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Abstract

Many manufacturing processes involve an interplay of logical and continuous con-

trol objectives. Here, emphasis is put on the class of continuous plants controlled

by a discrete-event supervisor. For the supervisor synthesis, we favor an approach

by abstraction. This amounts to extracting a finite-state machine realization that

is dynamically equivalent to the continuous dynamics. In particular, we aim for ab-

stractions that are independent of specifications. Moreover, we seek a computational

method capable of generating such an abstraction in finite time.

In our procedure, a partition of a state-space region of the continuous plant yields

the state structure of the abstraction. The transition structure of the abstraction is

then obtained by analyzing the continuous trajectories with respect to the partition.

The proposed partitioning technique is model-based since the state-space decom-

position uses dynamical invariants of the continuous dynamics. The present method

applies to a class of continuous systems satisfying an integrability property. Moreover

a dynamical equivalence between the original and the abstract systems is based on a

correspondence between continuous trajectories and sequences of discrete transitions.

First we show how to use dynamical invariants for constructing partitions. Then

we identify a transversality property of continuous trajectories with respect to parti-

tion boundaries. We also characterize this property for two classes of systems before

providing sufficient conditions. This leads to a technique for evaluating the transi-

tion structure with a reduced number of points. We can fully exploit this feature if

the partition satisfies a certain boundedness property, for which we supply sufficient

conditions. For two-dimensional systems we present sufficient conditions ensuring

the finiteness of computation of the abstraction. Simulation results demonstrate that

one usually obtains an abstraction with nondeterministic transitions. Moreover, the

dynamical equivalence between the abstract and the original system is, in general,
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violated. To circumvent those difficulties we recommend the use of an extended ab-

straction transition mapping that could take into account the timing information as

well as the hyperplanes through which continuous trajectories transit. Finally we

extend the above method to a class of systems for which a Lyapunov function can be

determined.
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Statement of Originality

In this thesis, a theory is developed for generating finite-state machine abstractions

for a class of continuous systems with nonlinear dynamics. More specifically, the

claims of originality are as follows:

• a class of nonlinear systems satisfying an integrability property is identified;

• for those systems, a technique for generating abstractions based on invariants

and independent of specifications is proposed;

• sufficient conditions are provided for obtaining abstractions with transversality

characteristics;

• two abstraction boundedness properties are defined and sufficient conditions are

given;

• for two-dimensional systems, a set of sufficient conditions and an algorithm

ensure the computation of abstractions in finite time; a method for verifying a

notion of dynamical equivalence between the original and the abstract system

is also suggested;

• an extension of the theory and the algorithm is performed for a class of systems

for which Lyapunov functions can be determined.
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Chapter 1

Introduction

The theory of Hybrid Systems consists of a formalism enabling the modelling and

analysis of systems that involve both continuous and discrete behaviour. In the last

decade, Hybrid Systems have proven their relevance in various fields such as the

automotive industry, air traffic control, and robotics. In the chemical industry, this

framework is particularly well-suited to capture some physical phenomena such as

liquid-gas phase transitions and changes in reaction pathways.

Of particular interest, one finds the class of systems that exhibit switchings among

various continuous dynamics. Either a switching arises when certain physical con-

straints are attained (as for a bouncing ball when hitting the ground) or it is induced

by some qualitative or logical rules. A situation where logical rules are present consists

of the safety procedures for manufacturing processes such as shut-down or actuator

saturation.

A large portion of the literature on Hybrid Systems is devoted to the task of

verification, i.e., ensuring that a set of logical rules can be enforced. Verification

often reduces to checking that the plant states reach, or avoid, a certain region when

initialized in a given departure set. In the theory of continuous control systems, the

notion of stabilization (respectively, set-stabilization), i.e., stabilizing a system to a
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point (resp., set of points), is also of crucial importance.

There exists no unique formalism for modelling general Hybrid Systems. However,

the model presented in (Branicky et al., 1998) subsumes a large family of cases. In

the last few years some important classes of Hybrid Systems have emerged such as

Switched Systems (Liberzon and Morse, 1999), Hybrid Output Feedback Systems

(Artstein, 1996), and Quantized Systems (Lunze, 1994; Liberzon, 2002). This thesis

focuses on a family of Hybrid Systems that is introduced next.

1.1 A Class of Hybrid Systems

In manufacturing processes, many situations involve an interplay of logical rules with

continuous control objectives. One such situation considers the use of logic controllers

for continuous processes (such as programmable logic controllers), which represent a

significant industrial application of continuous dynamics altered by logical rules.

The special class of Hybrid Control Systems is particularly adapted for studying

the control of a continuous plant subject to continuous and logical control goals.

This class of Hybrid Systems was first introduced in (Stiver and Antsaklis, 1993)

and further developed in (Stiver et al., 1995a; Yang et al., 1995; Caines and Wei,

1998; Stiver et al., 2001). A Hybrid Control System consists of three components:

a discrete-event controller, a continuous plant, and an interface — as illustrated

in Figure 1.1. That is, the continuous plant (possibly equipped with a continuous

controller) is controlled by the discrete-event controller via the interface. The input

and output signals of the plant are real-valued whereas those of the controller are

of a symbolic nature. In the sequel the adjective “symbolic” refers to a qualitative

statement such as “on”, “off”, “too high”, etc. The sets of controller input and output

symbols are assumed to be finite. Therefore, the interface converts the continuous

plant output y into a controller symbolic input si and the controller symbolic output

2



so into the plant input u. The discrete-event controller updates its output symbol so

only when a change in si, the qualitative plant measurement, occurs. In the literature

some authors refer to the above setup as symbolic control or supervisory control of

continuous systems (Raisch, 1995; Raisch and O’Young, 1998; Lunze, 1998).

Discrete-event
Controller

Continuous
Plant

Interfacey/si so/u

y u

si so

Figure 1.1: A Hybrid Control System

Hybrid Control Systems are especially relevant when a continuous plant is subject

to coarse or high-level control tasks. The simplest example of a Hybrid Control

System equipped with a coarse control objective is the temperature controller of a

room. Indeed, the thermostat reads the room temperature as either “too low” or

“too high” and reacts accordingly by turning “on” or “off” the heating or cooling

system, which then alters the room temperature. As for the interface, the “on” and

“off” symbols are converted into a piecewise-constant signal of the current sent to

the heating system (resp., of the heat supplied to the room) if the actuator dynamics

are (resp., are not) incorporated into the room energy-balance model. Also, the “too

low” and “too high” qualifiers can simply be assigned by the test T < Ts and T ≥ Ts,

respectively, where Ts is the set temperature and T the room temperature.

Many industrial processes possess a hierarchical structure, into which the control

objectives are aggregated in “low-level” and “high-level” categories. Usually the low-

level control objectives (such as set-point tracking) are continuous in nature whereas

high-level objectives (such as set-point change) are better described by a sequence of
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events than by a continuous flow of information. In this context a Hybrid Control

System can be used to enforce high-level control objectives over the continuous plant.

Two distinct problems can be identified with the class of Hybrid Control Systems.

In both cases, the plant continuous dynamics, the set of manipulated variables and

the output function are known a priori. The first problem assumes that the interface

is given and therefore it focuses on control issues, such as stabilization or controlla-

bility (Stiver and Antsaklis, 1993; Yang et al., 1995; Caines and Lemch, 1998). This

area of research includes the class of Quantized Systems (both in measurements and

inputs) consisting of Hybrid Control Systems equipped with quantizers in place of

the interface (Lunze, 1994; Liberzon, 2002).

The second problem concentrates on developing the interface. In particular the

second problem arises when a qualitative representation of the continuous dynamics

is beneficial for the task at hand. For instance, a qualitative model may be required

in the presence of the following situations:

(COND. 1) processes with an actuation taking finite values (“on”, “half-open”, etc.),

(COND. 2) systems with qualitative control requirements such as specifications.

Other situations where a qualitative model is needed can be found in (Lunze, 1998;

Stursberg et al., 2000; Stiver et al., 2001; Bernard and Gouzé, 2002).

In the above condition (COND. 2), we understand by “specification” some logic

statement of the form “if event A occurs then perform action B ”. For instance,

if a fault is detected, a piece of equipment may have to be shut down rapidly and

safely by enforcing some actions while disabling some others. In the presence of many

specifications one must check for the occurrence of conflicts, which happen whenever

one specification is enforced at the price of violating another one.

In the chemical industry, many actuators (e.g., pumps and valves) operate with

a finite number of modes. The room-temperature controller, with its “on” and “off”
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modes, falls in this category. Therefore condition (COND. 1) is sometimes inherent to

the process. Another instance where condition (COND. 1) appears naturally is in the

design of a high-level controller for a plant with complex continuous dynamics. Indeed,

in the presence of condition (COND. 2) a continuous plant behaviour may be reduced

to its key triggering events, thus leading to (COND. 1). The oilsand extraction process

discussed in (Blouin et al., 2001) is an example where this strategy is used. As one

notices, conditions (COND. 1) and (COND. 2) do not exclude continuous control

objectives.

In the remaining chapters emphasis is put on those systems for which both (COND.

1) and (COND. 2) apply.

1.1.1 An Illustrative Example

In order to illustrate some of the concepts, a physical system where both (COND. 1)

and (COND. 2) hold is introduced. The system is composed of two tanks connected

via a pipe as shown in Figure 1.2. The variables of the system are the levels of liquid

in Tank 1 and Tank 2 measured from a reference level, h1 and h2, respectively. Tank 1

has an inlet flow and an outlet flow whose rates are recorded in F . The tanks interact

via a pipe with a flowrate controlled by a valve, whose opening value is denoted by

β. The cross-section areas of Tank 1 and Tank 2 are A1 and A2, respectively.

Tank 1 Tank 2
β

h1

h2

F

Figure 1.2: A two-tank system

5



The control variables are the flowrate F and the valve opening β. The flowrate

F results from a pump (or a group of pumps) that has finite modes (“pumping

from”, “off”, and “pumping towards”) while the pipe’s valve has “open” and “close”

modes. In the actual approach, it is assumed that each controller output symbol

corresponds, in a one-to-one manner, to a plant input value. This assumption holds

for a large number of computer-controlled systems since it is usually required for the

digital-to-analog conversion of the control signal originating from the computer and

directed to the actuators. Therefore one can assume that the control variables in

the above example take real values, say β ∈ {0, 0.9} and F ∈ {−10.5, 0, 10.5}, thus

satisfying condition (COND. 1). The converted symbolic output value then becomes

a piecewise-constant signal due to the presence of a zero-hold device (Stiver and

Antsaklis, 1993).

A mass balance performed on the system provides the set of differential equations

ḣ1(t) = F
A1

− βα
A1

√
h1(t) − h2(t)

ḣ2(t) = βα
A2

√
h1(t) − h2(t)

, for h1(t) ≥ h2(t) (1.1)

ḣ1(t) = F
A1

+ βα
A1

√
h2(t) − h1(t)

ḣ2(t) = −βα
A2

√
h2(t) − h1(t)

, for h1(t) ≤ h2(t), (1.2)

where ḣi denotes the time derivative of hi, i ∈ {1, 2}, and α is some real constant.

The above system dynamics are nonlinear and are characterized by the differential

equations (1.1) and (1.2), each of which holds on a different side of the hypersurface

satisfying h1 = h2. This model differs from the two-tank model

ḣ1(t) = F
A1

+ βα
A1

(h2(t) − h1(t))

ḣ2(t) = −βα
A2

(h2(t) − h1(t))

, (1.3)
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found in (Raisch and O’Young, 1998) and where the nonlinearity (the square root)

has been omitted. We refer to (1.1) and (1.2) as the nonlinear model and to (1.3)

as the linear model of the two-tank system. Unlike the linear model, the nonlinear

model one is hybrid as the system’s dynamics experience a change whenever h1 = h2.

A qualitative requirement for the two-tank system is the specification “do not

overflow”. Such a task does not require the full knowledge of the underlying contin-

uous dynamics. For instance, it can be verified by using the level qualifiers “low”,

“medium” and “high”. Another example of a qualitative statement is “if Tank 2

reaches the high level, then bring both tanks to low and then stop the process”.

1.2 Research Objectives and Motivations

As defined in the previous section, the second problem of Hybrid Control Systems

influences the first one. Moreover, a thorough understanding of the interface design

is believed to provide insights on the control capabilities of Hybrid Control Systems.

Indeed some authors integrate the interface design within the controller synthesis

(Artstein, 1996; Raisch, 2000; Stiver et al., 2001). Therefore, the second problem

is investigated first with the assumption that one is given the finite set of output

symbols of the controller (so in Figure 1.1).

If one lumps together the interface and the continuous dynamics of Figure 1.1

then the second problem is to determine a discrete model which approximates or

mimics the continuous dynamics paired with the interface. In the sequel we refer to

the plant discrete model as an “abstraction” and we adopt the finite-state machine

formalism as a representation. A more precise definition of an abstraction is given in

subsequent chapters. Usually, abstractions are used for two purposes: (i) to “throw

away” information (thus making the abstract system simpler to analyze), and (ii)

to “preserve a property of interest” (Kokar, 1995). A common technique to initiate
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an abstraction is to decompose, or partition, a plant signal space (state space, input

space, output space, or a combination of those) into sets of points and identify each

of these sets with a single qualitative symbol, thus throwing away some information

(point (i) above). Then the abstraction transition structure is deduced from analysis

of the continuous dynamics with respect to the partition. Once an abstraction is

obtained then a controller can be synthesized by using the finite-state machine theory

only. This represents the main benefit of the approach by abstractions since controller

synthesis in a continuous framework is usually more difficult to achieve, especially in

the presence of condition (COND. 1).

Figure 1.3 represents a Hybrid Control System setup with an abstraction as part

of the interface. With this configuration the plant symbolic output si is induced by

the abstraction. Also the plant input signal u is generated from the set of controller

output symbols so and an interface similar to that of the two-tank example. As

mentioned before it is assumed that so takes values in a finite set. Therefore the

abstraction dynamics are completely governed by the occurrence of discrete events

only. The presence of y as an input signal to the abstraction in Figure 1.3 is there to

emphasize the fact that plant events si also depend on continuous output data.

Controller
(Finite-state machine)

Abstraction
(Finite-state machine)

Plant
(Continuous system)

s0/uy

si so

u

Figure 1.3: A Hybrid Control System with an abstraction

Rather than proceeding by abstractions, an alternative is to consider a continu-
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ous equivalent of the hybrid control problem, a procedure referred to as “continua-

tion” in (Branicky, 1995). A consequence of this approach is that formal methods

(Cuadrado, 1994) for checking conflicts among specifications cannot be used. More-

over, there are situations where continuation is intentionally avoided. This is the case

for complex continuous systems where continuation is dropped to simplify the exceed-

ingly complex models that may result. A closely related field is that of generating

continuous abstractions of continuous systems. Indeed, in (Pappas and Simic, 2002)

the authors use a smooth surjective mapping to abstract affine control systems while

preserving the reachibility properties of the original system.

Among the various abstraction techniques, one can choose to make the abstrac-

tion tailored to a particular specification (or a set of them). For instance, an ab-

straction may be used for a verification purpose so that its transition and state struc-

tures capture the reachability of a target set from a given source set. We denote

by s-abstractions such specification-oriented abstractions. From a practical point

of view, s-abstractions are suitable for finite sequences of actions (such as start-up

and shut-down). The alternative is to consider abstractions that are independent of

specifications. We simply refer to those as abstractions. The s-abstractions usually

require less analysis and computation than abstractions since the information that

does not relate to the specification can be dropped. Stabilization through abstrac-

tions can be investigated as shown in (Hsu, 1987; Lunze, 1995), whereas converting

a stabilization task into a finite set of s-abstractions may not be trivial. Indeed,

the construction of abstractions can be seen as the first stage of a control synthesis

technique. This approach is potentially relevant for systems with nonlinear dynamics

and bounded inputs for which no general strategy for synthesizing a controller exists.

Unlike s-abstractions, abstractions are also amenable to hierarchical control (Caines

and Wei, 1998), logical control of continuous process (Stursberg et al., 2000), model

validation (Bernard and Gouzé, 2002), and integrated process design (fifth conference
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paper on page 162). Therefore we favor abstractions because (i) continuous control

tasks can be achieved, (ii) verification can always be performed, and (iii) they can

lead to hierarchical control or integrated design solutions, which are applications of

interest in chemical engineering.

In summary, the interface of Hybrid Control Systems is part of the design pro-

cedure being undertaken. Also the approach by abstractions is preferred due to the

nature of the envisioned control tasks. Therefore given a continuous plant, the prob-

lem of interest is to develop a technique to generate a finite-state machine abstraction

so that each plant trajectory corresponds to a sequence of discrete transitions in the

abstraction, and vice versa. This notion of relationship between trajectories and

discrete transitions will be made clearer in further chapters.

1.3 Overview of the Thesis

In Chapter 2, a literature review of various abstraction techniques is performed. Chap-

ter 3 contains the theoretical background for the subsequent chapters. Therein the

notions of transversality, finiteness, consistency, and deterministic behaviour are in-

troduced, prior to formulating a precise problem statement. Also a class of nonlinear

systems is defined and some preliminary results are provided. Then in Chapter 4

we state a transversality requirement and establish its relation to the deterministic

behaviour of the abstraction’s transition structure. Chapter 5 presents the notion of

L-boundedness, its relevance for a family of abstractions, and a set of sufficient con-

ditions. In Chapter 6 the finiteness of computation is resolved for two-dimensional

systems and case studies are presented. Chapter 7 introduces an extension of the the-

ory to systems for which a Lyapunov function can be determined. Finally Chapter 8

contains the conclusions.
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Chapter 2

Literature Review

Prior to abstracting the continuous dynamics of a Hybrid Control System we begin

by reviewing and comparing the various contributions related to the general area

of abstractions. For this purpose we present in Section 2.1 a brief description of

abstraction techniques found in the literature. Then in Section 2.2 a qualitative

comparison of the existing approaches is performed. A discussion of the comparative

analysis follows in Section 2.3.

2.1 Review of Approaches

The interest for abstracting continuous dynamics by discrete realizations originated a

decade ago. At the same time Hybrid Systems experienced an increase in popularity

in various fields of science. As of today, research efforts on discrete abstractions of

continuous systems take place in broad areas of engineering such as chemical engi-

neering, electrical engineering, and biological engineering. This is one of the reasons

why the references are presented by research group in the chronological order of their

first known contribution. Also, due to similarities with the abstraction task some

achievements in the field of verification (reachability analysis or s-abstractions) and

qualitative modelling are cited. As a guideline, almost all techniques presented here
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follow a generic procedure, first a partition of some space is performed, followed by

the construction of a transition structure based on the partition.

Throughout their work, Lunze and coworkers (Lunze, 1992; Lunze, 1994; Lunze,

1998; Lunze et al., 1999) show an interest in eliminating spurious solutions by target-

ing abstractions with deterministic behaviour. Spurious solutions are those solutions

(i.e., sequences of transitions) generated by an abstraction for which there exists no

corresponding continuous trajectory. In other words, the presence of spurious solu-

tions implies that an abstraction over-approximates the underlying continuous dy-

namics. A transition structure of an abstraction is deterministic if from any partition

subregion a given input value leads to a unique partition subregion. The early work

of Lunze (Lunze, 1992; Lunze, 1994; Lunze, 1998) covers the qualitative modelling of

continuous dynamics whose input and state signals are quantized. It was shown that

a quantization of state variables induces a partition over the state space of the system.

Among the various modelling approaches presented in (Lunze, 1998), the represen-

tation by discrete-event systems is favored. For the class of unforced sampled-data

systems, necessary and sufficient conditions for obtaining a deterministic automaton

are provided (Lunze, 1994). As those conditions are rather restrictive the automaton

is, in general, nondeterministic, thus leading to the use of stochastic automata. The

author illustrates the approach by applying it to the practical stability of an inverted

pendulum in (Lunze, 1992). Recently Lunze and coworkers (Lunze et al., 1999) have

taken a slightly different approach. Instead of considering a predetermined quantiza-

tion, the authors investigate conditions under which a partitioning of the state space

leads to deterministic automata. Sufficient conditions are provided for the class of

continuous linear systems with fixed input values.

In (Stiver and Antsaklis, 1993), Stiver and Antsaklis extend the notions of con-

trollability and of supremal controllable language presented in (Ramadge and Won-

ham, 1982) to analyze abstractions of the continuous part of Hybrid Control Systems.
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In this setup, the interfaces are given and abstractions are assumed to be nondeter-

ministic. Stiver and coworkers (Stiver et al., 1995a; Stiver et al., 1995b) then consider

the case where the interface must be designed in order to build s-abstractions. Therein

the design of a controller and the interface is performed together based on natural

invariants of the continuous dynamics. A control goal, such as the reachability of a

target set from a departing set, and control input values are utilized for the interface

design. Recently Stiver et al. (Stiver et al., 2001) extended some of the previous

results to linear hybrid systems. In this recent article the controller design approach

is explained extensively.

