supervisor 2 is (0, a, 1), therefore

X1 = {(0, a, 1)}. Since in s′′ the next transition observable to Supervisor 2 but not

observable to Supervisor 1 from index r′ = 0 is the first transition (i.e., j = 1),

X2 = ∅. We set T12 = (0, a, 1) and add it to com∗
12.

Now we check Supervisor 1’s consistency. With com∗
21 = {(0, b, 2), (1, b, 3)}, com∗

12 =

{(0, a, 1)}, we perform the function N12(V12, V21) where V21 = com∗
21 and V12 = com∗

12.

First, we create Eε
1 by starting from E and replacing the event labels of the transitions

that are not in Σ1,o and not in V21 with ε. This is displayed in Figure 5.6.

ε

ε

ε ε

3

0

21

4

65

7 8

a

g

a,g

b

b

g

a,g

a,g a,g

a,g

g

a

g

a

Figure 5.6: NFA of Eε
1, Iteration 2

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 86

0

1 2

43,6,7,8

5,6,7,8 6,7,8

a,ga,g

a,g

a
a

b

g

b

a

g

g

Figure 5.7: DFA of Ẽε
1, Iteration 2

We transform the nondeterministic finite automaton into an equivalent determin-

istic finite automaton, which is displayed in Figure 5.7.

Then we check consistency for Supervisor 1. Since there is only one state, {0}, in

Ẽε
1 with 0 as an element, and 0 is the only element in that state, we don’t need to

add any more transitions to com∗
12.

With communication pair com∗
12 = {(0, a, 1)} and com∗

21 = {(0, b, 2), (1, b, 3)}, we

start constructing the modified M-machine M̃2.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 87

dump

g,4

c,5
c,4

b,0

0,0,0,0

1,1,1,1

3,3,3,3

5,3,3,3

5,6,7,7

5,8,7,7

a,4

b,4

g,2
g,6

c,1

c,1
c,5

c,4

Figure 5.8: A Portion of the Modified M-machine M̃2

A sequence leading to the dump state of M̃2 is sMσ = (a, 4)(b, 4)(g, 6)(c, 5)(c, 5)(b, 0)

as shown in Figure 5.8. Because σ = b ∈ Σ2,c \ Σ1,c, we extract s and s′′ using

Fi(i = 2, 3). We get

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 88

s = abgcc

s′′ = abcc

Following the same reasoning as in earlier iterations, we need to add a transition

to com∗
12 which is (3, g, 5). Since no new transitions are added to com∗

21, the NFA

of Figure 5.6 and the DFA of Figure 5.7, determined in iteration 2, can be used for

Eε
1 and Ẽε

1 (respectively) of iteration 3. After checking consistency, we need to add

(5, g, 5), (6, g, 6), (7, g, 7) and (8, g, 8) to keep consistent.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 89

Now the communication pair is

com∗
12 = {(0, a, 1), (3, g, 5), (5, g, 5)(6, g, 6), (7, g, 7), (8, g, 8)} and com∗

21 = {(0, b, 2), (1, b, 3)}.

From Figure 5.9 a sequence leading to the dump state of M̃3 is

sMσ = (b, 4)(a, 2)(g, 2)(c, 4)(a, 4)(g, 4)(b, 0).

Since σ = b ∈ Σ2,c \ Σ1,c, we extract s and s′′

s = bcag

s′′ = bagcag

By function C12(s, s
′′), after step 2 finishes, we have r = r′ = 1. The next transition

observable to Supervisor 2 but not observable to Supervisor 1 in sequence s is

(δE(b, qE0), c, δE(bc, qE0)), that is, i = 2. Since r + 1 > i− 1, X1 = ∅. For sequence s′′,

the next transition observable to Supervisor 2 but not observable to Supervisor 1 is

(δE(bag, qE0), c, δE(bagc, qE0)), that is, j = 4, therefore, X2 has two elements which are

(2, a, 4) (the index is r′+1 = 2) and (4, g, 6) (the index is r′+2 = 3). Both transitions

in X2 are not in X1 and both are observable to Supervisor 1 but not observable to

Supervisor 2, so we select the transition with higher index which is T12 = (4, g, 6) and

we add it to com∗
12. Also consistency checking does not add more communication.

After the fourth iteration, the communication pair is

com∗
12 = {(0, a, 1)(3, g, 5)(4, g, 6), (5, g, 5)(6, g, 6), (7, g, 7), (8, g, 8)} and

com∗
21 = {(0, b, 2), (1, b, 3)}.

We then construct the modified M-machine M̃4 and there is no dump state in

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 90

it. Therefore, with the communication pair com12 = com∗
12 and com21 = com∗

21, this

decentralized DES control problem is solved, i.e., two supervisors can be constructed

and cooperate to enforce legal behavior from the plant. Moreover, the supervisors

are consistent by the nature of the Main algorithm. The two supervisors are shown

in Figure 5.10 and Figure 5.11. The labels in square blocks are the events labelling

transitions that need to be communicated.