In (Zhao, 1994), Zhao proposes a computational method for analyzing the quali-

tative behaviour of a class of nonlinear systems with known input values. The quali-

tative representation is based on a state-space analysis in terms of equilibrium points,

limit cycles, stability regions, and an equivalence class of trajectories. Those entities

serve to partition a region of interest of the state space into qualitatively distinct re-

gions. The method applies to systems satisfying a hyperbolicity condition, a transver-

sality condition, and a certain condition on the trajectories bounding stability regions.

The class of structurally stable systems naturally fulfill the first two conditions.

Unlike other researchers, Yang et al. assume that a nondeterministic abstraction

of the continuous plant is given (Yang et al., 1995). This work is worth mentioning

because new definitions of nondeterministic behaviour and controllability are pro-

vided. Moreover the authors develop a procedure for generating the supremal live

sublanguage of a specification language.

In (Kokar, 1995), the author investigates how to partition some signal space of a

continuous system so that one can analyze continuous dynamics from the abstraction

only. This leads to a notion of consistency, which precludes the existence of spurious

solutions. The approach uses hypersurfaces to partition various signal spaces (output

space, state space, and input-state-time space). In this context hypersurfaces define
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an abstraction mapping. The partitioning technique applies to single-output systems

possessing a closed-form solution. Therein a consistency postulate is defined on the

basis of the exact knowledge of time and initial conditions.

In (Raisch, 1995), the author studies linear switched systems (where switching

among various (A,B) pairs occurs) subject to output quantization. In this context

the quantization results in a rectangular partition of the output space. For the sub-

class of systems with constant drift vector, the author derives necessary and sufficient

conditions for the global reachability and controllability in the presence of piecewise-

constant input signals. Raisch and O’Young then focus on systems modelled by

discrete-time dynamics with disturbances (Raisch and O’Young, 1996). By consider-

ing past and present data it is shown how state estimates can be constructed. Re-

cently Raisch has formalized the approach in (Raisch, 2000) by using the behavioural

paradigm (Willems, 1991). The technique contains two steps, first an ordered set of

behaviours is generated, and then for each behaviour a nondeterministic automaton

is constructed as the minimal realization. The accuracy of the abstraction can be

tuned to the precision required by the specification. In this setup the automaton

representation of the behaviour has its state structure determined by a partitioning

of the input-output space.

Bernard and Gouzé (Bernard and Gouzé, 1995) study the class of uncertain con-

tinuous models with loop structure and monotonous interactions (i.e., the off-diagonal

terms of the vector field Jacobian matrix never vanish), which are common in biologi-

cal, population and evolution systems. For unforced systems, they provide a technique

to obtain finite-state machine abstractions based on the extra-diagonal terms of the

Jacobian of the system’s vector field. An extension to systems with inputs is per-

formed in (Bernard and Gouzé, 1999). In (Bernard and Gouzé, 2002), the authors

provide conditions under which the abstractions can be derived when diagonal terms

of the Jacobian are considered. The finite-state machine abstractions thus obtained
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are mainly used for the experimental validation of the continuous models.

Broucke (Broucke, 1998) also uses dynamical invariants (more precisely, first in-

tegrals) for the verification task of a safety problem (that is, ensure that a forbidden

set is not reached when departing from a given set). Therein an equivalence re-

lation among the trajectories of a hybrid system acts as a bisimulation, i.e., it is

not only the case that the abstraction “simulates” the original system but also the

original system “simulates” the abstraction. Analytical representations of bisimula-

tions are constructed from foliations, which consist of state-space decompositions by

dynamical invariants. Then for each control location (meaning each input value) an

over-approximation of the system trajectories is obtained. Note that the construction

of the s-abstraction requires a transversality condition.

In (Caines and Lemch, 1998; Lemch and Caines, 1999) Caines and Lemch build

on the Hybrid-In-Block-Controllability (HIBC) and the dynamical consistency (DC)

properties introduced in (Caines and Wei, 1998). On one hand, the HIBC property

requires that each subregion of a partition forms a controllable subsystem (in the

continuous sense). On the other hand, two distinct neighboring partition subregions

are dynamically consistent (in a given direction) if for any point of a subregion there

exists a control action such that the point can be brought to some point of the other

subregion. In order to obtain a lattice of HIBC partitions, Caines and Wei invoke the

existence of a flow transversal to the partition boundaries. Moreover, the fountain

condition and one of the recurrence conditions provided in (Caines and Lemch, 1998)

are sufficient to establish the controllability of nonlinear systems in general, and thus

the HIBC property of their partitions. These results hold for the class of admissible

controls (defined in §A.4.1), which is a generalization of the type of control involved

here (ref. the two-tank example of §1.1.1 on page 5). Also, one notices that no

technique is provided in order to build finite-state machine abstractions.

The work of (Stursberg et al., 2000) explores two procedures to extract timed dis-
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crete abstractions of continuous dynamics. Both methods are based on a rectangular

partition of the state space. The first technique uses interval-arithmetical expres-

sions to capture flows between two partition regions, whereas the second technique

considers partition boundaries as additional states in order to establish boundary-to-

boundary flows by numerical integration. A comparison between the two methods

is performed on the basis of completeness, accuracy, consistency and computational

burden. Even though the accuracy of the second method is better than that of the

first method, it is limited by the fact that an infinite number of initial conditions

must be considered. Systems to which the techniques apply are those modelled by

nonlinear dynamics with piecewise-constant input signals.

Since a continuous system is a hybrid system with a single discrete location, the

work of Alur and coworkers (Alur et al., 2000) is also of interest. The article reviews

the class of hybrid systems for which the construction of an equivalent finite discrete

abstraction, through language equivalence relations and bisimulations, is possible.

Therein emphasis is put on the decidability of the reachibility problem. For this

purpose, existing results require that the continuous dynamics be constrained to that

of rectangular automata (that is, continuous dynamics with interval-valued vector

fields and decoupled states evolving on a rectangular region). A restriction to a

subclass of hybrid systems allows an extension of the continuous dynamics to a class

of linear systems.

Finally Lefebvre and coworkers (Lefebvre et al., 2002) abstract continuous dynam-

ics modelled by linear switched systems of dimension two. In essence, the authors

show that a state-space partition based on dynamical entities (such as equilibrium

points and eigenvalues) provides more efficient abstractions than rectangular grids.

This completes the literature review on abstractions of continuous dynamics. In

the following sections we proceed with an analysis of the above results before defining

a set of objectives.
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2.2 Qualitative Comparison

In order to shed some light on potential research directions, we undertake a quali-

tative comparison between the various approaches described in the previous section.

The comparison focuses on three distinct aspects: the continuous dynamics, the ab-

straction type, and the nature of the partition.

The class of continuous systems that are abstracted can be represented by lin-

ear (L) or nonlinear (NL) dynamical models. Among the linear dynamics one finds

the discrete-time (LD), continuous (LC), and switched (LS) models. The column la-

belled “Continuous” in Table 2.1 summarizes the class of systems considered by each

research group. The presence of “–” in Table 2.1 stands for an absence of information

on the topic. In addition to the previous classification of continuous dynamics, the

following properties are required: bidimensionality in (Lefebvre et al., 2002), global

controllability in (Caines and Lemch, 1998), structural stability in (Zhao, 1994), un-

certain models with loop structure in (Bernard and Gouzé, 2002), models with a single

output and closed-form solutions in (Kokar, 1995), and an integrability property in

(Broucke, 1998; Stiver et al., 2001).

As seen previously one can generate various types of abstractions. In order to

characterize them, emphasis is put on the dependence of the abstraction on continuous

time, specifications, and input values. Also the deterministic nature of the transition

structure of the abstraction is of interest. For instance, the column “Discrete” in Table

2.1 depicts for each approach if the transition structure refers to time (either timed (T)

or untimed (U)) and whether its behaviour is deterministic (D) or nondeterministic

(ND). Furthermore, only (Kokar, 1995; Caines and Lemch, 1998; Lunze et al., 1999;

Stursberg et al., 2000; Bernard and Gouzé, 2002; Lefebvre et al., 2002) generate

abstractions that do not depend on specifications. The synthesis of s-abstractions

is denoted by SA in Table 2.1 whereas A stands for the synthesis of abstractions.

The technique of a few research groups (Broucke, 1998; Lunze et al., 1999; Lefebvre
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et al., 2002; Bernard and Gouzé, 2002) is such that an abstraction or s-abstraction

must be generated for each input value. In contrast, the work of (Lemch and Caines,

1999; Raisch, 2000; Stiver et al., 2001) uses a single abstraction or s-abstraction to

capture all input values.

Authors Discrete Continuous Partition Technique

Lunze et al. (1992-1999) U, D, A LD, LC S, d Yes

Stiver et al. (1993-2001) U, ND, SA NL S, d Yes

Zhao (1994) U, –, – NL S, d Yes

Raisch et al. (1995-2000) U, ND, SA LS,LD IO, s Yes

Kokar (1995) U, –, A NL ES, d Yes

Bernard and Gouzé (1995-2002) U, ND, A NL ES, s Yes

Broucke (1998) U,–,SA NL S, d No

Caines et al. (1998-1999) U, ND, A NL S,– No

Stursberg et al. (2000) T, ND, A NL S, s Yes

Alur et al. (2000) –, –, SA L –, – No

Lefebvre et al. (2002) U, –, A LS, LC S, d Yes

Table 2.1: Qualitative comparison of existing approaches (A: abstraction; D: deterministic
transition structure; d: dynamic partition; ES: extended-space partition; IO:
input-output space partition; L: linear systems; LC: linear and continuous sys-
tems; LD: linear and discrete-time systems; LS: linear and switched systems;
ND: nondeterministic transition structure; NL: nonlinear systems; s: static par-
tition; S: state-space partition; SA: s-abstraction; T: timed transition structure;
U: untimed transition structure)

Abstractions of continuous dynamics are usually obtained by first partitioning a

signal space, such as the state space (S), the input-ouput space (IO), or an extended

state-space (ES). Moreover, the partitioning technique is classified as dynamic (d)

(resp., static (s)) if it is (resp., is not) a model-based approach. For instance, all

partitions performed with a rectangular grid (or induced by quantizers) are static

whereas all partitions based on some dynamical features of the model are dynamic.

The third column of Table 2.1 summarizes the characteristics of the various types of

partitions encountered. Finally the last column in Table 2.1 indicates whether there
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exists a technique (either an algorithm or a detailed procedure) for obtaining the

partition and the abstraction or s-abstraction.

2.3 Discussion

As seen in the last section there are very few connections between all references cited

previously and a definite line of thought is far from apparent. This section is meant

to propose research guidelines based on existing techniques.

The physical systems mentioned in Chapter 1 (two-tank and oilsand extraction),

like many other systems, inherently possess nonlinear dynamics. Therefore, one would

benefit from an abstraction technique that is suitable for this class of systems. More-

over, the steering car example in (Nijmeijer and van der Schaft, 1990) shows that

linearization can destroy (continuous) controllability. Therefore an abstraction based

on a linearized model may show fewer control capabilities than its original nonlinear

form. This is an incentive for considering approaches that apply to nonlinear models.

Among the aforementioned approaches those specific to linear models, i.e., (Lunze

et al., 1999; Raisch, 2000; Alur et al., 2000; Lefebvre et al., 2002) are difficult to extend

to nonlinear dynamics for various reasons. Whereas the work of (Broucke, 1998;

Caines and Lemch, 1998) applies to nonlinear dynamics, the authors do not suggest

any technique for obtaining an abstraction or s-abstraction. Also the class of systems

defined in (Kokar, 1995) is considered to be restrictive because it requires a closed-

form solution, the exact knowledge of initial conditions, and a single-output variable.

The remaining techniques that are applicable to nonlinear dynamical systems are

those proposed in (Zhao, 1994; Stiver et al., 2001; Stursberg et al., 2000; Bernard and

Gouzé, 2002) where only the last two generate abstractions. Therefore, there exists

very few specification-independent techniques for abstracting systems with nonlinear

dynamics, in general.
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The process for abstracting continuous systems can take different forms and tar-

get distinct objectives. For instance, an abstraction mapping for continuous systems

is introduced in (Kokar, 1995) where the author defines the mapping through the

partitioning of various signal spaces. An alternative approach to abstraction map-

pings amounts to defining an equivalence relation based on languages or trajectories

(Broucke, 1998; Alur et al., 2000). Recall that an abstraction is also meant to preserve

some property. Among the properties of interest that can be preserved through the

abstraction of a continuous system one finds consistency (Kokar, 1995; Caines and

Wei, 1998; Stursberg et al., 2000), deterministic behaviour (Lunze et al., 1999), HIBC

(Caines and Lemch, 1998), and completeness (Stursberg et al., 2000). Even though

various definitions of consistency exist, the weakest notion is a property ensuring that

a sequence of transitions in the abstraction has at least one corresponding trajectory

in the underlying continuous system. Completeness is the converse of consistency,

that is, it ensures that each continuous trajectory is represented by a transition in

the abstraction. Indeed, a consistent abstraction does not necessarily capture all

trajectories of a continuous system, i.e., it may under-approximate the continuous

behaviour. Therefore consistency and completeness are important properties because

they enable one to reason about the original system from its abstraction only.

A few observations are worth noting about the technicalities of generating ab-

stractions. First notice that in the work of Lunze the removal of a fixed quantization

resulted in a relaxation of conditions to obtain a deterministic automaton. Indeed the

necessary and sufficient conditions to have a deterministic automaton for discrete-time

models equipped with quantizers are very restrictive. In comparison, the sufficient

conditions to obtain a deterministic automaton for a linear continuous system with-

out quantizers are more permissive. Moreover, in (Lefebvre et al., 2002) it is shown

that a model-based partitioning provides a more accurate abstraction than a static

partitioning, such as those induced by quantizers. This is part of the motivation
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for exploring the partition techniques based on dynamical invariants similar to the

verification approach in (Broucke, 1998; Stiver et al., 2001). Also a transversality con-

dition is often cited as a necessary requirement for abstracting nonlinear continuous

systems (Zhao, 1994; Caines and Wei, 1998; Broucke, 1998). Moreover, one must pay

attention to the finiteness of computation for constructing abstractions. For example,

the accuracy of the abstractions obtained in (Stursberg et al., 2000) increases with

the number of initial conditions considered.

In summary, an abstraction technique based on nonlinear models is recommended

because (i) it is more accurate than one that refers to the linearized version of the

models, and (ii) it applies to a larger class of systems. Since previous results indi-

cate the benefits of dynamical partitions, a partitioning technique using dynamical

invariants is favored. At the same time the approach must aim at obtaining, in a

finite number of steps, abstractions that are consistent and complete in some sense.

Moreover, for such abstractions a characterization of transversality should be per-

formed. In the following chapter, we introduce the necessary material to provide a

formal problem definition.
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Chapter 3

Theoretical Background

Herein we formalize some of the concepts introduced in the previous chapters. Since

the main objective of the thesis is to obtain a finite-state machine (FSM) abstraction

of a continuous system, the continuous dynamics of an Hybrid Control System (HCS)

are defined first in Section 3.1. This leads to a family of systems called Controlled

Switched Systems (CSSs). In Section 3.2 we proceed with a formal characterization of

FSM abstractions for CSSs, which is then followed by the formulation of the problem

statement. In Section 3.3 we introduce a subclass of systems leading naturally to a

partitioning technique, which is a necessary step towards FSM abstractions.

3.1 Continuous Plant Dynamics

The continuous system in an HCS is assumed to be modelled by a set of equations

ẋ(t) = f(x(t), u(t)), x(t) ∈ D ⊆ R
n, u(t) ∈ U ⊂ R

m, t ∈ R,

y(t) = x(t)

(3.1)

where x(t), u(t), and y(t) represent a coordinate function, an input map, and an

output function, respectively. In the sequel we refer to x as the state variable, to u as
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the input variable, and to y as the output variable (the indication of time t is dropped

whenever clear from the context). The set D in (3.1) is assumed to be an open subset

of R
n, the n-dimensional Euclidean space, whereas the input space U is assumed to

be a nonempty subset of R
m.

A function g defined on an open set A is Ck, i.e., k-differentiable, with k =

1, 2, . . . ,∞, if its partial derivatives of order k exist and are continuous. A C∞ (or

smooth) function g is analytic if for each point p ∈ A and some neighborhood N ⊂ A

of p there exists a convergent power series for all p′ ∈ N . The R
n-valued function f ,

with domain D ×U , is referred to as a vector field. Throughout the thesis the vector

field f(x, u) is assumed to be smooth on its domain D × U .

In the HCS context, the set of input values Σ ⊂ U is assumed to be known a

priori and taking the form of a finite set of real m-tuples

Σ := {σk := (σ1
k, . . . , σ

m
k )}k∈IΣ

, (3.2)

with IΣ ⊂ N
+ the index set for Σ and m the size of the vector of input values. We

also assume that the map u : R≥0 → Σ generates piecewise-constant input signals

(i.e., u is a piecewise-continuous from the right function). By definition, such an input

map is closed under concatenation and therefore it belongs to the class of admissible

controls U (ref. §A.4.1 on page 148). For clarity, the use of piecewise-constant input

maps taking value in Σ is emphasized by writing u(·) ∈ UΣ.

Given a fixed input value u = σ ∈ Σ, the set of singular points for f(x, σ) is

defined as

Sσ := {p ∈ D | f(x, σ)|x=p = 0}. (3.3)

The set Sσ captures the equilibrium points of f(x, σ) in D, i.e., if the system is

initialized at p ∈ Sσ and the input value is σ, then (3.1) has the solution x(t) = p for
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all t ∈ R. If σ = σk ∈ Σ then we denote Sσk
by Sk.

The next step amounts to investigating the nature of the solutions of systems as

defined in (3.1) with an input map u(·) ∈ UΣ. We first consider the case of a fixed

input value, prior to extending to a piecewise-constant input signal. The flow of the

vector field f(x, u) is a mapping φ : I × D × Σ → D satisfying φ(t = 0, p, σk) = p,

for any p ∈ D, σk ∈ Σ, and ∂φ(t, x, σk)/∂t = f(φ(t, x, σk), σk), for each t ∈ I ⊂ R

where I is a time interval containing the origin. Therefore the flow of a vector field

represents the solution of (3.1) on a time interval given an initial condition and a

fixed input value. At this point, we impose a further restriction on the class of input

signals UΣ by requiring that the vector field f(x, u) of (3.1) is complete, that is, given

any initial condition the solutions of (3.1), with u(·) ∈ UΣ, are defined over the time

interval I = R (this is a generalization of Definition A.10 provided on page 149).

Consequently, the existence (and uniqueness) of a solution on any time interval and

in the presence of an input map u(·) ∈ UΣ is guaranteed. The following example

illustrates that even if a vector field is complete for each input value in Σ (as in

Definition A.10), it may not be complete in the above general sense in the presence

of a piecewise-constant input signal u(·) ∈ UΣ, i.e., the existence of a solution on any

finite interval is compromised.

Example 3.1 ((Nijmeijer and van der Schaft, 1990)) Consider on R
2 the sys-

tem

ẋ1 = (1 + x2
2)u

ẋ2 = (1 + x2
1)(1 − u)

(3.4)

with input set Σ := {0, 1}. Let the initial value be (x1(t = 0), x2(t = 0)) = (0, 0). A
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piecewise constant control u(·) ∈ UΣ is defined over the time interval [0, T ] by

u(t) =





0, an ≤ t < bn

1, bn ≤ t < an+1

, (3.5)

where

bn = an + 1
1+n2 an+1 = bn + 1

1+(1+n2)
, (3.6)

with b−1 = 0, a0 = 1 and such that limn→∞an = T < ∞. The solution of the system

exists over the interval [0, T ) but the solution at time T does not exist. In fact, in a

finite time u switches infinitely between 0 and 1 while states x1 and x2 increase, thus

leading to a finite-escape time scenario.•

We now look at the characterization of input signals generated by a map u(·) ∈ UΣ.

Let a switching time refer to a time t ∈ R≥0 at which a change of input value occurs,

i.e., u(t−) 6= u(t). Thus a piecewise-constant input signal can be described by a

sequence of input values s := σ1 · · ·σr ∈ Σ+, r ∈ N
+, where Σ+ represents the set of

all possible sequences of elements of Σ (except for the empty sequence), together with

a sequence of switching times τ := t1 · · · tr, such that u(t) = σi for all t ∈ [ti−1, ti)

with t0 the initial time. The lower graph in Figure 3.1 shows an input sequence where

at switching times the input value undergoes a change.

Let us now consider cases where sequences of input values are implemented. For

this purpose, let the flow induced by a fixed input value σk ∈ Σ on an interval I be

denoted as a mapping φk : I × D → D. Given some input and time sequences s and

τ , let pi = φi(ti − ti−1, pi−1), i ∈ {1, . . . , r}, r ∈ N
+, represent the locations in D

where the vector field experiences a change of input value, and let φ∗
i ([ti−1, ti), pi−1) :=

⋃

t∈[0,ti−ti−1)

φi(t, pi−1) be the trajectory connecting pi−1 to pi under input value σi. Thus
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a trajectory initiated at a point p = p0 and induced by s and τ consists of the set

of points Φ∗(p0 = p, t0, s, τ) :=
⋃

i∈{1, ... ,r}

φ∗
i ([ti−1, ti), pi−1). Also, the composition of

flows Φ(p0 = p, t0, s, τ) := φr(tr − tr−1, ·) ◦ · · · ◦ φ1(t1 − t0, p0) yields pr, the point

reached under s and τ when departing from p0 = p at t0. Consequently, the solutions

are continuous and continuously differentiable everywhere except at switching times.

The top diagram of Figure 3.1 shows a sample trajectory initiated at p and induced

by the input sequence illustrated in the lower diagram of Figure 3.1.

R
n

p0 = p

p1
p2

p3

Φ(p, u(t))

t

t

Σ

u(t)

σ1

σ2

σ3

t0 t1 t2 t3

Figure 3.1: A sample input sequence u(t) and its corresponding trajectory

We complete the characterization of the continuous dynamics of an HCS by for-

malizing the above setup in a definition.

Definition 3.2 (CSS) A system characterized by (3.1) with input map u(·) ∈ UΣ

and an analytic1 and complete vector field is said to be a Controlled Switched System

(or CSS).⋄

In the following section we continue the definition of an HCS by introducing a

formal description of a finite-state machine abstraction of a CSS, its state structure

and its transition structure.

1In further results, we identify when the analyticity requirement cannot be dropped.
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3.2 Finite-State Machine Abstractions

In the present approach, the state structure of an FSM abstraction is defined through a

partitioning of a state-space region of a CSS. The transition structure is then deduced

from the partition and the continuous dynamics. For this reason we first present the

properties of a partition, followed by a definition of the transition structure of an

FSM abstraction. Prior to formulating the problem definition, we investigate some

abstraction properties discussed in Chapter 2.

3.2.1 Partitions

Let E be a convex, open, and strict subset of D. A partition of E, denoted by π, is

a finite collection of non-empty subsets {qi ⊆ E}i∈Q satisfying the conditions

(∀i, j ∈ Q, i 6= j) qi ∩ qj = ∅ (3.7)

E =
⋃

i∈Q qi, (3.8)

where Q is the label set of the qi’s. Namely, a partition is made of mutually disjoint

subsets (3.7) which together act as a cover for E (3.8). In the sequel we refer to those

qi’s that have a nonempty interior in E as partition cells or cells for short. In Figure

3.2 a set E (defined by a solid line) and some cells, with label set {0, 1, 2, 3, 4, 5} ⊂ Q,

are illustrated.

A boundary point p of a cell qi with i ∈ Q, is a point whose neighborhoods contain

a point in qi and a point in qc
i , the complement of qi in D. The boundary of a cell qi

consists of the set of all boundary points of qi and it is denoted by ∂i. The closure

of a cell qi is defined as qi := qi ∪ ∂i. In the case of Figure 3.2, if each boundary

point in E is assigned to a unique cell, then {q0, . . . , q5} satisfies (3.7) and (3.8) and

thus forms a partition of E. Unless stated otherwise, we assume that a partition is

composed of cells only. Given a partition π of E, ∂π :=
⋃

i∈Q ∂i represents the set of
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cell boundaries of π. In Figure 3.2, ∂π corresponds to solid and dashed lines.

Given a partition cell qi, its neighboring cells are those sharing boundary points

with it. Formally the label set of neighboring cells of qi is defined as

Ni := {i′ ∈ Q \ {i} | ∂i ∩ ∂i′ 6= ∅} ⊂ Q. (3.9)

For instance, in Figure 3.2 the cells neighboring q0 are those given by the label set

N0 := {1, 2, 5}.

q3

q4

q5

q1
q0

q2

E

D

Figure 3.2: A set E and some partition cells

3.2.2 Abstractions of Controlled Switched Systems

A finite-state machine is a triple (Q, Σ, δ) where Q, Σ, and δ represent the finite set of

discrete states, the alphabet, and the transition map, respectively. In contrast to an

FSM, an FSM abstraction A := (Q, Σ, δ) has its state set Q defined by a partition and

its transition map δ determined by the partition, an underlying continuous system,

and the event set Σ. That is, a partition π of E ⊂ D, a subset of the state space of a

CSS, provides the state structure of the FSM abstraction. Thus a state i ∈ Q of an

FSM abstraction relates to a subset qi ⊆ E of the state space. In the case of a CSS,

the FSM abstraction alphabet Σ coincides with the set of input values that are fed

to the continuous system (ref. equation (3.2) on page 23).
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An FSM transition map provides the state transitions under some input values.

A generic description of this partial function2 is given by δ : Σ × Q → 2Q, with 2Q

representing the set of all possible subsets of Q. Given an input value σk ∈ Σ and a

state i ∈ Q, if δ(σk, i) 6= ∅ and #δ(σk, i) = 1, with #A representing the cardinality

of set A, then δ(σk, i), the transition from state i under the input value σk, is said

to be deterministic. By extension, an FSM transition structure is deterministic if all

transitions are deterministic.

Let CSSπ
E denote a CSS defined on D and with a region E ⊂ D partitioned by π.

Then an FSM abstraction for such a CSS is defined as follows.

Definition 3.3 (FSM abstraction of a CSSπ
E) Consider a CSSπ

E whose partition

results in a state set Q. A finite-state machine A := (Q, Σ, δ) is an FSM abstraction of

the CSSπ
E if for each pair i, j ∈ Q and each input value σk ∈ Σ satisfying j ∈ δ(σk, i),

(i) either j = i and (∃p ∈ qi) φk(t, p) = p for all t ∈ R≥0, or (∃p ∈ qi)

φk(βT, p) = p for T ∈ R>0, any β ∈ N, and φk(t, p) ∈ qi for all t ∈ R≥0,

(ii) or j ∈ Ni and (∃p ∈ qi)(∃p′ ∈ ∂i ∩ ∂j)(∃t ∈ R>0) φ∗
k([0, t), p) ∈ qi,

φk(t, p) = p′, and φk(t
+, p) ∈ qj. ⋄

(3.10)

Condition (3.10)(i) stipulates the case where a self-looping transition exists at

state i. In particular, a self-loop occurs at state i if the cell qi contains an equilibrium

point or any periodic behaviour (as illustrated in cell qi of Figure 3.3). Condition

(3.10)(ii) indicates that a transition departing from state i and leading to state j

under σk exists if there is a trajectory initiated in qi and transiting through a boundary

point common to both qi and qj before reaching qj, as shown in Figure 3.3.

2The function is partial since for some states in Q the function may be defined for a subset of Σ
only. For instance, at some state i ∈ Q, an event σ ∈ Σ may not be practically feasible.
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p

p

qiqj

p′ φk(t, p)
φk(t, p)

Figure 3.3: Trajectories inducing a discrete transition in an FSM abstraction

A few observations about Definition 3.3 are worth noting. First, condition (3.10)(i)

is meant to emphasize the presence of particular behaviour for continuous trajectories

in partition cells. A relaxation of condition (3.10)(i) allowing a self-looping transition

based on the existence of any trajectory contained in qi may result in an aggregation

of continuous trajectories exhibiting distinct behaviour. Indeed, a self-loop could

characterize any trajectory transiting through a cell as well as a trajectory reaching an

equilibrium point or a periodic orbit, and thus never leaving the cell. Also, notice that

condition (3.10)(ii) enforces a correspondence between a transition and the continuous

behaviour that is not one-to-one since a family of trajectories may correspond to

a discrete transition. Furthermore note that nondeterministic transitions occur, for

instance, when a cell i has points satisfying condition (3.10)(i) and condition (3.10)(ii).

Whenever clear from the context we will refer to an FSM abstraction of a CSSπ
E simply

as an FSM abstraction.

Remark 3.4 There are a few distinctions between the FSM abstractions of Definition

3.3 and some discrete-event system (DES) theories (for instance the one developed

in (Ramadge and Wonham, 1987)). One notices the absence of ǫ, the “null-event”,

in the set of allowable sequences. This follows from the fact that, in general, in the

continuous-time setup there exists no input value meaning “do nothing”. Also, like

a continuous system, the FSM abstraction can be initialized in any partition subset

of E, which justifies the absence of an initial set Q0, i.e., Q0 = Q. At this stage,
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all events in Σ are controllable, i.e., there are no uncontrollable events. Finally, the

self-loops of an FSM abstraction have a precise dynamical meaning.⋄

So far we have provided formal definitions for the continuous dynamics and the

FSM abstraction of an HCS. Prior to providing a problem definition, we use the next

section to review some abstraction properties presented in Chapter 2.

3.2.3 Abstraction Properties

In this section we discuss three properties that are of interest. These are finiteness,

transversality, and consistency.

Finiteness

Any partitioning of a state-space region results in subsets containing an infinite num-

ber of points. The finiteness property refers to the ability to fully characterize each

partition cell by using only a finite number of points. Generally, this is the main

challenge in obtaining the transition structure of an FSM abstraction. Indeed, the

task must be completed in a finite number of operations despite the presence of an

infinite number of points to analyze.

Transversality

Consider a partition π of a state-space region and let ∂ represent a cell boundary.

Given a fixed input value σ ∈ Σ, a continuous trajectory, denoted here as a c-path,

is characterized by a vector field whose evaluation at a point p, f(x, σ)|x=p, indicates

the local directional rate of change. The vector field f(x, σ) is said to be transversal

to a boundary ∂ at p if

N(∂, x) · f(x, σ)|x=p 6= 0, (3.11)
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where N(∂, x)|x=p stands for the normal to the boundary ∂ evaluated at p, and “·”

represents the inner product. If condition (3.11) holds for all p ∈ ∂, then we say that

the vector field f(x, σ) is transversal to ∂. Namely, a vector field is transversal to ∂ if

it is nowhere tangent to ∂. In Figure 3.4 a boundary is represented as a line segment

where the vector field and the normal are evaluated at two points, p and p′. In this

case the vector field is not transversal at point p′ ∈ ∂, therefore it is not transversal

to ∂.

∂

p

p′

f(p′, σ)

f(p, σ)

N(∂, p)

N(∂, p′)

Figure 3.4: A vector field f(x, σ) not transversal to a cell boundary ∂

The cell boundaries of an FSM abstraction act as sensors, i.e., the crossing of a

boundary signals the traversal from one partition cell to another. Given an arbitrary

partition and a boundary ∂, a non-vanishing c-path initiated at a point p and inter-

secting with ∂ can be: (a) tangent to ∂ at a point only, (b) transversal to ∂ at a point,

or (c) “ travelling along ∂ ”, i.e., tangent to a connected subset of ∂, as represented

in Figure 3.5.

A transversal situation is ideal in the sense that the c-path cuts clearly through a

boundary to travel from one cell to another. The other types of c-paths are ambiguous

because a small perturbation can lead to different cell-to-cell transitions depending

on the direction of the perturbation. Thus transversality is a nice property since it

provides a clear delineation of trajectories.
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p

∂(a)

(b)

(c)

Figure 3.5: Possible intersections between c-paths and a cell boundary ∂

As transversality is a non-generic property of continuous systems with partitioned

domains (Branicky et al., 1998), one can either analyze where condition (3.11) holds or

impose sufficient conditions enforcing it. For an arbitrary partition, the first approach

possibly requires the computation of an infinite number of trajectories with distinct

initial conditions thus leading to the finiteness phenomenon. In (Caines and Wei,

1998), the second approach is taken. It leads to sufficient conditions originating from

controllability properties of the continuous system and the FSM abstraction. Both

sufficient conditions rely on the class of admissible controls.

Deterministic Behaviour and Consistency

Usually one develops or classifies abstractions according to a property of interest.

For instance, a correspondence between the abstracted and the original system based

on a controllability property is developed in (Caines and Lemch, 1998). A different

type of correspondence can be established by looking at the existence of c-paths,

versus that of discrete paths, or d-paths, standing for discrete transitions of the FSM

abstraction. As shown below, it turns out that such a correspondence has connections

with the notions of deterministic transition structure, HIBC (Caines and Wei, 1998),

and consistency.

Let a simple d-path be a sequence i − σ − i′, which translates a transition from a

33



state i to a neighbor state i′ under an input value σ, that is i
σ→ i′. From an FSM

abstraction point of view, the transition represented by a simple d-path i − σ − i′

exists if there is at least one c-path, induced by σ, initiated at some point p in the cell

qi, and connecting to some other point p′ that belongs to cell qi′ . The bottom portion

of Figure 3.6 represents three cells qi, qj, and qk where two c-paths are illustrated by

solid lines with an arrowhead. A c-path initiated at a point p ∈ qi and induced by

input value σa leads to a point p′ in the cell qj. At the abstraction level the points

of a cell are lumped and identified with a single discrete state (here we identify cell

qi with state i, cell qj with state j, and so on). Consequently the previous c-path

connecting qi to qj results in a simple d-path i−σa−j whose corresponding transition

is illustrated by the leftmost directed graph in the middle of Figure 3.6.

p p′
qi

qj
qk

σa

σb

i j j k
σa σb

i j k
σa σb

Figure 3.6: Example of a non-transitive general d-path

Whenever an FSM abstraction is used in an HCS setup, the abstraction serves

as the base model to synthesize the controller which outputs a control sequence to

the continuous system. The implementation of such a control sequence requires a

correspondence between d-paths and c-paths. For this correspondence one needs to

look at general d-paths, which are sequences of at least two consecutive simple d-paths.
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The two simple d-paths i−σa−j and j−σb−k, whose transitions are represented in the

middle of Figure 3.6, is an example of a general d-path, which we write in a compact

form as i−σa− j−σb−k. A general d-path is said to be transitive if there exists a c-

path corresponding to the transitions captured by the general d-path. Unfortunately,

the presence of two (or more) consecutive simple d-paths (see bottom directed graphs

of Figure 3.6) does not necessarily imply the existence of a corresponding c-path (top

directed graph of Figure 3.6). For instance, the two points (black dots) in qj that

induce transitions captured by the distinct single d-paths may not coincide. More

generally, a c-path connecting those two points does not necessarily exist. Therefore,

an additional condition is needed to ensure that general d-paths are transitive.

One sufficient condition for the transitivity of general d-paths is that for any

input value all points of a cell visit only one neighboring cell. This condition implies a

deterministic transition structure which almost certainly will not hold in the presence

of dynamical singularities. Another sufficient condition is that for any two points of

a cell, there exists a control sequence such that any point is reachable from the other.

This corresponds exactly to the HIBC property (Caines and Wei, 1998) for which no

partitioning technique is provided. Not surprisingly there exist continuous systems

whose abstraction may have a deterministic transition structure without satisfying

the HIBC property. An instance of such a system is the double-integrator controlled

by piecewise-constant input signals in (Raisch, 1995). This example is considered

later in order to explore the correspondence between d-paths and c-paths.

In comparison to existing notions of consistency, the transitivity of general d-paths

is equivalent to the concept of r-consistency (with r → ∞) developed in (Stursberg

et al., 2000), whereas it is weaker than the dynamical consistency defined in (Caines

and Wei, 1998). Note that in the absence of dynamical singularities, a deterministic

transition behaviour also implies dynamical consistency. A direct comparison with the

consistency notion introduced in (Kokar, 1995) cannot be performed since it requires
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an exact knowledge of initial conditions, which is usually lost due to the partition.

As seen above, consistency and transitivity of general d-paths are important prop-

erties because they allow one to focus on the transitions of FSM abstractions without

worrying about the existence of corresponding c-paths. Conversely, the notion of

completeness discussed in Chapter 2 ensures that each continuous trajectory is rep-

resented by a transition in the abstraction. In the next section we provide concepts

of consistency and completeness tailored to FSM abstractions of CSSs.

3.2.4 Problem Statement

Consider an FSM abstraction of a CSSπ
E as in Definition 3.3 (page 29) that generates

transitions resulting in a d-path g := i0 − σ1 − i1 · · · ir−1 − σr − ir with r ≥ 1. A

trajectory of the CSSπ
E and a d-path g are said to coexist if the cells intersecting

with the trajectory correspond to the cells associated with the states of the d-path

g. We now introduce notions of consistency and completeness tailored to an FSM

abstraction and a CSSπ
E.

Definition 3.5 (Consistency) A CSSπ
E and an FSM abstraction of the CSSπ

E are

consistent if for any d-path generated by the abstraction, there is a continuous tra-

jectory induced by the CSSπ
E that coexists with the d-path.⋄

Definition 3.6 (Completeness) A CSSπ
E and an FSM abstraction of the CSSπ

E are

complete if for each continuous trajectory induced by the CSSπ
E, there is a d-path

generated by the abstraction that coexists with the trajectory.⋄

On one hand, an FSM abstraction as in Definition 3.3 is rarely complete in the

sense of Definition 3.6. This follows from the fact that there may be no self-looping

transition capturing those trajectories contained in each partition cell. Therefore the

failure to satisfy the completeness property is inherent to our Definition 3.3. On

the other hand, an FSM abstraction as in Definition 3.3 may not be consistent. For
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instance, consider a subset of an FSM abstraction composed of two states i, i′ ∈ Q

where an event σ leads to a self-loop transition at state i and also to a transition

from state i to state i′, as shown in Figure 3.7. The self-loop transition indicates the

existence of a continuous behaviour that can remain forever in the cell qi. Moreover

the subset of the FSM abstraction provided in Figure 3.7 can presumably generate

transitions resulting in the following d-path i− σ − i− σ − i · · · i− σ − i′. That is, a

large number of σ’s may induce self-looping transitions while the last event σ leads to

state i′. However any trajectory in qi could have reached a singularity before the last

event σ occurs. In this case, the last event σ could not induce a trajectory leading to

cell qi′ , and consequently the FSM abstraction and the CSS would not be consistent.

i i′
σ

σ

Figure 3.7: A subset of an FSM abstraction

A possible solution to circumvent the above difficulties could be to add to each

transition a time range indicating the time period during which the transition is likely

to occur. However in the context of partitions based on dynamical invariants, timing

information is not readily available.

We denote the directed graph of Figure 3.7 as a singularity and the pair of state

and event (i, σ) as a singular pair. Since the consistency property may fail in the

presence of a singularity, we propose to satisfy the consistency property in a weaker

sense, i.e., for a subset of general d-paths only. For this reason, we denote the general

d-paths that do not contain any singular pair as nonsingular d-paths.

The previous definitions are now utilized in order to formulate the problem state-

ment:
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Given a CSSπ
E, determine the conditions under which an FSM abstraction

of the CSSπ
E can be obtained in finite time, and such that the FSM ab-

straction and the CSSπ
E are consistent (ref. Definition 3.5) with respect to

nonsingular d-paths.

The material to follow provides an answer to the above problem for a class of

nonlinear continuous systems.

3.3 Toward an FSM Abstraction

Now that the HCS dynamical models (original and abstract) have been defined, one

can begin to relate the continuous system to an FSM abstraction. Before entering

into technical details we briefly summarize the present approach. First recall that the

overall abstraction procedure is achieved in two steps comprising (i) the construction

of a partition of a state-space region, and (ii) the analysis of the continuous trajectories

of the underlying system with respect to the partition, resulting in the abstraction

transition structure. The second step remains by far the main challenge for the

construction of FSM abstractions. In this section we focus on the first step and

provide a partitioning technique.

As shown in the literature review, the above abstraction steps (i) and (ii) are

usually independent (except for a few techniques generating s-abstractions). A feature

of the actual technique is that the two steps are made dependent, i.e., the partition

is defined by surfaces that have a dynamical meaning. Indeed in Section 3.3.1 we

introduce a subcategory of CSSs for which such surfaces exist. This requires an

extension of the notion of integrability for dynamical systems. Then in Section 3.3.2

a partitioning technique using those dynamical surfaces is provided. The double-

integrator system serves as an example to illustrate the approach.
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3.3.1 A Subclass of Controlled Switched Systems

This section begins by providing some preliminary notions about first integrals and

integrable systems. It is followed by an introduction to a notion of integrability tai-

lored to the class of Controlled Switched Systems. This property is instrumental for

the partitioning technique that follows since it provides the surfaces used to decom-

pose a state-space region of a CSS. The reader is referred to Section A.5 (see page

149) for some basic notions from exterior calculus.

Definition 3.7 (First Integral) Let f be a vector field with domain D ⊂ R
n. A

Ck (k ≥ 1) real-valued function γ : D′ → R defined on D′, an open subset of D,

is said to be a time-independent Ck first integral (or first integral for short) for the

vector field f on D′ if it satisfies

dγ(x) · f(x)|x=p = 0, for all p ∈ D′, (3.12)

where dγ := [∂γ/∂x1, . . . , ∂γ/∂xn].⋄

In general, there exists no procedure for extracting the first integrals of a nonlinear

continuous system (Goriely, 2001). As illustrated by Figure 3.8, a geometrical inter-

pretation of a first integral is a function with a preimage to which f is tangent. Other

common names for first integrals include conserved quantities, constants of motion,

(dynamical) invariants, and potential functions. A trivial or constant first integral is

such that dγ(x)|x=p = 0 for all p ∈ D′.

Throughout this section we adapt some notions related to first integrals to the

class of CSSs. The first extension consists of the presence of the input variable u in the

first integrals. Indeed for vector fields with an input argument u, a first integral has

the additional requirement of being defined for all possible input values u = σ ∈ R
m,

thus leading to the mapping γ : D′×Σ ⊂ R
m → R. With this condition, the following
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p2
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f(p1)

f(p2)

f(p3)

γ(x) = c

Figure 3.8: A first integral γ for a vector field f

development is independent of the input value set Σ defined in (3.2). Throughout

the thesis, a “first integral” means a non-trivial first integral that is analytic on

its domain. Whenever it is appropriate, we identify the necessity of the analyticity

condition for first integrals.