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 91

0,0,0,0

2,2,2,2

2,4,2,2

2,6,2,2

2,8,2,2

4,8,4,4

6,8,6,6

dump

b,4

a,2

a,6

g,2
g,6g,4

c,4
c,5c,1

b,0

g,4

a,4

a,4
a,2 a,6

Figure 5.9: A Portion of the Modified M-machine M̃3

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 92

a
0 0

4

g

a,g

1

3

5

7 8

6

4

2 1

3,6,7,8

5,6,7,8 6,7,8

2

a

a

a

a

a

ε

ε

ε

ε

a,g

a,g

a,g

g
a,g

a,g

a

b

g

g

a,g
a,g

g g

ε

(a) (b)

b

b

Figure 5.10: Supervisor 1 in Example of Section 5.3 (a): NFA of Supervisor 1 (b):
DFA of Supervisor 1

Now, if we look again at the plant and legal automaton of Figure 5.1, we see that

the critical thing is for one of the supervisors to know if the plant is at state 4, 6 or 7

since these are the states where an event must be disabled. From Figure 5.10 (b), we

see that Supervisor 1 will be able to distinguish state 4 from other states and from

Figure 5.11(b), Supervisor 2 will be able to distinguish state 6 and state 7 from other

states.

To illustrate how this relates to coobservability, consider sequences

CHAPTER 5. COMMUNICATION IN DISTRIBUTED DES CONTROL 93

0

3

2,4

1 2

5

7 8

6

4

1

0

3

65

7 8

a

b,c

c

b

εb

g

c

c

cc

c

c

ccc

b,c

b b

b,g
b,g

c,g c,g c,g c,g

g

b,c

b

g

b

b

g

a

g

g

b

(b)(a)

Figure 5.11: Supervisor 2 in Example of Section 5.3 (a): NFA of Supervisor 2 (b):
DFA of Supervisor 2

s = bcag

s′′ = bagc

These sequences violate coobservability since P2(s) = P2(s
′′), bcag ∈ L(E), bcagb ∈

L(G) and bagcb ∈ L(E), but bcagb /∈ L(E). However, in Figure 5.11(b), s and s′′ lead

to two different states, namely 8 and 6, and at state 6 event b is disabled whereas at

state 8 event b is enabled.

Chapter 6

Conclusions and Future Work

In this thesis, we claim that when coobservability is not satisfied in decentralized DES

control problems, the problems are not always unsolvable. Involving communications

between supervisors which makes a property named transition-based coobservability

satisfied could solve the problem. We define a new automaton structure, named the

modified M-machine, to check transition-based coobservability. With the algorithm

described in Chapter 5, we can find a consistent communication pair between two

supervisors using the modified M-machine.

Transition-based coobservability can be extended to more than two local supervi-

sors. However, the Main algorithm is designed only for cases with two supervisors.

Also, work remains to be done to make the algorithm scalable and optimized with

respect to computing time and space. As we noted in Chapter 5, the Main algorithm

does yield a viable communication scheme but it remains as future work to determine

if the communication scheme is also minimal. Our work represents an inroad into us-

ing the communication of only some occurrences of events to help solve decentralized

DES problems. It is our hope that the theory and existence results in this thesis can

94

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 95

be used to develop an algorithm that can be used in practical applications.

Bibliography

[1] C. G. Cassandras and S. Lafortune. Introduction to Discrete-Event Systems.

Kluwer Academic Publishers, 1999.

[2] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control of

discrete-event processes with partial observations. IEEE Transaction on Auto-

matic Control, 33(3):249–260, 1988.

[3] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[4] F. Lin, K. Rudie, and S. Lafortune. Minimal communication for essential tran-

sitions in a distributed discrete-event system. College of Engineering Control

Group Report No. CGR-05-02, University of Michigan, Februrary 2005.

[5] F. Lin and W. M. Wonham. On observability of discrete-event systems. Infor-

mation Sciences, 44:173–198, 1988.

[6] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete

event processes. SIAM Journal on Control and Optimization, 25(1):206–230,

1987.

96

BIBLIOGRAPHY 97

[7] P. J. Ramadge and W. M. Wonham. Modular supervisory control of discrete-

event systems. Mathematics of Control, Signals, and Systems, 1:13–30, 1988.

[8] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of the IEEE, 77(1):81–98, 1989.

[9] S. L. Ricker. Knowlege and Communication in Decentralized Discrete-Event Con-

trol. PhD thesis, Department of Computing and Information Science, Queen’s

University, Kingston, Canada, 1999.

[10] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributed

discrete-event system. IEEE Transactions on Automatic Control, 48(6):957–975,

2003.

[11] K. Rudie and J. C. Willems. The computational complexity of decentralized

discrete-event control problems. IMA Preprint Series 1105, Institute for Mathe-

matics and Its Applications, University of Minnesota, 1993.

[12] K. Rudie and J. C. Willems. The computational complexity of decentralized

discrete-event control problems. IEEE Transactions on Automatic Control,

40(7):1313–1319, 1995.

[13] K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized su-

pervisory control. IEEE Tranactions on Automatic Control, 37(11):1692–1708,

1992.