A notion closely related to first integrals is that of “integrability”. Various defi-

nitions of the notion of integrability exist and a discussion about them can be found

in (Grammaticos and Ramani, 1996; Goriely, 2001). However, in the context of dy-

namical systems such as in (3.1), integrability usually refers to the solvability of the

set of ODEs. A stronger notion, that of “complete integrability”, requires a sufficient

number of independent first integrals (see Definition A.11 on page 149). The precise

meaning of “sufficient” depends upon the class of systems under study, i.e., nonlinear

systems, Hamiltonian systems, etc. For general nonlinear systems, such as CSSs ,

complete integrability requires n − 1 first integrals. As shown below, the Frobenius’

Theorem provides necessary and sufficient conditions for the complete integrability

of r ∈ N
+ one-forms in a local sense, i.e., for some open subset of D.

Theorem 3.8 (Frobenius (Edelen, 1985))

Let Cr be a collection of r independent 1-forms {ωa(x), a = 1, . . . , r} defined on D′,

an open subset of D. The collection Cr is completely integrable over D′, if and only if

ω1(x) ∧ · · · ∧ ωr(x) ∧ dωj(x)|x=p = 0, (3.13)
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for all j ∈ {1, . . . , r} and p ∈ D′.⋄

The above theorem stipulates that complete integrability is equivalent to saying that

over D′ each differential dωj can be expressed in terms of elements in the collection Cr.

A geometric interpretation of complete integrability is provided later. A consequence

of Theorem 3.8 in the presence of r = n − 1 first integrals is summarized as follows.

Corollary 3.9

Given a fixed u = σ ∈ Σ and a vector field f(x, u), assume that there exist n− 1 first

integrals γj(x, σ), j ∈ {1, . . . , n − 1}, defined on D′ ⊂ D. Let Cn−1 be composed of

the one-forms ωj(x, σ) = dγj(x, σ). The collection Cn−1 is completely integrable over

D′ if the following linear independence condition holds

ω1(x, σ) ∧ · · · ∧ ωn−1(x, σ)|x=p 6= 0, (3.14)

for all p ∈ D′.⋄

Therefore a sufficient condition for the complete integrability of n − 1 one-forms

ωj(x, σ) = dγj(x, σ) is their linear independence. This follows from the number of

first integrals and the closure of their differentials, which by definition satisfies (3.13)

automatically (ref. §A.5 on page 149).

Complete integrability is a non-generic property of nonlinear continuous systems.

Therefore a legitimate question is: Why bother to study such systems? Mainly, com-

plete integrability allows one to characterize the behaviour of a continuous dynamical

system without solving explicitly the original set of ODEs. Consequently, integrable

systems are “nice” in the sense that their first integrals provide information about

the dynamics. Furthermore this feature may enable the construction of Lyapunov

functions (see Chetaev’s method in (Rouche et al., 1977)), and it may also lead to

some stability results (Aeyels and Sepulchre, 1992; Salvadori and Visentin, 1999).
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The next example shows the impact of input values on the complete integrability

of first integrals for the class of CSSs and, it also provides a geometric interpretation

of Theorem 3.8.

Example 3.10 (Triple-integrator) Consider the triple-integrator modeled by ẋ1 =

x2, ẋ2 = x3, ẋ3 = u and defined over D = R
3 with u = σ ∈ Σ := {0, a} where

a ∈ R \ {0}. For D′ = D, a set of first integrals is γ1(x, σ) = x1σ
2 − x2x3σ + x3

3/3

and γ2(x, σ) = x2σ− 1
2
x2

3. Let ω1(x, σ) = dγ1(x, σ) and ω2(x, σ) = dγ2(x, σ). If σ = 0

(resp., σ = a) then ω1(x, σ) ∧ ω2(x, σ) = 0 (resp., 6= 0) for all p ∈ D′ and the system

fails to satisfy (resp., satisfies) condition (3.14) everywhere. Thus any input value

σ 6= 0 leads to complete integrability which, in turn, allows the reconstruction of the

trajectory space (a one-dimensional object) from the level surfaces corresponding to

γ1(x, σ) and γ2(x, σ). This is illustrated in Figure 3.9(a) where two surfaces induced

by γ1(x, σ) and γ2(x, σ) have distinct gray tone and where a trajectory initialized at

the intersection of those surfaces is represented by a line with an arrowhead. For

σ = 0, the surfaces reduce to planes in x1 −x2 such that our knowledge of the system

trajectories (which are trivial) is that they live on a two-dimensional subspace of R
3

(Figure 3.9(b)).•

The previous example demonstrates that the presence of the input argument u

distorts the independence condition (3.14) between first integrals. Therefore, a notion

of independence between a collection of first integrals with input values is required.

For this one needs the n + m dimensional space D′ × (σ − ǫ, σ + ǫ) where σ ∈ Σ and

(σ − ǫ, σ + ǫ) := (σ1 − ǫ, σ1 + ǫ) × . . . × (σm − ǫ, σm + ǫ) with a small value ǫ ∈ R>0.

By definition, the first integrals exist for any value σ′ ∈ (σ − ǫ, σ + ǫ) ⊂ R
m, leading

to the following notion of integrability.

Definition 3.11 (Near Integrability) A CSS with n − 1 first integrals γj(x, u),

j ∈ {1, . . . , n − 1}, is said to be nearly integrable over D′ if for any fixed input value
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(a) Case with σ 6= 0. (b) Case with σ = 0.

Figure 3.9: Geometric interpretation of complete integrability for Example 3.10

u = σ ∈ Σ the independence condition (3.14) holds on an open and dense subset of

D′ × (σ − ǫ, σ + ǫ).⋄

The preceding definition serves two purposes: (i) it removes sets of first integrals

with differentials that are everywhere dependent on D′ for any input value and,

(ii) it enlarges the set of admissible inputs by allowing the violation of condition

(3.14) for some values in R
m. In order to illustrate point (i), consider a system

defined over D′ ⊂ R
3 with two first integrals whose differentials satisfy ω2(x, u) =

λω1(x, u) for λ ∈ R and u = σ ∈ Σ. This system is not nearly integrable because

ω1(x, σ′) ∧ ω2(x, σ′)|x=p = 0 for all p ∈ D′ and any σ′ ∈ (σ − ǫ, σ + ǫ). Example 3.10

illustrates point (ii) because even with σ = 0 any small perturbation to σ is such

that condition (3.14) holds on an open and dense subset (ref. §A.2.1 on page 145) of

D′× (σ− ǫ, σ + ǫ). Given an input value σ ∈ Σ, we denote by Gσ the open and dense

subset of D′ × (σ − ǫ, σ + ǫ) satisfying the condition of Definition 3.11. For Example

3.10 the set Gσ with σ = 0 is represented as a hatched region in Figure 3.10, i.e.,

Gσ := D′ × (−ǫ, ǫ) \ D′ × {0}.

In the remainder of this section we identify some useful properties of nearly in-

tegrable CSSs. By definition, a nearly integrable CSS is such that each input value
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0−ǫ ǫ

R

D′

Figure 3.10: A representation of Gσ with σ = 0 for Example 3.10

u = σk ∈ Σ induces a collection of n − 1 first integrals Γk :=
{
γk

1 , . . . , γk
n−1

}
de-

fined over D′, where γk
j , j ∈ {1, . . . , n − 1}, is a compact representation for γj(·, σk).

Consequently, one associates to Σ the set of first integrals

Γ := {Γk | k ∈ IΣ}, (3.15)

composed of (n − 1) × (#Σ) first integrals, where #Σ denotes the number of input

values in Σ.

Let a point in D′ × (σ − ǫ, σ + ǫ) be denoted by h = (p′, σ′) where p′ ∈ D′ and

σ′ ∈ Iσ := (σ − ǫ, σ + ǫ). Given an input value σa ∈ Iσ, the projection over D′ of the

set of points in Gσ with coordinate σa is defined as

D′
σa

:= {p′ ∈ D′ | h = (p′, σa) ∈ Gσ}. (3.16)

This leads to the next result.

Proposition 3.12

Consider a nearly integrable CSS and an input value σ ∈ Σ. Let Gσ be the open

and dense subset of D′ × Iσ where condition (3.14) holds. Then there exists an input
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value σa ∈ Iσ such that D′
σa

is nonempty and open in D′.⋄

Proof: Let σb ∈ Iσ be an arbitrary input value. Then one of two cases is possible:

(i) D′
σb

= ∅ or, (ii) D′
σb

6= ∅. If case (i) holds then for any h = (p′, σb) ∈ D′ × Iσ it

follows that h 6∈ Gσ. As Gσ is dense in D′ × Iσ any neighborhood of h, Nh, is such

that Nh ∩ Gσ 6= ∅. Thus there exists in Nh some location h′ = (p′′, σ′′) such that

h′ ∈ Gσ. If we take σa as σ′′ then one gets that p′′ ∈ D′
σa

, leading to case (ii).

Now assume that case (ii) holds and let p ∈ D′
σb

be an arbitrary point. Thus

there is a point h = (p, σb) belonging to Gσb
. Since Gσb

is open there exists an open

neighborhood of h, say Nh, that is contained in Gσb
. The topology on D′× Iσ implies

that the set Nh contains a rectangular neighborhood of h whose projection over D′

results into a set (p1 − δ1, p1 + δ1) × · · · × (pn − δn, pn + δn) where δ1, . . . , δn ∈ R>0.

Therefore there is an open neighborhood of p in D′. Since this holds for any point in

D′
σb

, by taking the union of all such open sets one proves that D′
σb

is an open set.¤

Remark 3.13 In the presence of a connected set D′ and analytic first integrals, one

can show that D′
σa

of Proposition 3.12 is also dense in D′. This follows from results

on analytic (co)distributions (see §A.2.2 on page 145).⋄

From Proposition 3.12 a nearly integrable CSS is “near to complete integrability”

in the sense that for each σk ∈ Σ there exists an approximate input value σ′
k ≈ σk for

which condition (3.14) is satisfied on an open subset of D′. In order to consider all

input values in Σ we define the set

D′′ :=
⋂

k∈IΣ

D′
σ′

k
⊆ D′, (3.17)

where D′
σ′

k
represents the set of Proposition 3.12 characterized by the approximate

input value σ′
k. Therefore D′′ consists of the subset of D′ where condition (3.14)

holds for the input value set Σ′ :=
⋃

k∈IΣ
σ′

k. Whenever Σ′ 6= Σ, the nearly integrable
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CSS using Σ′ instead of Σ is called an approximation. The next result provides some

characteristics of the set D′′, especially if the conditions in Remark 3.13 are satisfied.

Proposition 3.14

Let A1, A2, . . . , Ak be a finite collection of open and dense subsets of D′. Then
⋂k

i=1 Ai

forms an open and dense subset of D′.⋄

Proof: Initially we prove the claim for two sets of the collection Aa and Ab with

1 ≤ a, b ≤ k. We first show by contradiction that Aa ∩ Ab 6= ∅ holds. Assume that

Aa∩Ab = ∅, i.e., Aa and Ab are disjoint sets. Consequently any neighborhood N ⊂ Aa

of a point in Aa satisfies N ∩ Ab = ∅. However this contradicts the fact that Ab is

dense in D′, therefore Aa ∩Ab 6= ∅ is true. The openness of Aa ∩Ab follows from that

of Aa and Ab.

Then we show that Aa ∩Ab is dense in D′. If p ∈ D′ is such that p 6∈ Aa ∩Ab then

one needs to show that for any neighborhood of p, Np ⊂ D′, one has Np∩(Aa∩Ab) 6= ∅.

Assume that there exists a neighborhood Np ⊂ D′ such that Np ∩ (Aa ∩ Ab) = ∅.

One has that N∗ := Np ∩ Aa is nonempty since Aa is dense in D′, and moreover N∗

is open since both Np and Aa are open. However by assumption one gets N∗ ∩ Ab =

Np ∩ Aa ∩ Ab = ∅, i.e., Ab and an open subset of D′ do not have any common point.

This contradicts the fact that Ab is dense in D′, thus proving that Aa ∩ Ab is dense

in D′.

Since the collection {A1, A2, . . . , Ak} is finite one can proceed as above to show

that the intersection
⋂k

i=1 Ai leads to an open and dense subset of D′.¤

We conclude this section by defining a family of CSSs for which there exists a

common subset of D′ where complete integrability holds for all values in Σ′.

Definition 3.15 (ICSS) A Controlled Switched System that is nearly integrable

over D′ and such that D′′ 6= ∅ is an Integrable Controlled Switched System (or ICSS).⋄
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The advantages of dealing with an ICSS, instead of a nearly integrable CSS, will

become clearer in the next section and the next chapter. An instance of an ICSS

consists of the system of Example 3.10 where D′′ = D′.

In summary we have extended the notion of first integrals for the class of CSSs.

Furthermore a concept of integrability for such first integrals was developed. More

precisely this is an independence condition for first integrals with input arguments.

The above development characterized the family of nearly integrable CSSs, which

under an additional condition leads to the class of integrable CSSs.

3.3.2 Dynamical Partitions

In the previous section we defined a class of CSSs possessing a set of first integrals Γ

that takes into account all input values in Σ. This section shows how elements in Γ

can be used to partition the state-space region of a nearly integrable CSS in order to

obtain the state structure of an FSM abstraction. However, prior to this we introduce

the notion of a dynamical partition.

A dynamical partition is a special type of partition (ref. equations (3.7) and (3.8)

on page 27) where the sets are defined by the vector field of a dynamical system. An-

other category of partitions consists of a foliation, which is a partition with connected

subsets possessing a particular local parameterization (Abraham et al., 1988). For

the n-dimensional Euclidean space R
n, a trivial k-dimensional foliation, 0 < k < n,

is

R
n =

⋃

(pk+1,...,pn)∈Rn−k

R
k × (xk+1 = pk+1, . . . , xn = pn), (3.18)

for some constants pk+1, . . . , pn ∈ R. Moreover a foliation may turn out to be a

dynamical partition. Indeed, in the presence of a vector field f(x, u) a sufficient

condition for the existence of a local foliation for any p ∈ O, with O an open subset
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of D′, is that f(x, u)|x=p be nonsingular, i.e., O∩Su = ∅, with Su as defined in (3.3). If

this condition holds everywhere then one obtains a foliation over D′ (Tamura, 1992).

In the next example, it is shown that the previous sufficient condition is not necessary

for the existence of a local foliation in the presence of a vector field.

Example 3.16 (Two-tank linear model) Consider the two-tank linear system in-

troduced in §1.1.1 with differential equations ḣ1 = F/A − β(h1 − h2)/A, ḣ2 =

β(h1 − h2)/A and with D := R × R and D′ := R≥0 × R≥0. Assume that the input

values are F = 0 and β 6= 0. In this case, the set of singularities for f((h1, h2), (F, β))

is S(F,β) = {(h1, h2) | h1 −h2 = 0} as represented in Figure 3.11. With σ = (F, β) the

function θ(h1, h2) := −1 + h1 + h2 results into a foliation where some of the subsets

are shown in Figure 3.11. Also the flow direction under the input value σ is indicated

with arrows.•

0

1

2

3

4

1 2 3 4

h1

h2 S(F=0,β 6=0)

Figure 3.11: A foliation for the two-tank system

In order to explain the foliation of Example 3.16, the concept of submersion is

introduced. Let M and N be differentiable manifolds. A smooth mapping g : M → N

with a surjective derivative at p, i.e., with rank(dg|p) = dim(Tg(p)=cN) where TcN

is the tangent space to N at c, is said to be a submersion at p. The mapping g is a

submersion if it is a submersion for all p ∈ M , otherwise we say that the submersion
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is local. Given a local submersion g and a value c ∈ {g(p) | p ∈ M}, the preimage of

g is the set

g−1(c) := {p ∈ M | g(p) = c}. (3.19)

A point c ∈ N is a regular value of the mapping g if dg|p is surjective for all values

in g−1(c), otherwise c is a critical value. The set of regular values for g is denoted by

Rg.

Remark 3.17 While the set of critical values live in the range of the mapping g, its

dual, the set of critical points sits in the domain of g. Namely, a point p ∈ M is a

critical point if dg|p is not surjective.⋄

The interesting aspect about local submersions is that their preimage may form a

submanifold. Indeed, by the Preimage Theorem (see §A.2.4 on page 147), if c ∈ Rg

then g−1(c) forms a submanifold of M . For instance, in Example 3.16 the mapping θ

is a submersion because dθ = [1, 1], thus leading to submanifolds that intersect with

the set S(F=0,β 6=0). Notice that Sard’s Theorem (see §A.2.5 on page 147) stipulates

that the set of critical values of g has measure zero (ref. §A.2.1 on page 145).

We already have encountered candidate functions for local submersions, namely

the collection of first integrals Γ of nearly integrable CSSs defined in (3.15). Notice

that a first integral does not necessarily lead to a foliation. For instance, in Example

3.10 (see page 42) the preimages of the first integral γσ
2 with σ = 0 do not cover the

whole of D′ since no leaf exists on the plane {(x1, x2, x3) | x3 = 0}, and thus do not

satisfy the property of a foliation. A first integral γk
j : D′ → R, with σk ∈ Σ and

j ∈ {1, . . . , n − 1}, is a real function and its set of regular values, denoted by Rj,k,

is contained in R. However, by definition Rj,k contains values without preimage in

D′. Therefore we denote by R̃j,k the interior of the set of regular values that are in

the range of γk
j . Given an input value σk ∈ Σ, a first integral γk

j ∈ Γ defined on D′,
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and the open set R̃j,k, we refer to the set of points

Lc
j,k := {p ∈ D′ | γk

j (x)|x=p = c ∈ R̃j,k}, (3.20)

as a leaf and the constant c is called a first integral constant (or FIC). As shown

previously, a leaf Lc
j,k may form a disconnected set in D′. By construction, a leaf is

the preimage of a regular value and thus by the Preimage Theorem it qualifies as a

submanifold of D′.

Remark 3.18 A benefit of dealing with leaves is that the conditions of the Implicit

Function Theorem (see §A.2.3 on page 146) are automatically satisfied, thus ensuring

a local characterization of the leaves.⋄

Remark 3.19 It can be shown that there exists no relationship between the existence

of local submersions and the set of equilibrium points. Indeed an equilibrium point

may or may not belong to a local submersion. Conversely a local submersion does

not necessarily exist at some non-equilibrium point.⋄

Remark 3.20 For the special case where D′ ⊆ R
2, one notices that the locations

where the linear independence condition (3.14) fails coincide with the region where

a leaf does not exist. This is not the case in general. Indeed, in Example 3.10, if

u = σ = 0 then ω1(x, σ)|x=p = 0 and ω2(x, σ)|x=p = 0 for p ∈ {(x1, x2, x3 = 0)} only

whereas ω1(x, σ) ∧ ω2(x, σ)|x=p = 0 for any p ∈ D′.⋄

For the remainder of this section, we show how first integrals and their leaves can

be used to partition a state-space region of a nearly integrable CSS. The partition

is restricted to E, a nonempty convex and open strict subset of D′ ⊂ D and the

complement D′ \E is lumped into one cell so that any control sequence leading to it

is disabled (Hsu, 1987; Lunze et al., 1999). For simplicity, the two-dimensional case is

presented because of its reduced number of first integrals, i.e., only one first integral
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per input value. In the sequel we keep the subscript j to indicate the impact of the

choice of a first integral for higher-dimensional cases.

In order to partition E ⊂ D′ with leaves, the set of first integral constants (FICs)

needs to be defined in an appropriate manner.

Definition 3.21 (FIC) Let E ⊂ D′ be a region that is to be partitioned and let

γk
j ∈ Γ be a first integral with input value σk ∈ Σ. The first integral constants (FICs)

associated with γk
j and E take the form of a r-tuple Cr

k := (ck,1, . . . ck,r), r ∈ N
+,

where each ck,v, v ∈ {1, . . . , r}, satisfies the following conditions

(i) ck,v ∈ R̃j,k,

(ii) ck,v < ck,v′ for all v < v′ with v, v′ ∈ {1, . . . , r} ,

(iii) ∃p ∈ E such that γk
j (x)|x=p = ck,v.⋄

(3.21)

Let {Cr
k} denote the set made of the elements of Cr

k and assume that {Cr
k} 6= ∅.

Thus condition (3.21)(i) ensures that each element in {Cr
k} has a preimage that is a

submanifold while condition (3.21)(iii) guarantees that the preimage intersects with

E. Condition (3.21)(ii) requires values in Cr
k to be given in an increasing order and

elements of {Cr
k} to be distinct. The above constraints ensure that each FIC value

induces a distinct leaf. Therefore, the leaf corresponding to a constant ck,v ∈ {Cr
k},

v ∈ {1, . . . , r}, is defined as

Lv
j,k := {p ∈ E | γk

j (x)|x=p = ck,v}. (3.22)

Let Lj,k := {L1
j,k, . . . , L

r
j,k} be the set of leaves associated with Cr

k . A schematic

representation of a region E with a set of leaves Lj,k is given in Figure 3.12.
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S2
j,k

S3
j,k

S4
j,kLj,k

Sj,k

E

Figure 3.12: A region E partitioned by leaves Lj,k and slices Sj,k

From Definition 3.21 the complement of Lj,k in E is

S0
j,k := {p ∈ E | γk

j (x)|x=p < ck,1},

Sv′

j,k := {p ∈ E | (r > 1, v′ ∈ {1, . . . , r − 1}) ck,v′ < γk
j (x)|x=p < ck,v′+1},

Sr
j,k := {p ∈ E | ck,r < γk

j (x)|x=p},

(3.23)

The collection Sj,k := {Sw
j,k}w∈IS

with index set IS := {0, . . . , r}, consists of the

subsets of points in E that are delimited by Lj,k and ∂E, the boundary of E as

illustrated in Figure 3.12. The elements of Sj,k are referred to as the slices of E. The

following condition

If (∃w ∈ IS) Sw
j,k = ∅ then Sj,k := Sj,k \ {Sw

j,k} and IS := IS \ {w}, (3.24)

is needed in order to guarantee the removal of any empty slice from Sj,k. We then

show that the above construction leads to a partition of E.

Proposition 3.22

Let the input value σk ∈ Σ be fixed. Assume that a set of FICs as in Definition 3.21

is provided and that the set Sj,k satisfies condition (3.24). Then Lj,k ∪ Sj,k forms a

partition of E, called a leaf-partition and denoted by πk.⋄
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Proof: We must show that the conditions (3.7) and (3.8) are satisfied. First, Defi-

nition 3.21 and equation (3.22) imply that each leaf in Lj,k is distinct and nonempty.

Then (3.23) guarantees that Sj,k is composed of disjoint sets complementing Lj,k in

E. Therefore the sets Lj,k and Sj,k are disjoint and such that Lj,k ∪ Sj,k = E, thus

satisfying (3.7) and (3.8). Finally, condition (3.24) guarantees that all elements in

Sj,k are nonempty. Therefore Lj,k ∪ Sj,k only contains nonempty sets, showing that

Lj,k ∪ Sj,k is indeed a partition.¤

Remark 3.23 From Definition 3.21, a foliation (from a submersion) corresponds to

the special case where Cr
k has an infinite number of elements and all slices are empty.⋄

Remark 3.24 On some occasions, the set of possible FICs can be quite large. In

practice, some regions of the domain may be of special interest and should be enclosed

by leaves as tightly as possible, thus determining a preferred set of FICs (see (Stiver

et al., 2000) for examples). Other constraints on FICs will be imposed in the next

chapter.⋄

Remark 3.25 The main advantage of dealing with an ICSS, instead of a nearly

integrable CSS, is that for each input value the complete integrability of the collection

of n − 1 first integrals holds over the subspace D′′ defined in (3.17). Consequently

each first integral can locally generate a foliation over D′′.⋄

From Proposition 3.22, a change of input value induces a different leaf-partition.

Therefore the presence of P distinct input values induces a collection of leaf-partitions

Π := {π1, . . . , πP}. In order to consider all leaf-partitions in Π at the time one needs

a rule that combines two (leaf-)partitions and results in to another (leaf-)partition.

For this purpose we use an existing result (see §A.1 on page 144), which provides a

technique to generate the coarsest refinement of any two partitions. Simply said the

procedure amounts to superimposing the original partitions. The following corollary
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captures the essence of an extension of the result in §A.1 to the set of leaf-partitions

Π.

Corollary 3.26

Assume that Π := {π1, . . . , πP} is a finite collection of leaf-partitions over E. Then

the composition π1 ⋆ · · · ⋆ πP , with ⋆ as defined in §A.1, forms a partition over E,

which we also denote by a leaf-partition.⋄

To summarize, we have provided a technique to construct the state structure of an

FSM abstraction for nearly integrable CSSs. The approach proceeds by partitioning a

region E ⊂ D′ with the leaves induced by the set of first integrals Γ (equations (3.21),

(3.22), and (3.23)). Moreover it is possible to obtain a leaf-partition capturing the

effect of all input values in Σ (Corollary 3.26). We complete this section by applying

the above technique to an example.

Example 3.27 (Double Integrator) The double integrator is modeled by the fol-

lowing set of ODEs ẋ1 = x2, ẋ2 = u where u = σ ∈ Σ and D = R
2. The function

γσ(x) = σx1− 1
2
x2

2 is a first integral defined over D′ = D. If σ 6= 0 then dγσ(x)|x=p 6= 0

for all p ∈ D′ whereas σ = 0 leads to dγσ(x)|x=p = 0 for point in {(x1, x2) | x2 = 0},

which is a subset with an empty interior. Consequently the double integrator is a

nearly integrable CSS for any input value set Σ. Moreover notice that the double

integrator is an ICSS on D′′ = D′ \ {(x1, x2) | x2 = 0}.

For this example we select in an arbitrary manner a region E := {−2.1 < x1 <

2.1,−2.1 < x2 < 2.1} ⊂ D′, an input value set Σ = {−1, 1} with σ1 = −1 and σ2 = 1

(in the future we will use the compact form Σ = {σ1 = −1, σ2 = 1}), and a set of

FICs C4
1 = C4

2 := (−1, 0, 1, 2). One can check that the conditions of Definition 3.21

are satisfied. With this setup one obtains the set of leaves shown in Figure 3.13. The

orientation of the flow induced by Σ is indicated by lines with arrowhead.

The resulting leaf-partition contains sixteen cells whose interior is bounded by

leaves. This leaf-partition provides the state structure Q of an FSM abstraction
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Figure 3.13: The set of leaves of Example 3.27

A := (Q, Σ, δ) (ref. Definition 3.3 on page 29) for the double integrator over the

region E defined above.•

3.4 Summary

In this previous sections, we have provided results on the class of Control Switched

Systems (CSSs), which are continuous systems subject to piecewise-constant input

signals. Initially, we have proposed a formal definition for an FSM abstraction of a

CSS with a partitioned domain. It was followed by an exposition on some features of

FSM abstractions, which has lead to the formulation of the problem of interest. Then

we have identified a subclass of CSSs, called nearly integrable CSSs, and satisfying

an integrability property over the domain of definition and for a given set of input

values. Moreover we have demonstrated that a partitioning technique naturally arises

in the presence of nearly integrable CSSs, thus providing a state structure for the FSM

abstraction.

In order to define a transition map δ, one then needs to analyze how the continuous

trajectories induced by the input value set Σ interact with the partition cells. This

topic is covered in the following two chapters for the class of CSSs.
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Chapter 4

Transversality and Consistency

In the previous chapter, we proposed a partitioning technique based on dynamical

invariants. The next step in the construction of an FSM abstraction amounts to

obtaining the transition structure induced by a leaf-partition and the continuous dy-

namics. Recall from §3.2.3 that the collapse of transversality indicates a qualitative

change in the dynamical behaviour of continuous trajectories with respect to par-

tition boundaries. Therefore the lack of transversality must be taken into account

while evaluating the transition structure. For this reason we first investigate the

transversality property while taking into account the specificities of leaf-partitions.

Then we show how transversality impacts the consistency of the transition structure

of an FSM abstraction.

In Section 4.1, results on the transversality of leaf-partitions are presented. Suf-

ficient conditions for the existence of leaf-partitions with important transversality

characteristics are provided. Distinct conditions are developed for the class of nearly

integrable CSSs and ICSSs. The consistency property and its relationship with deter-

ministic transition structures is then discussed in Section 4.2. Therein some benefits

of transversality are shown.
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4.1 Transversality for Leaf-Partitions

In the sequel the meaning of well-conditioned transversality for leaf-partitions consists

of two pieces. First the locations where trajectories intersect non-transversally with

leaves should be a submanifold of D′. Also we want to use this submanifold to “cut

in a clean manner” any leaf of the partition. Such requirements are meant to divide

a leaf into subleaves for which the transversality property of the flow is constant.

We initiate the identification of conditions enforcing the above properties by defining

transversality for leaf-partitions.

As seen previously, a vector field f(x, u), with u = σb ∈ Σ, is transversal to a cell

boundary ∂i if

N(∂i, x) · f(x, σb)|x=p 6= 0, for all p ∈ ∂i. (4.1)

Given a leaf-partition π, a partition cell boundary ∂i ⊂ ∂π contains a collection

of subsets of leaves. Thus the normal to the boundary may locally take the form

N(∂i, x) = dγa
j (x) for some γa

j ∈ Γa and σa ∈ Σ. In this context a general expression

for the transversality between the trajectories induced by the input value σb and the

leaves generated from the first integral γa
j ∈ Γa becomes

dγa
j (x) · f(x, σb) = ψ(x), (4.2)

where the smoothness of the real-valued function ψ : D′ → R follows from that of γa
j

and f(x, σb). In this section we use equation (4.2) to characterize the transversality

and non-transversality of leaf-partitions. This is done by first looking at a single pair

of first integral and input value, followed by an extension to all first integrals and

input values possibly involved in a leaf-partition.
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4.1.1 Single First Integral - Single Input Value

In this section we treat the transversality between the trajectories defined by an input

value σb and the single collection of leaves induced by some first integral γa
j ∈ Γa.

As a reference, we recall in Figure 4.1 the possible intersections between trajectories

and cell boundaries. Namely, a continuous trajectory initialized at p and intersecting

with a boundary ∂i can be: (a) tangent to ∂i at a point only, (b) transversal to ∂i at

a point, or (c) tangent to a connected subset of ∂i.

p

p′

∂i(a)

(b)

(c)

Figure 4.1: Intersections between a trajectory and a cell boundary

We first recall from the definition of a first integral (Definition 3.7 on page 39)

that whenever σb = σa in equation (4.2) one has ψ(x)|x=p = 0 for all p ∈ D′. In

other words, the vector field with an input value σb = σa is everywhere tangent to

the leaves defined by γa
j . Therefore a c-path initiated on a leaf induced by γa

j remains

on that leaf as long as the input value σa is active. The following example provides

a case where such a non-transversal behaviour occurs everywhere in D′ even though

σb 6= σa.

Example 4.1 Consider a three-dimensional system modeled by ẋ1 = x2, ẋ2 = x3,

ẋ3 = u2 over D′ = R
3 and two first integrals γu

1 := x1u
4 − x2x3u

2 + x3
3/3 and

γu
2 := −u2x2 + 1

2
x2

3. With Σ = {σa = −1, σb = 1} and u = σ ∈ Σ one gets that

dγa
j (x) · f(x, σb)|x=p = 0, for all p ∈ D′ and j ∈ {1, 2}. This phenomenon occurs
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because γu
1 and γu

2 are both invariant to the sign of their input argument. Notice that

any first integral resulting from a linear combination or a multiplication of functions

of γu
1 and γu

2 leads to similar conclusions.•

In order to prevent this ambiguity about the effect of input values on first integrals

and to pursue the characterization of transversality for leaf-partitions we require two

conditions on the input value set Σ, that is, σe ∈ Σ if

(i) (∀j ∈ {1, . . . , n − 1}) (∀σd ∈ Σ \ {σe}) (∃p ∈ D′)

dγe
j (x)|x=p 6≡ 0 mod({dγd

1(x), . . . , dγd
n−1(x)}|x=p), and

(ii) the singularity set Se (ref. equation (3.3)) has a dense complement in D′.

(4.3)

Condition (4.3)(i) is an independence condition among any first integral induced by

input value σe and the set of n− 1 first integrals defined by any other input value in

Σ. Condition (4.3)(ii) requires that the set of equilibrium points resulting from input

value σe has an empty interior.

Conditions (4.3)(i) and (ii) remove input values that may not induce any new

dynamical behaviour on a subset of D′. Indeed, a violation of condition (4.3)(ii)

may lead to a situation where any trajectory generated by σ ∈ Σ on an open subset

of D is static, and thus does not enforce a discrete transition. Also, in the case of

Example 4.1 condition (4.3)(i) removes distinct input values leading to identical first

integrals, thus reducing redundant dynamical behaviour. From now on, we assume

that conditions (4.3)(i) and (ii) are used to define an input value set Σ.

A first consequence of condition (4.3)(i) on equation (4.2) is that the only first

integrals for f(x, σb) are those defined by the input value σb. Therefore the situation

arising in case (c) of Figure 4.1 is partially characterized. That is, a trajectory remains

on a leaf induced by some first integral γb
j ∈ Γb as long as the input value equals σb.

Conversely all trajectories induced by σb cannot stay for all times on a leaf defined
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by an input value σa 6= σb.

In order to distinguish the non-transversal cases from the transversal ones, we

identify conditions under which non-transversality arises by considering equation (4.2)

with σb ∈ Σ \ {σa}. First notice that in general there exist points p ∈ D′ where non-

transversality occurs, i.e., ψ(x)|x=p = 0 or

dγa
j (x) · f(x, σb)|x=p = 0. (4.4)

The points in D′ where condition (4.4) holds may correspond to the location where (i)

f(x, σb)|x=p = 0 (or p ∈ Sb), (ii) there is no leaf induced by γa
j , i.e., dγa

j (x)|x=p = 0,

or (iii) the vector field f(x, σb)|x=p 6= 0 is non-transversal to the leaf with normal

dγa
j |x=p 6= 0 at p. An instance where case (iii) takes place consists of point p′ of the

c-path (a) of Figure 4.1.

Remark 4.2 Elements of Sb automatically satisfy (4.4) whereas they do not play a

significant role in the existence of leaves (see Remark 3.19 on page 50).⋄

In order to achieve well-conditioned transversality, we first investigate if the ob-

ject corresponding to ψ−1(0) forms a submanifold of D′. When this holds we denote

ψ−1(0) by the non-transversality submanifold (NTSM). Such a requirement is moti-

vated by the advantages of having ψ−1(0) taking the form of a reasonable geometric

object in D′. After all, the points in ψ−1(0) correspond to locations around which the

dynamical behaviour between a flow and any leaf induced by γa
j changes. Therefore

the construction of the transition structure may benefit from some sort of character-

ization of ψ−1(0).

A sufficient condition for the existence of an NTSM is that dψ(x)|x=p 6= 0 for each

point p ∈ D′ satisfying ψ(x)|x=p = 0 (refer to the notion of a regular value on page

49). To verify this condition we define C, the set of critical points of ψ in D′ (ref.
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Remark 3.17), and the set

E := {p ∈ D′ | ψ(x)|x=p = 0 and dψ(x)|x=p = 0}, (4.5)

which results from the intersection between the set C and the zero-level set of ψ, thus

leading to E ⊆ C ∪ ∅. The set E represents a collection of “degenerate points” in

the sense that if E 6= ∅ the above sufficient condition for an NTSM does not hold.

Conversely if E = ∅ then an NTSM exists in D′.

We initiate a characterization of E for both classes of nearly integrable CSSs and

ICSSs. We begin with the former.

Proposition 4.3

Consider a nearly integrable CSS with an analytic vector field and an input value

set Σ. Let σa, σb ∈ Σ be distinct input values and γa
j ∈ Γa be an analytic first

integral defined on D′. If D′ is a connected set and p ∈ D′ is a point satisfying

dψ(x)|x=p = d(dγa
j (x) · f(x, σb)) 6= 0, then the set E is closed and has an empty

interior.⋄

Proof: If E = ∅ then the above result holds. For E 6= ∅ we use the fact that by

construction the maps ψ : D′ → R and dψ : D′ → R
n are analytic.

First we show that E is closed. For this recall that a map h : A ⊆ R
a → B ⊆ R

b is

continuous if and only if for any closed set b ⊂ B the preimage h−1(b) is a closed set in

A (Kasriel, 1971). Since E consists of the intersection between preimages of closed sets,

then E is closed in D′. Note that the preimage (dψ)−1(0) := {p ∈ D′ | dψ(x)|x=p = 0}

is exactly the set of critical points C.

We now prove that E ⊂ C has an empty interior by showing that C has a dense

complement in D′. We define the analytic codistribution ∆⊥(x) := span{dψ(x)}

where dim(∆⊥(x) |x=p′) ∈ {0, 1} for any p′ in D′. From §A.2.2 (on page 145) the set

of all regular points of maximal rank of an analytic codistribution forms an open and
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dense set on the domain of definition. By assumption there is a point p satisfying

dψ(x)|x=p = a for some a ∈ R
n \ {0}. Therefore dim(∆⊥(x)|x=p) = 1 and the set of

regular points of ∆⊥(x) with rank one is dense and open in D′. Consequently C has

a dense complement in D′, which completes the proof.¤

Proposition 4.3 stipulates that under certain conditions the non-transversality

between the leaves defined by γa
j and the trajectories induced by σb is such that

dψ(x) 6= 0 holds almost everywhere in D′. Consequently E is possibly nonempty,

thus violating the sufficient condition for an NTSM.

Since ICSSs are a special class of nearly integrable CSSs, another set of conditions

leads to a result similar to that of Proposition 4.3. Before proving this assertion we

recall that for an ICSS there exist an open subset D′′ ⊆ D′ and an approximate input

value set Σ′ where for each σ ∈ Σ′, the set of n − 1 first integrals Γσ has linearly

independent differentials on D′′. We then show that given σa, σc ∈ Σ′, where σc is an

approximate value for σb, equation (4.2) can be approximated by

dγa
j (x) ∧ (dγc

1(x) ∧ · · · ∧ dγc
n−1(x)) = ψ̃(x) dx1 ∧ · · · ∧ dxn, (4.6)

over D′′ except in the presence of equilibrium points Sc. Indeed, from Remark 3.19 it

is possible, at least in principle, that some leaves defined by σc contain an equilibrium

point p, thus satisfying condition dγa
j (x) · f(x, σc)|x=p = 0 while having ψ̃(x)|x=p 6= 0

in (4.6). The above development is captured by the following result.

Proposition 4.4

Consider an ICSS defined on D′′ ⊆ D′ and with an input value set Σ′. Let σa, σc ∈ Σ′

be distinct input values. If p ∈ D′′ and p 6∈ Sc, then ψ(x)|x=p = dγa
j (x) ·f(x, σc)|x=p =

0 if and only if ψ̃(x)|x=p = 0.⋄

Proof:(⇒) Let p be such that ψ(x)|p = dγa
j (x) · f(x, σc)|x=p = 0. Notice that

dγa
j (x)|x=p 6= 0 because for any p ∈ D′′ the condition dγa

1 (x) ∧ · · · ∧ dγa
n−1(x)|x=p 6=
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0 leads to dγa
j (x)|x=p 6= 0 for all j ∈ {1, . . . , n − 1}. Also p 6∈ Sc implies that

f(x, σc)|x=p 6= 0. From the near integrability of an ICSS, there exist n − 1 first

integrals γc
j , with j ∈ {1, . . . , n − 1}, defined in D′ so that dγc

j ·f(x, σc)|x=p′ = 0 for all

p′ ∈ D′. Moreover, this set of n−1 first integrals γc
1, . . . , γ

c
n−1 has linearly independent

differentials over D′′, thus at p. Therefore these differentials locally form a basis for

an n − 1 dimensional subspace which is orthogonal to f(x, σc) at p. By assumption

dγa
j (x) is also orthogonal to f(x, σc) at p. Thus dγa

j (x) belongs to the space spanned

by dγc
1,. . . , dγc

n−1. Consequently dγa
j (x) ∧ (dγc

1(x) ∧ · · · ∧ dγc
n−1(x))|x=p = 0, leading

to ψ̃(x)|x=p = 0 .

(⇐) Let p be such that ψ̃(x)|x=p dx1 ∧ · · · ∧ dxn = dγa
j (x) ∧ (dγc

1(x) ∧ · · · ∧

dγc
n−1(x))|x=p = 0. Thus at p the differential of the first integral γa

j (x) can be ex-

pressed as dγa
j (x) = α1dγc

1(x) + · · · + αn−1dγc
n−1(x) for some real values αi where

1 ≤ i ≤ n− 1. Consequently dγa
j (x) · f(x, σc)|x=p = (α1dγc

1(x) + · · ·+ αn−1dγc
n−1(x)) ·

f(x, σc)|x=p = 0 since γc
1, . . . , γ

c
n−1 are first integrals for f(x, σc). Therefore ψ(x)|p = 0,

proving the claim.¤

Let E ′ and C′ denote the approximations of E and C with σc instead of σb, where

σc ≈ σb, σc ∈ Σ′, and σb ∈ Σ. Given the zero-level set of ψ̃, that is,

F := {p ∈ D′′ | ψ̃(x)|x=p = 0}, (4.7)

the following result provides a first characterization of E ′.

Proposition 4.5

Consider an ICSS defined on the open set D′′ ⊆ D′ and with an input value set Σ′.

Given distinct input values σa, σc ∈ Σ′ and a first integral γa
j ∈ Γa defined on D′,

then either E ′ ∩ D′′ = ∅ or E ′ ∩ D′′ ⊂ (F ∪ Sc ) ∩ C′.⋄

Proof: The case E ′ ∩ D′′ = ∅ follows from E ′ = ∅. Now let p ∈ E ′ ∩ D′′ so

that ψ(x)|p = dγa
j (x) · f(x, σc)|x=p = 0, p ∈ C′, and p ∈ D′′. Thus at p one of the
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following situation arises: (a) dγa
j (x) · f(x, σc)|x=p = 0 where f(x, σc)|x=p = 0 (p is an

equilibrium point), or (b) dγa
j (x)·f(x, σc)|x=p = 0 where f(x, σc)|x=p 6= 0. Recall from

Proposition 4.4 that dγa
j (x)|x=p = 0 is not possible. If case (a) holds then p ∈ Sc, and

since p ∈ C′ this leads to p ∈ Sc ∩C′. Considering that Sc ∩C′ ⊂ (Sc ∩C′)∪ (F ∩C′) =

(F∪Sc )∩C′ one has p ∈ (F∪Sc )∩C′. If instead case (b) holds then by Proposition 4.4

one gets ψ̃(x)|x=p = 0, which by equation (4.7) leads to p ∈ F . Since p also belongs to

C′ one gets that p ∈ F ∩C′. The fact that F ∩C′ ⊂ (F ∩C′)∪ (Sc∩C′) = (F ∪Sc )∩C′

completes the proof.¤

Therefore in the presence of an ICSS the set E can be approximated by E ′ over

D′′ so that E ′ is either empty or bounded above by (F ∪ Sc) ∩ C′. This leads to a

result similar to that of Proposition 4.3 but for the class of ICSSs.

Proposition 4.6

Consider an ICSS defined over the open set D′′ ⊆ D′, where all first integrals are

analytic. Let σa, σc ∈ Σ′ be distinct input values and γa
j ∈ Γa be a first integral. If

D′′ is connected and there exists a point p ∈ D′′ satisfying ψ̃(x)|x=p 6= 0, then the set

E ′ is closed and has an empty interior.⋄

Proof: If E ′ = ∅ then the above result holds. For E ′ 6= ∅ we prove the claim by

using the upper bound of E ′ in Proposition 4.5, i.e., we show that F ∪Sc has a dense

complement in D′′. As condition (4.3)(ii) implies that Sc has an empty interior, thus

on D′′ ⊆ D′, we only need to show that F has a dense complement in D′′. The

closeness of E ′ follows from an argument similar to that of Proposition 4.3 for E .

From the first integrals involved in equation (4.6) we define on D′′ the matrix with

lines dγa
j (x), dγc

1(x), . . . , dγc
n−1(x), and the codistribution ∆⊥(x) := span{dγa

j (x),

dγc
1(x), . . . , dγc

n−1(x)} whose dimension at a point p is equal to the rank of the pre-

vious matrix. By construction, the codistribution ∆⊥ is analytic in x and satisfies

dim(∆⊥(x)|x=p) ∈ {n − 1, n} over D′′. By assumption there exists a point p ∈ D′′

such that ψ̃(x)|x=p = a 6= 0, i.e., dim(∆⊥(x)|x=p) = n. Since D′′ is connected, it
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follows by §A.2.2 that the points in D′′ where ∆⊥(x) has rank n form an open and

dense subset of D′′. Consequently F has a dense complement in D′′, which completes

the proof.¤

Proposition 4.6 stipulates that under certain conditions an ICSS can be approxi-

mated so that the non-transversality between the leaves induced by γa
j and the tra-

jectories defined by σc is such that dψ(x) 6= 0 almost everywhere in D′′. Notice that

Proposition 4.6 proceeds with a distinct upper bound for E ′ and that its sufficient

condition involves ψ̃, instead of the derivative of ψ as in Proposition 4.3. Also it can

be shown that the sufficient condition of Proposition 4.6 on ψ̃(x) is automatically

satisfied in the presence of a dense set D′′ (ref. Remark 3.13 on page 45) and of

condition (4.3)(i).

Both Proposition 4.3 and Proposition 4.6 say that, in general, E 6= ∅. Therefore,

in the presence of leaf-partitions one cannot expect that a non-transversality sub-

manifold (NTSM) exists in D′ or D′′. However this does not completely preclude a

characterization of transversality.

As initially stated, the second requirement for a well-conditioned transversality

necessitates that the set of points ψ−1(0) acts as a “cutting edge” to divide any leaf

induced by the first integral γa
j . Since ψ−1(0) does not necessarily form a submanifold

in D′ we relax the investigation of the transversality property by considering a subset

of leaves only. In this context a strong condition enforcing the second requirement is

that locally a given leaf and the set ψ−1(0) be transversal. The main advantage of such

an approach is that we transform the characterization of non-transversality between

leaves and flow to a transversality problem, which is easier to handle since non-

transversal sets may take rather intricate forms (see (Guillemin and Pollack, 1974)

for some examples). In order to capture the locations where the transversality between
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a leaf induced by a first integral γa
j ∈ Γa and ψ−1(0) holds, we introduce the set

G := {p ∈ D′ | ψ(x)|x=p = 0 and dγa
j (x) ∧ dψ(x)|x=p = 0}. (4.8)

The set G, which by definition contains E , captures the points in D′ where the differ-

entials of γa
j and ψ are linearly dependent. This leads to the following result.

Lemma 4.7 Consider a nearly integrable CSS with an input value set Σ containing

distinct input values σa and σb. Let γa
j ∈ Γa be a first integral defined on D′ and

inducing a leaf Lc
j,a for some regular value c. If Lc

j,a ∩ G = ∅, then for any point

p ∈ Lc
j,a ∩ ψ−1(0) the leaf Lc

j,a can be locally divided in two regions R1 and R2 with

opposite flow directions, that is,

dγa
j (x) · f(x, σb)|x=p∈R1

< 0,

dγa
j (x) · f(x, σb)|x=p∈R2

> 0.

(4.9)

⋄

Proof: Since two-dimensional systems correspond to a special case, the proof splits

in two parts, i.e., for systems where n = 2 and those where n > 2.

Let p be an arbitrary point of Lc
j,a ∩ ψ−1(0). By assumption p 6∈ G so that

dγa
j (x) ∧ dψ(x)|x=p 6= 0, that is, dγa

j and dψ are linearly independent at p. By

continuity, there exists a neighborhood of p in D′, say Np, where dγa
j (x)∧dψ(x)|x=p′ 6=

0 for all p′ ∈ Np. Moreover since dψ(x) 6= 0 over Np, the Preimage Theorem (ref.

§A.2.4 on page 147) implies that ψ−1(0) forms a submanifold in Np.

For n = 2, the point p is completely characterized by γa
j and ψ. We claim that

there exists a neighborhood where p is the unique intersection point between Lc
j,a

and ψ−1(0). We prove the claim by contradiction, that is, we assume that there is

a neighborhood of p where Lc
j,a and ψ−1(0) coincide and we denote by T the set of
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points in Lc
j,a ∩ ψ−1(0). Since T ⊂ ψ−1(0) then ψ(x)|p′ is constant (and equals zero)

for all p′ ∈ T . Consequently at point p ∈ T the differential of ψ(x) equals zero, which,

in turn, means that p ∈ G, a contradiction. Since Lc
j,a consists of a one-dimensional

submanifold, the point p locally divides Lc
j,a in two parts.

From the smoothness of ψ(x) it follows that dψ(x) does not change sign on some

neighborhood of the point p. Therefore a sufficiently small perturbation of p along

Lc
j,a, say p′ ∈ Lc

j,a\{p}, leads to ψ(x)|x=p′ 6= 0. Indeed, since ψ(x)|p = 0 and dψ(x)|p 6=

0, if a perturbation of p along Lc
j,a leads to ψ(x)|x=p′ > 0 (resp., ψ(x)|x=p′ < 0) with

p′ ∈ Lc
j,a \ {p} then a perturbation along Lc

j,a in the opposite direction leads to

ψ(x)|x=p′′ < 0 (resp., ψ(x)|x=p′′ > 0) with p′′ ∈ Lc
j,a \ {p}.

For n > 2, we define a mapping β : D′ → R
2 as β(x) := [γa

j (x), ψ(x)]T . Since

by assumption Lc
j,a ∩ G = ∅ then for any point p ∈ Lc

j,a ∩ ψ−1(0) there exists a

neighborhood of p, say Np, where rank(dβ(x)|x=p′) = 2 for all p′ ∈ Np. Said otherwise,

the point (c, 0) ∈ R
2 is a regular value for β(x) in Np. Thus it follows by the Preimage

Theorem that β−1(c, 0) forms a submanifold of Np of dimension n−2, which we denote

by S. Moreover the submanifold S locally represents the intersection points between

Lc
j,a and ψ−1(0). Similarly to the above development, in a neighborhood of p the

submanifold S splits the leaf Lc
j,a in two parts. Moreover a small perturbation along

the leaf and away from S leads to the expected result, completing the proof.¤

From Lemma 4.7 a leaf without points in G is such that for each point p ∈

ψ−1(0) there is a submanifold, which locally delineates two regions with opposite flow

directionality. If no point in Lc
j,a belongs to ψ−1(0) then the flow does not change

directionality with respect to the leaf. Consequently only one point of the leaf needs

to be evaluated to obtain the directionality of the flow.

Remark 4.8 For the special case of n = 2, it can be shown that between any two

consecutive points in Lc
j,a ∩ ψ−1(0) the relative direction of the flow with respect to

the leaf remains unchanged. In reference to Figure 4.1 (on page 58), the conditions of
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Lemma 4.7 amounts to requiring that, whenever a trajectory and a leaf are defined

by distinct input values, no intersection of type (c) occurs.⋄

The following result provides a sufficient condition so that there exists an open

and dense subset of D′ where the condition of Lemma 4.7 is satisfied.

Proposition 4.9

Consider a nearly integrable CSS with an analytic vector field and an input value

set Σ containing two distinct input values σa and σb. Let γa
j ∈ Γa be an analytic

first integral defined on a connected set D′. If there exists a point p ∈ D′ satisfying

dγa
j ∧ dψ(x)|x=p 6= 0, then the set G is closed and has an empty interior.⋄

Proof: Since both γa
j and f(x, σb) are analytic then so is the codistribution

∆⊥(x) := span{dγa
j (x), dψ(x)}. By definition one has that dim(∆⊥(x)) ∈ {0, 1, 2}.

Moreover, by assumption, the point p is such that dim(∆⊥(x)|p) = 2. From the con-

nectedness of D′ and §A.2.2, it follows that the points in D′ where ∆⊥(x) has rank

two form an open and dense subset. Since this set of points is in the complement of

G in D′ then G has an empty interior. The closure of G follows from the fact that it

consists of the intersection of two closed sets in D′, proving the claim.¤

This completes the characterization of non-transversality in the presence of a

single collection of leaves defined by an input value and the flow of a vector field

induced by a distinct input value. In the next section we perform a simple extension

of the previous results for the case where multiple first integrals and input values are

considered.

4.1.2 Multiple First Integrals - Multiple Input Values

Since G in equation (4.8) qualifies a first integral γa
j and a flow generated by σb, we

denote it here by Gb
j,a. In order to consider all input values in Σ that are distinct from
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σa, we define the set

GΣ
j,a :=

⋃

σb∈Σ\{σa}

Gb
j,a. (4.10)

In particular, if each Gb
j,a is closed and has an empty interior then so is GΣ

j,a (by

using the complements and Proposition 3.14 on page 46). A similar procedure can

be followed to scan through all first integrals in Γ, in order to lead to a subset of

D′ where all leaves have a well-conditioned transversality property. We complete the

characterization of transversality for leaf-partitions by using an immediate extension

of Lemma 4.7.

Corollary 4.10

Consider a nearly integrable CSS and a leaf-partition π generated from an input

value set Σ and a set of first integrals Γ defined on D′. If for any j ∈ {1, . . . , n − 1},

σa ∈ Σ, and σb ∈ Σ \ {σa} the set Gb
j,a does not intersect with leaves in π that are

generated by γa
j , then each leaf containing a point p ∈ ψ−1(0) can be locally divided

in two regions with opposite flow directionality.⋄

Proof: This follows from Lemma 4.7.¤

Remark 4.11 For two-dimensional systems Corollary 4.10 implies that the behaviour

of continuous trajectories around a point of ψ−1(0) belonging to a leaf can be deter-

mined by selecting only two points of the leaf and on each side of ψ−1(0).⋄

Remark 4.12 With respect to Remark 3.24 (on page 53), Corollary 4.10 imposes

additional constraints on the selection of FICs (ref. Definition 3.21 on page 51).⋄

4.1.3 Summary

Given a collection of leaves defined by an input value and trajectories induced by

another input value, Proposition 4.3 (resp., Proposition 4.6) provides a first charac-
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terization of the locations where non-transversal intersections (between trajectories

and leaves) for a nearly integrable CSS (resp., an ICSS) do not define a submanifold.

Furthermore, Lemma 4.7 gives conditions under which a leaf (defined by an input

value) has a well-conditioned transversality property with respect to a flow (induced

by another input value). Such a transversality property enables the identification of

transitions simply by evaluating points in the neighborhood of ψ−1(0). In Corollary

4.10 a similar procedure is followed for all leaves generated by Σ and Γ, thus capturing

all possible elements involved in a leaf-partition. In that sense Corollary 4.10 imposes

additional constraints on leaf-partitions as it requires that no leaf in π intersects with

some region in D′.

We conclude this section by illustrating the theory with two examples possessing

an analytic vector field and analytic first integrals defined over a connected set D′.

Example 4.13 (Double Integrator) We pursue the double integrator example in-

troduced in Chapter 3. In this example the vector field is f = [x2, u]T , and γσ
1 (x) =

σx1 − 1
2
x2

2 is a first integral defined over D′ = D = R
2. As mentioned before,

the system qualifies as both a nearly integrable CSS and an ICSS. Thus we assume

Σ := {σa, σb} with σa, σb ∈ R \ {0}, σa 6= σb, and Γ := {γa
1 , γ

b
1}. Notice that

with such Σ and Γ conditions (4.3)(i) and (ii) are satisfied. Namely both Sa and Sb

have an empty interior (as Sa = Sb = ∅), and thus satisfy condition (4.3)(ii). Also

dγa
1 (x) ∧ dγb

1(x) = x2(σa − σb) so that any point (x1, x2 6= 0) ∈ D′ fulfills condition

(4.3)(i).

Given the above first integral one gets ψ(x) = dγa
1 ·f(x, σb) = x2(σa−σb), dψ(x) =

(σa−σb)dx2 and dγa
1 (x)∧dψ(x) = σa(σa−σb)dx1∧dx2. Therefore non-transversality

occurs at points in {(x1, x2 = 0)}. Since dψ(x)|x=p 6= 0 for any p ∈ D′, Proposition

4.3 predicts a closed set E with an empty interior. Indeed one has E = ∅ and the

same result holds for the case of the ICSS since D′′ = D′. Moreover one has that

G = Gb
1,a = ∅. Consequently, Corollary 4.10 implies that a leaf-partition generated by
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Σ and Γ := {γa
1 , γ

b
1} has well-conditioned transversality.•

Example 4.14 (Inverted pendulum) In Åström and Furuta (Åström and Furuta,

2000), an inverted pendulum is modelled by ẋ1 = x2, ẋ2 = sin(x1) − cos(x1)u/g over

D := S × R where x1 and x2 are the angle and angular velocity, respectively. Even

though this system evolves on a cylinder D, which is not an open subset of R
3, we

restrict ourselves to the planar region D := (0, 2π) × R. Consider the first integral

γσ
1 (x) = 1

2
x2

2 + cos x1 + (sin x1)σ/g over D′ = {0 < x1 < 2π, x2 ∈ R}. Notice that

the equilibrium point (x1 = tan−1(−σ/g), x2 = 0) coincides with the location where

dγσ
1 (x) = (− sin x1 + (cos x1)σ/g)d(x1) + x2d(x2) vanishes.

–4

–2

0

2

4

1 2 3 4 5 6
f fv v x1

x2

Figure 4.2: Level sets and equilibrium points for Example 4.14

Figure 4.2 shows the level sets of γσ
1 for the input value set Σ := {σa = −0.25g, σb =

0.25g} (thinner lines represent the input value σa = −0.25g) and the equilibrium

points induced by Σ, which are represented by distinct circles for different input

values. Since condition (3.14) holds over a dense subset of D′, the system qual-

ifies as a nearly integrable CSS. Moreover it is an ICSS over D′′ = D′ \ {(x1 =

tan−1(−0.25), x2 = 0), (x1 = tan−1(0.25), x2 = 0)}.

Conditions (4.3)(i) and (ii) are satisfied as σa 6= σb. Given the above first integral

one has ψ(x) = dγa
1 (x) · f(x, σb) = x2 cos x1(σa − σb)/g and dψ = (−x2 sin x1d(x1) +
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cos x1d(x2))(σa − σb)/g. The set of non-transversal points ψ−1(0) is formed by the

lines x1 = 1
2
π, x1 = 3

2
π and x2 = 0 (three of the locations where ψ vanishes are

marked by an X in Figure 4.3). Also the critical points of ψ are (x1 = 1
2
π, x2 = 0)

and (x1 = 3
2
π, x2 = 0) (represented by black dots in Figure 4.3).
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Figure 4.3: Critical points of ψ(x) and set E for Example 4.14

Once again the conditions of Proposition 4.3 are satisfied and the set E = {(1
2
π, 0),

(3
2
π, 0)} is closed and with an empty interior. Similarly the ICSS respects the con-

ditions of Proposition 4.6 and E ′ has also an empty interior. Moreover, as dγa
1 (x) ∧

dψ(x) = (σa−σb)
g

[x2
2 sin x1 − sin x1 cos x1 + cos2 x1σa/g]dx1 ∧ dx2, one has that G =

E ∪ {(x1 = tan−1(−σa/g), x2 = 0)}. We then illustrate Remark 4.8. Namely three

regions R1, R2, and R3 with a fixed flow directionality are identified in Figure 4.3

for a leaf (the one represented by a thick line and with the two X’s) that does not

intersect with G. The directionality of the vector field is indicated along the leaf.

Notice that the leaves of the leaf-partition illustrated in Figure 4.3 do not encounter

G, thus satisfying the condition of Corollary 4.10.•

The previous two examples illustrated how transversality may impact on the de-

termination of the transition structure of an FSM abstraction. An important feature

of a transition structure remains the presence of nondeterministic transitions. With
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the next section, we initiate an analysis of the origin of those transitions for leaf-

partitions.

4.2 Nondeterministic Transitions

In §3.2.3 we showed the strong relationship between deterministic transition struc-

tures and various notions of the consistency property. However, the partitioning of

a state-space region of a continuous system usually leads to an abstraction with a

nondeterministic transition structure. For this reason, this section aims at under-

standing the occurrence of nondeterministic transitions and their relationship with

transversality. Since we focus on nonsingular d-paths, we consider leaf-partitions that

do not contain any dynamical singularities. In this investigation we identify generic

situations leading to nondeterministic transitions, and in parallel we assess techniques

that are meant to reduce the number of such transitions.

In order to define scenarios where nondeterministic transitions arise we refer to

a fictitious set of partition cells represented by simple two-dimensional rectangles as

in Figure 4.4 where only the flow differentiates cases (a), (b), and (c). Figure 4.4(a)

provides an example of deterministic transitions, i.e., the flows φk and φk′ evolve

unambiguously from one cell to another, qi → ql → qj and ql → qk, respectively. The

leaf-partition of the double-integrator presented in Figure 3.13 constitutes an example

of a partition leading to a transition structure with deterministic transitions only.

However a deterministic transition structure is not a generic property of abstractions

based on leaf-partitions. For instance, in Figure 4.4(b) the orientation of the flow φk

is slightly inclined so that it is no longer parallel to any boundary of the cells. In this

situation the flow φk, when initiated in ql, visits two neighbor cells qj and qk thus

leading to a nondeterministic transition. Similarly, a slight perturbation of any of the

leaves of Figure 3.13 immediately leads to a nondeterministic transition structure.
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Indeed, in the leaf-partition of Figure 4.5(a), where all cells bounded by leaves are

numbered, two trajectories initiated in the cell number 3 can reach the cells 2 and 9.

In the next sections we investigate two techniques in order to reduce the number

of nondeterministic transitions arising in leaf-partitions.

qi

qj

qkql

φk

φk′

φk

φk′

∂l
a ∂l

b

∂l
a

∂l
b1

∂l
b2

φk′

(a) (b) (c)

Figure 4.4: Some partition cells with three distinct flows

4.2.1 Subset Construction

Among the techniques to handle FSMs with a nondeterministic transition structure,

one finds the method of subset construction (Hopcroft and Ullman, 1979). This

approach enables one to find a deterministic FSM that recognizes the same language

as the nondeterministic automaton. We now investigate the application of the subset

construction technique to the double-integrator leaf-partition of Figure 4.5(a).

Given a source cell the subset construction groups all cells that are reached under

the same input value. For instance, the nondeterministic transitions {3} → {2} and

{3} → {9} shown in Figure 4.5(a) result in a deterministic transition {3} → {2, 9}

where {2, 9} forms a new state of the deterministic automaton. By performing this

step for the whole leaf-partition, one obtains Table 4.1 whose columns contain the

source cell as well as the target cells reached under distinct input values σ1 and σ2.

The presence of – in columns of target cells indicates the disabling of an input value
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Figure 4.5: (a) A double-integrator leaf-partition, (b) Loop in the deterministic automaton

that leads outside the set of numbered cells. For instance, the set of cells numbered

1, 14, 17 and 19 can exit the leaf-partition under input value σ2. Moreover, for an

aggregated cell such as {4, 14} the input value σ2 is also disabled (see – in Table 4.1)

because one of its elements, namely 14, exits the leaf-partition under the input value

σ2.

In Table 4.1 one notices a loop among some of the aggregated states, namely

{1, 5}, {4, 8, 10}, {3, 7}, and {4, 14, 16}. Indeed the nondeterminism propagates in

such a manner that wherever the leaf-partition of Figure 4.5(a) is initialized it may

eventually reach the cyclic graph of Figure 4.5(b). Moreover, this phenomenon is

invariant of the refinement, meaning that, in general, a finer/coarser partition leads

to a similar conclusion.

From a continuous control perspective, the result depicted by the cyclic graph of

Figure 4.5(b) is of limited use. Indeed one normally seeks to stabilize a continuous

system in the vicinity of a point, i.e., in a set that is connected. However each

aggregated state of Figure 4.5(b) forms a disconnected subset of the state space, so

that a stabilization task as previously defined cannot take place. Consequently one
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Source Target cells Source Target cells

cell σ1 = 1 σ2 = −1 cell σ1 = 1 σ2 = −1

{1} 8 – {16} 5 18

{2} 3 1 {17} 14 –

{3} 2,9 4,14 {18} 15 19

{4} 5 3 {19} 17 –

{5} 4,10 6,15 {2, 9} 3,12 1,5

{6} 7 5 {4, 14} 1,5 –

{7} – 16 {4, 10} – 3,7

{8} 11 3 {6, 15} 3,7 5,17

{9} 12 5 {3, 12} – 4,10,14

{10} – 7 {1, 5} 4,8,10 –

{11} 13 9 {3, 7} – 4,14,16

{12} – 10 {5, 17} 4,10,14 –

{13} – 12 {4, 10, 14} – –

{14} 1 – {4, 14, 16} 1,5 –

{15} 3 17 {4, 8, 10} – 3,7

Table 4.1: Transition table for the leaf-partition of Figure 4.5(a)

requires a different technique to extract deterministic transitions out of leaf-partitions.

This is the topic of the next section.

4.2.2 Back-propagation

In Figure 4.4(b) the location marked by ⊕ represents the junction of two boundary

elements of ∂l, the boundary of cell ql. Let us assume that the input value is selected

instantaneously when the flow encounters the boundary of a cell. Furthermore, we

assume that the input value remains unchanged while the flow travels through a cell.

In this case one can interpret a transition as the travelling between boundaries.

Remark 4.15 From an engineering point of view the above assumption about the

absence of delay in the switching of input values is not realistic. This ideal scenario
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is considered here for ease of treatment. However a generalization to a situation with

delays needs to be developed.⋄

If the location corresponding to ⊕ on ∂l is a submanifold, then it can be back-

propagated with respect to the input value σk (illustrated by a dotted line with an

arrowhead). If the back-propagation of ⊕ on ∂l also results in a submanifold on ∂l,

then locally ∂l can be divided in two subsets, say ∂l
a and ∂l

b as shown in Figure 4.4(b).

In this case, if a trajectory enters cell ql by intersecting with ∂l
a (resp., ∂l

b), then it

will lead to cell qj (resp., qk), thus leading to deterministic transitions.

A more complex scenario is provided by Figure 4.4(c) where the flow initiated in

ql can lead to cell qi, qj, or qk. In that situation, there is non-transversality between

the flow φk′ and the boundary ∂l at the location marked by ⊗. Section 4.1 provides

conditions under which the location marked by ⊗ is locally well-characterized. As

in the previous situation if the back-propagation of locations marked by ⊕ and ⊗

on leaf segments leads to submanifolds on the boundary ∂l, then it is possible to

locally divide the cell boundary so that nondeterministic transitions induced by σk′

are eliminated. In the case of Figure 4.4(c) one could divide the boundary of ql from

which originates the flow leading to qi, qj, and qk, into three regions ∂l
a, ∂l

b1 and ∂l
b2.

In principle, the back-propagation approach seems more appropriate than the

subset construction for the removal of nondeterministic transitions induced by leaf-

partitions. However this is done at the expense of requiring an analysis of the partition

and of its transversality property. We postpone the details of an application of the

back-propagation technique until Chapter 6.

Remark 4.16 In the ideal case the set of locations marked by ⊕ and ⊗ correspond

to submanifolds. In the situation where D ⊆ R
2 those objects often reduce to points

and are, therefore, easier to back-propagate.⋄
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4.3 Summary

This chapter depicts the importance of transversality for leaf-partitions of CSSs (both

nearly integrable CSSs and ICSSs). First, we have provided a characterization of the

locations where non-transversal intersections (between trajectories and leaves) do not

define a submanifold. Also we have identified a transversality property that facilitates

the analysis of transitions based on a reduced number of points in the neighborhood

of non-transversal locations. Then we have investigated the occurrence of nonde-

terministic transitions resulting from leaf-partitions. It follows that some areas of

partition cells are more likely to lead to such transitions. In order to perform the

removal of nondeterministic transitions we have considered two different techniques,

one of which relies on the transversality features of the leaf-partition.

The next chapter states a prerequisite in order to fully benefit from the transver-

sality assessment of the leaf-partitions of CSSs.
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Chapter 5

Bounded Leaf-Partitions

Chapter 4 provided a means of characterizing transitions through the leaves of a leaf-

partition. This directly leads to a method for extracting transitions of partition cells

whose boundary is made of subsets of leaves only. However there is no guarantee that

such cells exist, thus rendering the analysis of transitions more intricate. For instance,

a partition generated by the leaves of Example 3.10 with σ = 0 (see Figure 3.9(b) on

page 43) has partition cells consisting of slices (see page 52) whose boundary points

do not all belong to leaves. Furthermore even though a visual inspection is possible

for systems in R
2, the task of verifying the existence of such cells becomes complex for

higher-dimensional systems. Another concern about the transition structure induced

by a leaf-partition is the potentially large number of first integrals contained in Γ,

which increases the burden of determining the transitions through leaves.

Motivated by the above reasons we undertake the identification of conditions under

which a set of first integrals Γ̂ ⊆ Γ defined in D′ ⊂ R
n may lead to a partition

made of cells whose interior is bounded by leaves. In Section 5.1 we introduce two

notions of boundedness by leaves: L-boundedness and Lǫ-boundedness. In Section

5.2, we proceed with a characterization of those properties for nearly integrable CSSs.

Namely, sufficient conditions for L-boundedness and Lǫ-boundedness are provided.
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5.1 Boundedness by Leaves

The first notion to be introduced is that of “boundedness by leaves”, or L-boundedness

for short. A nonempty open set P ⊂ D′ is L-bounded if every boundary point in ∂P

belongs to a leaf. An L-partition is a special type of leaf-partition for which the

interior of each cell is L-bounded. In that case, one can interpret L-boundedness as

a homogeneity requirement among the cells of a leaf-partition. A local version of

L-boundedness is given next.

Definition 5.1 (Lǫ-boundedness) Let P be an open subset of D′. A point p ∈ P

is Lǫ-bounded if for any neighborhood of p, Np ⊂ P , there exists an open subset of

Np containing p and whose boundary points belong to leaves.⋄

P ⊂ D′

Np

Figure 5.1: An Lǫ-bounded point (black dot)

Therefore Definition 5.1 requires the existence of an L-bounded neighborhood of

p. An example of an Lǫ-bounded point is provided in Figure 5.1 where a point (black

dot) is enclosed by four leaves that collectively define an open set contained in Np

(the circular set). Failure to satisfy the Lǫ-boundedness property at a point says that,

due to some obstruction, one cannot build an L-bounded neighborhood of arbitrary

size around that point, thus indicating a limitation of the leaf-partition granularity.

In the following section, we define some relationships between L-boundedness and

Lǫ-boundedness.
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5.2 L-boundedness for Nearly Integrable CSSs

In this section, we determine conditions under which the L-boundedness of a subset

of D′ is ensured. The overall approach uses the Lǫ-boundedness in order to show that

L-boundedness holds. For this reason we first provide a sufficient condition for the

Lǫ-boundedness, which is then relaxed. This is followed by a characterization of the

L-boundedness property for nearly integrable CSSs.

As shown in Figure 5.1, if at a point p one looks in all possible directions and

visually encounters a leaf, then intuitively p should be Lǫ-bounded. The following

proposition shows that this condition is indeed sufficient for the Lǫ-boundedness of p.

Proposition 5.2

Consider an open subset P ⊂ D′ and a nearly integrable CSS with a collection of first

integrals Γ̂ ⊆ Γ defined on D′. A point p ∈ P is Lǫ-bounded if, for any non-trivial

vector v in R
n there is a first integral γ in Γ̂ with a leaf transversal to v at p, i.e.,

(∀v ∈ R
n \ {0}) (∃γ ∈ Γ̂) dγ(x) · v|x=p 6= 0.⋄ (5.1)

Proof: The proof proceeds in two steps. First it is shown that at p there exist n

first integrals with linearly independent differentials. Those first integrals are then

used to construct a neighborhood of p bounded by leaves.

We show by contradiction that there are n first integrals with linearly independent

differentials satisfying condition (5.1) at point p. Assume that rank(dΓ̂(x)|x=p) = k,

with k < n and where dΓ̂(x) represents the matrix formed of the differential of all

first integrals contained in Γ̂. Note that k > 0 otherwise dγ · v|x=p = 0 for all γ ∈ Γ̂

and condition (5.1) is violated at p. Let γ1(x), . . . , γk(x) be the set of k linearly inde-

pendent first integrals at p. Also let us complete this set by n − k smooth functions

λk+1(x), . . . , λn(x) defined on D′ so that α(x) = [γ1(x), . . . , γk(x), λk+1(x), . . . , λn(x)]T

81



satisfies rank(dα(x)|x=p) = n. Therefore the map α : D′ → R
n defines at p a local

diffeomorphism, which, in turn, yields a local coordinate system y = α(x). Now let

w be a nontrivial vector defined at q = α(x)|x=p such that w = [0, . . . , 0︸ ︷︷ ︸
k

,×, . . . ,×]T

with × representing any nonzero value. Since dα|x : R
n → R

n is a linear map and

dα|p is non-singular it is thus possible to determine a unique vector v at p such that

dα|pv = w. With the first k zero entries of w the vector v must annihilate the differ-

ential of each first integral γ1(x), . . . , γk(x) at p, whereas the last n−k nonzero values

in w imply that v 6= 0. By assumption, any first integral γ in Γ̂ can be expressed

as a linear combination of γ1(x), . . . , γk(x) at p. Therefore one gets dγ · v|x=p = 0

for all γ ∈ Γ̂, contradicting condition (5.1). Consequently at p there is a collec-

tion of n first integrals γ1(x), . . . , γn(x) with linearly independent differentials, i.e.,

dγ1(x) ∧ · · · ∧ dγn(x)|x=p 6= 0.

If dγ1(x)∧· · ·∧dγn(x) = β(x)dx1∧· · ·∧dxn then it follows from the smoothness of

the first integrals that β : D′ → R is smooth. Moreover the restriction of β to the open

set P ⊂ D′ is continuous. Given that β(x)|x=p = c for some c ∈ R\{0}, the continuity

of β over P implies that for Nc, an open neighborhood of c in R \ {0}, there exists a

neighborhood of p, say Np ⊂ P , such that β(x)|x=p′ ∈ Nc for all p′ ∈ Np. Therefore

γ1(x), . . . , γn(x) form a collection of linearly independent first integrals everywhere in

Np. We then use each first integral γi(x), i ∈ {1, . . . , n}, to define a slice Si. This

can be done by a slight perturbation of the leaf induced by γi(x) and defined at p.

Let γi(x)|x=p = ci for some ci ∈ R, an let ǫi be a small value so that ci − ǫi < ci + ǫi.

Then a slice is defined as the set Si := {p′ ∈ Np | ci − ǫi < γi(x)|x=p′ < ci + ǫi}. Thus

a slice is an open subset of Np containing p and bounded by two leaves and ∂Np, the

boundary of Np. As β(x)|x=p′ ∈ Nc for all p′ ∈ Np, it follows that γi(x) has leaves

defined everywhere in Np. That is, ǫi can be made arbitrarily small so that the leaves

of Si are arbitrarily close to p. Therefore the collection of slices S1, . . . , Sn forms a

set Rp :=
⋂n

i=1 Si, which by construction is open, contained in Np, and contains p. It
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remains to show that Rp has its boundary made of leaves only. This follows by the

fact that the slices are mutually transversal in Np and that Rp can be made arbitrarily

small in Np.¤

Remark 5.3 It follows from Proposition 5.2 that Rp is diffeomorphic to an n-dimen-

sional rectangle Kn. Given a set S and two points p′, p′′ ∈ S, if there exists a

continuous map h : [0, 1] → S such that h(0) = p′ and h(1) = p′′ we say that a path

in S joins p′ to p′′. If for any two points p′ and p′′ of S there is path joining p′ to p′′,

we say that S is path-connected (Kasriel, 1971). The set S = Kn is an example of

a path-connected set. By using the map h∗ = α−1 ◦ h, with α as defined in the first

part of the previous proof, and a result on connected sets in §A.2.1 (see page 145), it

can be shown that Rp is path-connected, and thus connected.⋄

The sufficient condition of Proposition 5.2 refers to the notion of transversality

previously defined. Indeed, Proposition 5.2 requires that locally there are mutually

transversal leaves in sufficient number at p. Since the condition uses the differential

of first integrals in Γ̂, it characterizes all leaves that may be involved in further refine-

ments or aggregations of the leaf-partition. We now present some closure property

that L-bounded sets possess.

Proposition 5.4

Let Ra and Rb be L-bounded subsets of D′. Then Ra ∪ Rb forms an L-bounded set.

Moreover if Ra and Rb are connected and Ra ∩ Rb 6= ∅, then Ra ∪ Rb is connected.⋄

Proof: If p ∈ Ra ∪ Rb then either p ∈ Ra or p ∈ Rb. It follows from the openness

of Ra and Rb that there exists a neighborhood of p, Np, contained in Ra or Rb, i.e.,

Np ⊂ Ra ∪Rb. Therefore the set Ra ∪Rb is open and nonempty (since Ra and Rb are

by definition nonempty).

Now we show that ∂(Ra ∪ Rb) ⊂ ∂Ra ∪ ∂Rb. Let p ∈ ∂(Ra ∪ Rb). Thus any

neighborhood Np of p intersects with both Ra∪Rb and (Ra∪Rb)
c, the complement of
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Ra ∪Rb in D′. It follows that either Np ∩Ra 6= ∅ or Np ∩Rb 6= ∅. As (Ra ∪Rb)
c ⊂ Rc

a

and (Ra ∪ Rb)
c ⊂ Rc

b, one gets that Np ∩ (Ra ∪ Rb)
c 6= ∅ leads to Np ∩ Rc

a 6= ∅ and

Np ∩ Rc
b 6= ∅. Consequently p ∈ ∂Ra or p ∈ ∂Rb, i.e., p ∈ ∂Ra ∪ ∂Ra, thus proving

the claim. Therefore the open and nonempty set Ra ∪ Rb has it boundary made of

the leaves of ∂Ra or ∂Rb, that is Ra ∪ Rb is L-bounded.

The connectedness of Ra ∪ Rb follows from Ra ∩ Rb 6= ∅ and a byproduct of

Theorem A.2 (page 145) which implies that the union of a collection of intersecting

connected sets results in a connected set.¤

Among other things, Proposition 5.4 says that any two intersecting L-bounded

sets can be “glued” together to form an L-bounded set. Moreover a collection of

intersecting L-bounded sets can be combined so that it forms a larger L-bounded set.

This feature is now exploited to show that condition (5.1) is not necessary for the

Lǫ-boundedness of a point.

Proposition 5.5

Assume that condition (5.1) of Proposition 5.2 holds for all points of the open set

O \ {p} where O ⊂ P is a neighborhood of p. Then p is Lǫ-bounded.⋄

Proof: We first define an arbitrary open subset O′ ⊂ O containing p, and a n-

dimensional empty sphere ∂Bδ
p ⊂ O′ centered at p and of radius δ > 0. Let p′ be

any point of ∂Bδ
p and select a neighborhood of p′, Np′ ⊂ O′. By assumption p′ is

such that condition (5.1) holds. Therefore Proposition 5.2 implies that there exists

an L-bounded set Rp′ containing p′ and contained in Np′ . Now select any point p′′

belonging to ∂Rp′ ∩ ∂Bδ
p so that there is an L-bounded set Rp′′ ⊂ O′ containing p′′

and intersecting with Rp′ (see Figure 5.2(a)). Thus Remark 5.3 and Proposition 5.4

imply that Rp′ ∪ Rp′′ forms an L-bounded set. Moreover one can repeat the above

steps until the resulting set contains ∂Bδ
p. If R denotes the set thus constructed, then

the boundary ∂R acts as an envelope for ∂Bδ
p as shown in Figure 5.2(b). Now let Bδ

p

denote the n-dimensional open ball (a filled sphere without its boundary) centered
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at p and of radius δ. Therefore the open set R ∪ Bδ
p is connected (as R ∩ Bδ

p 6= ∅

and by Theorem A.2), contains p, and is bounded by leaves. Since O′ and ∂Bδ
p are of

arbitrary size, so is R ∪ Bδ
p, thus proving that p is Lǫ-bounded.¤

p

O′

∂Bδ
p

Rp′

Rp′′

(a) Two intersecting L-bounded sets

p

O′

R

(b) Resulting L-bounded set

Figure 5.2: Construction of an L-bounded set for a point p

The technique to construct an L-bounded set in Proposition 5.5 shows that the

Lǫ-boundedness of every point of a subset of D′ leads to an L-bounded set. However

the condition of Proposition 5.5 is not necessary for L-boundedness of a subset of

D′. For instance, consider a leaf-partition induced by a single first integral (such as

in Figure 3.12 on page 52). In this situation Lǫ-boundedness does not hold for any

point in D′ because no leaves intersect anywhere in D′. This scenario includes the

case of leaf-partitions made of compact leaves, which can lead to L-bounded sets. An

example of such a partition consists of a finite collection of concentric annuli in R
2.

To verify the Lǫ-boundedness of a point, condition (5.1) of Proposition 5.2 remains

difficult to check due to the large number of vectors involved. An easier route may

be to consider the information about the non-transversality of the first integrals of

Γ̂. Given a collection of first integrals Γ̂ ⊆ Γ, we define the set of points where

non-transversality occurs as

Ω(Γ̂) := {p ∈ D′ | rank(dΓ̂(x)|x=p) < n}, (5.2)
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where rank(dΓ̂(x)|x=p) stands for the rank of the matrix formed by the differential

of all first integrals in Γ̂ evaluated at p. In general, the set Ω(Γ̂) may require as

much analysis as D′ does. For instance, this occurs whenever Γ̂ is such that #Γ̂ < n,

leading automatically to Ω(Γ̂) = D′. Another scenario where Ω(Γ̂) = D′, despite the

fact that #Γ̂ = n, consists of the triple integrator of Example 3.10 (see page 42) with

Γ̂ := {γα
1 , γα

2 , γβ
1 }, where α = 0 and β 6= 0.

The following result shows that whenever Ω(Γ̂) satisfies some properties any subset

P of D′ has an L-bounded subset.

Proposition 5.6

Consider a nearly integrable CSS with a set of first integrals Γ̂ ⊆ Γ and a non-

transversality set Ω(Γ̂). If Ω(Γ̂) is closed and has a dense complement in D′, then for

any open set P ⊂ D′ there exists a connected L-bounded subset P ′ ⊂ P .⋄

Proof: Since Ω(Γ̂) is closed and of measure zero then P \ Ω(Γ̂) is an open set

where there are n first integrals with linearly independent differentials. As shown in

Proposition 5.2 an arbitrary point p in P \Ω(Γ̂) is Lǫ-bounded, and is thus contained

in an L-bounded set. A larger connected L-bounded subset P ′ ⊂ P can then be

obtained by taking the sequential union of intersecting L-bounded sets as in the

proof of Proposition 5.5, which completes the proof.¤

In practice, various situations may lead to a set Ω(Γ̂) with the characteristics

of Proposition 5.6. Indeed, in the presence of analytic first integrals defined over a

connected set D′, condition 4.3(i) (on page 59) implies that if Γ̂ contains at least one

set of n first integrals Γa ∪ {γb
j} for some σa, σb ∈ Σ with σa 6= σb, then the set Ω(Γ̂)

is guaranteed to be closed and to have an empty interior. In particular, this includes

the case where Γ̂ = Γ and #Σ ≥ 2.

In order to limit the number of vectors used to verify the Lǫ-boundedness property,

we restrict ourselves to vectors that are tangent to Ω(Γ̂) at a point. Notice that a

closed set with an empty interior Ω(Γ̂) may fail to be convex (ref. the “++” shape
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formed by {(x1 ∈ {1
2
π, 3

2
π}, x2)}∪{(x1, x2 = 0)} in Figure 4.3 on page 72) and to have

a well-defined tangent space. For this reason we define HΩ(Γ̂)(p) as the set of vectors

in R
n that are tangent to Ω(Γ̂) at p. More precisely a vector v belongs to HΩ(Γ̂)(p) if

there exist a sequence pi in Ω(Γ̂) converging to p, a sequence βi in (∞, 0)

decreasing to 0, and a sequence vi converging to v such that pi + βivi ∈

Ω(Γ̂) for all i.

Note that the zero vector belongs to HΩ(Γ̂)(p) for all p ∈ Ω(Γ̂) and that HΩ(Γ̂)(p)

is a relaxation of the notion of tangent cone provided in §A.3 (on page 148) and as

developed in (Clarke, 1990).

By exploiting the knowledge about non-transversality among the leaves induced

by Γ̂, a sufficient condition for Lǫ-boundedness can be written in the following manner.

Lemma 5.7 Consider a set of first integrals Γ̂ defined over D′ such that the set Ω(Γ̂)

is closed and has a dense complement in D′. Let p be an arbitrary point in Ω(Γ̂). The

point p is Lǫ-bounded if for each nontrivial vector v ∈ HΩ(Γ̂)(p) there is a first integral

γ ∈ Γ̂ such that dγ(x) · v|x=p 6= 0.⋄

Proof: Let Np be an arbitrary small neighborhood of p. For any point in the open

set Np \ Ω(Γ̂), there exists an L-bounded neighborhood (ref. Proposition 5.5). Let

A denote all L-bounded sets contained in Np \ Ω(Γ̂), and let A represent the union

of the closure of elements in A. Since Ω(Γ̂) has a dense complement, any point in

Np ∩Ω(Γ̂) is arbitrarily close to A and contained in A. Also Np can be chosen so that

A is arbitrarily close to p. If p is an isolated point in Ω(Γ̂), then the interior of A is an

L-bounded set containing p. Assume that p belongs to a connected subset of Ω(Γ̂).

By assumption, there are leaves transversal to Ω(Γ̂) at p. Consequently, for any point

sufficiently close to p in Np ∩ Ω(Γ̂) a leaf is defined. Since any such leaf intersects

with L-bounded sets in A, it is possible to form an L-bounded neighborhood for p.

As Np is of arbitrary size, the point p is Lǫ-bounded, which completes the proof.¤
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In words, Lemma 5.7 requires that HΩ(Γ̂) is everywhere locally transversal to some

leaves induced by the first integrals of Γ̂.

In an attempt to characterize the existence of L-partitions on a subset of D′, we

have used two boundedness properties, a local one and a semi-global one. Sufficient

conditions ensuring the two types of boundedness are given. However the proofs of

sufficiency of Lǫ-boundedness are based on the existence of local leaves, which is a

more general approach than the construction of leaf-partitions as defined in §3.3.2.

Therefore a necessity result is required in order to conclude if leaf-partitions generated

from Γ̂ fail to satisfy the Lǫ-boundedness property. Also the use of Lǫ-boundedness

does not lead to a necessary condition for L-boundedness. Consequently, the local

boundedness property cannot be used to conclude about the existence of L-partitions

for leaf partitions as defined in §3.3.2.

Now we use a series of examples in order to illustrate the effect of the set of first

integrals Γ̂ and the choice of the region to partition on the sufficient conditions leading

to the Lǫ-boundedness property. We begin with the double integrator introduced in

previous chapters.

Example 5.8 For the double integrator we consider the first integral γσ
1 (x) = σx1 −

1
2
x2

2 defined over D′ = D = R
2. Also we assume Σ := {σ1, σ2} with σ1 6= σ2 and

Γ̂ := {γ1
1 , γ

2
1}. Therefore one gets dγσ

1 := [σ − x2] and Ω(Γ̂) := {(x1, x2 = 0)}. In

this case, for any p ∈ Ω(Γ̂) the set HΩ(Γ̂)(p) looks like {02, [λ 0]T} where λ ∈ R \ {0}

and 02 represents the two-dimensional zero vector. Thus the condition of Lemma 5.7

is satisfied everywhere in D′ because for v := [±1, 0]T one has dγσ
1 · v = ±σ 6= 0 for

at least one σ in Σ (since both values cannot be equal to zero).•

The following example illustrates how the selection of Γ̂ may lead to a violation

of the sufficient condition of Lemma 5.7.

Example 5.9 Consider the triple-integrator (ref. Example 3.10, page 42) with the
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first integrals γk
1 (x1, x2, x3) = σ2

kx1 − x2x3σk + x3
3/3 and γk

2 (x1, x2, x3) = −x2σk + 1
2
x2

3

defined on D′ = D = R
3. Also assume that Γ̂ := {γk1

1 , γk2
1 , γk3

1 } with distinct input

values σki ∈ Σ, i ∈ {1, 2, 3}. Then one has

dγk
1 (x1, x2, x3) =

[
σ2

k −x3σk (−x2σk + x2
3)

]
, (5.3)

so that

Ω(Γ̂) := {(x1, x2, x3 = 0)}, (5.4)

where rank(dΓ̂) = 1 for points in {(x1, x2 = 0, x3 = 0)} while rank(dΓ̂) = 2 for points

in {(x1, x2 6= 0, x3 = 0)}. The set Ω(Γ̂) defines an x1 − x2 plane passing through the

origin. For any point p ∈ Ω(Γ̂), one has HΩ(Γ̂)(p) = {03, [λ α 0]T} where λ, α ∈ R.

With the vector v := [0; 1; 0]T one gets dγk
1 (x)·v|x=p = 0 for p ∈ {(x1, x2, x3 = 0)} and

any σk, thus violating the condition of Lemma 5.7. However, if Γ̂ := {γk1
1 , γk2

2 , γk3
1 }

with σk2 6= 0 then

dγk2
2 (x1, x2, x3) = [0 − σk2 x3] and Ω(Γ̂) := {(x1, x2 = 0, x3 = 0)} , (5.5)

so that HΩ(Γ̂)(p) = {03, [λ 0 0]T} with λ ∈ R \ {0} and for any p ∈ Ω(Γ̂). Therefore

with v := [1; 0; 0]T one gets dγk
1 (x) · v|x=p = σ2

k 6= 0 for some σk ∈ Σ (since only one

input can equal zero) and for any p ∈ D′. Thus the set Γ̂ := {γk1
1 , γk2

2 , γk3
1 } defined

above is such that all points in D′ satisfy the conditions of Lemma 5.7.•

In the previous example, the transversality requirement among the leaves is sat-

isfied by introducing the second first integral, i.e., using both first integrals γk
1 and

γk
2 in Γ̂. The next example demonstrates that a restriction on D′ may be required in

order to satisfy the condition of Lemma 5.7.

89



Example 5.10 (Controlled predator-prey model with limited growth) The

Lotka-Volterra model captures the dynamics of predator and prey populations. When

limited growth is considered the model becomes

ẋ1 = (−Ax1 − Bx2 + λ)x1

ẋ2 = (Cx1 − Fx2 − µ)x2,

(5.6)

where x1 and x2 represent the prey and predator populations evolving on D = R
2

and A,B,C, F, λ and µ are real positive constants (Hirsch and Smale, 1974). With

A = F = 0 one obtains the classical Lotka-Volterra model for which infinite growth is

possible. A controlled version of the above model is obtained if one considers λ = α1u

and µ = α2u for some α1, α2 ∈ R and an input value u = σ ∈ R (De Leenheer and

Aeyels, 2000). An interesting and academic example is due to (Goriely, 2001) where

A = 1, B = 5, C = 1, F = −1, α1 = 3 and α2 = 1. Figure 5.3 shows level curves of

the first integral

γσ
1 (x1, x2) = x3

1x
3
2 − 6x2

1x
3
2σ + 6x2

1x
4
2 + 9x1x

3
2σ

2 − 18x1x
4
2σ + 9x1x

5
2, (5.7)

with σ = 1. The Jacobian of (5.7) gives

[
3x3

2(−σ + x1 + x2)(x1 − 3σ + 3x2) 3x1x
2
2(−3σ + x1 + 5x2)(x1 − 3σ + 3x2)

]
.(5.8)

The phase plane of Figure 5.3 is divided by three thick lines which are the zero-level

sets of the expressions J1 = x1, J2 = x2, and J3 = x1−3σ+3x2. The quantities J1, J2

and J3 correspond to local invariants. Indeed, one notices that J̇i = αJi, i ∈ {1, 2, 3},

where α is some polynomial in x1 and x2. Notice that the first integral in (5.7) is

obtained by the product γσ
1 (x1, x2) = J1J

3
2J2

3 . Now consider Σ = {σa, σb} with
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Figure 5.3: Level curves of first integral (5.7) with σ = 1

σa 6= σb, and Γ̂ := {γa
1 , γ

b
1}. Therefore one gets

Ω(Γ̂) := {(x1 = 0, x2)} ∪ {(x1, x2 = 0)} ∪ {(x1, x2) | x1 − 3σa + 3x2 = 0} . . .

∪{(x1, x2) | x1 − 3σb + 3x2 = 0} ∪ {(x1, x2) | x1 − x2 = 0}.
(5.9)

Consequently we have that

for p ∈ {(x1 = 0, x2)} then HΩ(Γ̂)(p) = {02, [0 λ]T},

for p ∈ {(x1, x2 = 0)} then HΩ(Γ̂)(p) = {02, [λ 0]T},

for p ∈ {(x1, x2) | x1 − 3σa + 3x2 = 0} then HΩ(Γ̂)(p) = {02, [−3λ λ]T},

for p ∈ {(x1, x2) | x1 − 3σb + 3x2 = 0} then HΩ(Γ̂)(p) = {02, [−3λ λ]T},

for p ∈ {(x1, x2) | x1 − x2 = 0} then HΩ(Γ̂)(p) = {02, [λ λ]T},

where λ 6= 0. We then analyze the subsets comprising Ω(Γ̂) in order to detect if the

conditions of Lemma 5.7 hold. In particular, those conditions are violated for vectors

of the type v := [±1; 0]T and v := [0;±1]T along {(x1, x2 = 0)} and {(x1 = 0, x2)},

91



respectively. For the sets {(x1, x2) | x1−3σa+3x2 = 0} and {(x1, x2) | x1−3σb+3x2 =

0} the requirements are not satisfied at (x1, x2) = (3σ, 0), and (x1, x2) = (3
4
σ, 3

4
σ)

where σ ∈ Σ. Finally for the subset {(x1, x2 | x1 −x2 = 0)} a pointwise failure occurs

at (x1, x2) = (0, 0), (x1, x2) = (1
2
σ, 1

2
σ) and (x1, x2) = (3

4
σ, 3

4
σ) where σ ∈ Σ.

By Proposition 5.5, Lǫ-boundedness holds at (x1, x2) = (1
2
σ, 1

2
σ) and (x1, x2) =

(3
4
σ, 3

4
σ). Therefore if D′ is restricted to R>0 × R>0 the sufficient conditions for Lǫ-

boundedness are satisfied.•

In reference to a necessary condition for Lǫ-boundedness, we believe that the

sufficient condition of Lemma 5.7 is conservative and that its relaxation may lead to

the expected result. This position is supported by the following facts. First, it can

be observed visually that a leaf-partition built with the first set of first integrals in

Example 5.9 always has an aperture aligned with the x2 axis. In the case of Example

5.10, the sufficient condition of Lemma 5.7 is violated at the locations corresponding

to those local invariants that are independent of the input value. Therefore in both

cases the violation of the condition of Lemma 5.7 indicates obstructions to form a cell

whose interior is L-bounded.

5.3 Summary

In this chapter we have investigated the conditions under which a set of first integrals

may generate a partition made of cells whose boundary points belong to leaves. For

this purpose, we have proposed semi-global and local properties of boundedness by

leaves. Then we have performed a characterization of these properties for nearly

integrable CSSs and have suggested a set of sufficient conditions. Also we have

demonstrated with examples that those conditions depend on the chosen set of first

integrals and on the selection of the region to partition. The next chapter shows how

to construct an FSM abstraction from a leaf-partition of a nearly integrable CSS.
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Chapter 6

Two-dimensional Systems and

Finiteness

In the last two chapters we discussed a transversality characteristic and a boundedness

property for the leaf-partitions of a certain class of Controlled Switched Systems. In

this chapter we exploit those notions in order to construct an FSM abstraction. We

give sufficient conditions for the finiteness of computation of an FSM abstraction

based on a leaf-partition with cells whose interior is L-bounded. Furthermore, we

propose a technique for verifying the consistency property for some d-paths. The

focus is on two-dimensional systems because (a) they represent a special case of the

theory (ref. Remark 3.20, Remark 4.8 and Remark 4.16), and (b) such systems benefit

from a visual support that is lost in higher dimensions.

In the next sections, we present a technique for synthesizing the state and transi-

tion structures of FSM abstractions based on leaf-partitions. First we provide a set

of assumptions in Section 6.1. Then an algorithmic procedure is developed in Section

6.2. In Section 6.3 two case studies are presented. Section 6.4 closes the chapter with

a summary.
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6.1 Assumptions

This section introduces a set of assumptions related to the various elements of a nearly

integrable CSSπ
E with a leaf-partition π. In the sequel, we refer to a nearly integrable

CSSπ
E as a CSSπ

E. As a reminder, a leaf-partition π consists of a partition of a region

E ⊂ D′ ⊂ D, that is performed by using a subset of first integrals Γ̂ ⊆ Γ, an input

value set Σ, and first integral constants or FICs (ref. pages 51 to 54). The first set

of assumptions concerns the set Γ̂, the space D, and the region E.

(H1) The set Γ̂ is such that #Γ̂ ≥ 2.

(H2) The space D has a metric ρ : D × D → R≥0.

(H3) The region E ⊂ D′ is open, convex, and bounded.

The first assumption requires that Γ̂ has enough elements so that intersection

points between leaves exist. Assumption (H2) enables one to measure the distance

between any two points in D whereas hypothesis (H3) asks that E be of finite dimen-

sion and in one piece.

The state structure resulting from a leaf-partition is built in a sequential manner

by constructing objects of dimension zero (points), one (lines), and two (areas). Those

points are determined by the intersection of leaves induced by the first integrals in Γ̂

and the FICs. The following assumptions relate to the nature of such a set of points.

(H4) The set of all intersection points is nonempty, finite, and contained in E.

(H5) There exists an ǫ > 0 such that an ǫ-neighborhood of any intersection

point does not contain any other intersection point.

By the above hypotheses intersection points are finite in number and isolated in

E. From the set of intersection points, one then defines line segments, which for

two-dimensional systems consist of leaf segments, or subsets of leaves. The following

assumptions pertain to the set of leaves and to the angle separating two vectors in D.
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(H6) The space D is equipped with an inner product · : TpD×TpD → R defined

between vectors.

(H7) The set of leaves is finite.

We say that two leaf segments are subsequent if they share a common intersection

point. The following step amounts to assembling subsequent leaf segments so that

they form partition cells with an L-bounded interior. This collection of subsets of E

forms the state structure of an FSM abstraction. Then one needs to determine the

transition structure based on the leaf-partition and the continuous dynamics. The

next hypotheses are relevant for this task.

(H8) The set of partition cells with an L-bounded interior is nonempty.

(H9) The conditions of Corollary 4.10 hold (see page 69).

(H10) The input value set Σ is finite and satisfies condition (4.3) of page 59.

Assumption (H8) requires that the leaf-partition π has some cells whose interior

satisfies the L-boundedness property. Assumption (H9) is a transversality requirement

whereas (H10) ensures an upper bound on the number of elements in Σ.

We briefly discuss the relative importance of some of the above assumptions. A

necessary condition for hypothesis (H1) is that #Σ ≥ 2. This condition is always

satisfied since with #Σ < 2 one cannot talk about control, i.e., there is no choice of

input values. Since we consider systems evolving on subsets of R
2, assumptions (H2)

and (H6) hold. As mentioned previously, assumption (H3) and the finiteness of the

set Σ in (H10) are common in the context of HCSs. As for hypothesis (H5) the value

ǫ can be evaluated in finite time due to (H4) and (H2). Notice that hypothesis (H7)

could also be written in terms of a finite set of FICs. Overall, assumptions (H4) and

(H9) are more restrictive and more difficult to check than the others.
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The next section shows that, in the presence of a CSSπ
E, assumptions (H1) to

(H10) are indeed sufficient conditions for obtaining an FSM abstraction for CSSπ
E in

finite time.

6.2 Algorithmic Procedure

The previous section provided an overview of the technique used to extract an FSM

abstraction of a CSSπ
E. Herein details are given and emphasis is put on the construc-

tion of leaf segments, partition cells, and the transition structure. Therefore the set

of intersection points, obtained by solving sets of nonlinear equations, is assumed to

be given and to satisfy assumption (H4).

6.2.1 One-dimensional objects

Given the intersection points, the leaf segments are first defined. This approach

proceeds in two steps: first, we detect intersection points belonging to each leaf,

then each leaf subset bounded by two consecutive intersection points is defined as

a leaf segment. Since a leaf L is, in general, not completely contained in E, we

call “branches” those sections of L that intersect with the interior of E. Figure 6.1

shows a rectangular region E and three branches of L with some intersection points

represented by black dots.

The first result shows how consecutive intersection points can be determined.

Proposition 6.1

Consider a leaf-partition π and a CSSπ
E satisfying hypotheses (H2) to (H5). Let L be

a leaf and IP 6= ∅ be the set of intersection points belonging to L. Then it is possible

to determine the sequence of consecutive intersection points belonging to any branch

of L in a finite number of steps.⋄

Proof: Let p ∈ IP be an arbitrary intersection point. Thus p belongs to a branch
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Figure 6.1: Example of a leaf L not contained in a region E.

of L, and the containment of all intersection points in E implied by assumption (H4)

leads to p ∈ E.

Since FICs are regular values (see page 49), the Implicit Function Theorem (stated

on page 146) enables one to determine a local characterization of the leaf L. With the

metric of (H2), it is possible to depart from p and move along leaf L in a given direction

(a few techniques are presented in Appendix B, on page 151). Also one can measure

the distance between any two points of L, thus ensuring that each displacement along

L is of magnitude βǫ, with 0 < β < 1 and ǫ as defined in (H5). This guarantees that

any intersection point on the branch of L containing p can be detected.

The above procedure can be repeated until (i) point p is reached (if the leaf loops

back to p in E), or (ii) until it reaches the boundary of E. With the boundedness of

E in (H3) it can be shown that there is a finite number of branches of L in E and

that each branch is of finite length. Consequently one of the two scenarios described

above will occur in a finite time. In case (ii) one can re-initiate the search of points

from p in the opposite direction. Therefore all intersection points of the branch of

L containing p are detected. The sequence of consecutive intersection points follows

from their order of appearance and the search direction. Moreover, the sequence is

finite since IP is a finite set by assumption (H4).

As p is chosen arbitrarily, the above procedure holds for any branch of L containing
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an intersection point, which completes the proof.¤

The finite number of leaves in assumption (H7) together with Proposition 6.1

imply that all sequences of consecutive intersection points are finite and can be deter-

mined in a finite time. Such sequences are then used to define leaf segments as those

subsets of leaves bounded by two consecutive intersection points, which leads to a

finite number of leaf segments. A generic representation of a leaf segment is provided

in Figure 6.2 where the vector field tangent to the leaf at p is denoted by f(p). Each

leaf segment has two normal vectors (see normal a and normal b = −normal a in

Figure 6.2) and thus contributes to the formation of at most two partition cells.

u

u

p

p′

PPPq ©©
AAU

©©A
AK

f(p) normal a

normal b

Figure 6.2: Representation of a leaf segment.

6.2.2 Two-dimensional objects

In order to benefit from the transversality property and determine transitions by

investigating a reduced number of points, one needs to identify partition cells with

an L-bounded interior. These sets are open subsets of E bounded by sequence(s) of

leaf segments

(a) where each sequence of leaf segments loops back to a departing segment and thus

forms a closed curve and,

(b) where the area delimited by the looping sequences does not contain any other

leaf segment.
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Figure 6.3 exhibits two distinct types of partition cells whose interior (the hatched

region) is bounded by leaves. The cell of Figure 6.3(a) has a single closed curve as its

boundary whereas that of Figure 6.3(b) is bounded by two closed curves made of leaf

segments. Since the type of cells in Figure 6.3(a) is more frequent, the development

to follow is restricted to such cells.

(a) (b)

Figure 6.3: Partition cells: (a) made of one closed curve (b) made of two closed curves

Given an initial leaf segment La, we propose a procedure to detect the closest

subsequent leaf segment. Initially the technique requires that one chooses a specific

intersection point p and a normal to La, denoted by normal. Then the choice of

the closest subsequent leaf segment is based on the vector field of all leaf segments

intersecting at p and the angle they make with respect to f(p), the vector field of

La, and normal, both evaluated at p (and for each leaf segment we assume that the

vector evaluated at p points toward the other extremity point). In essence, the above

criterion (b) requires that one selects the leaf segment forming the minimum angle

with respect to f(p) whereas requirement (a) implies that leaf segments have their

normal pointing toward a common interior region. Given a vector f(p) and a normal

N of La at p, we can classify a vector v as belonging to one of the eight sets illustrated
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in Figure 6.4 (where N and f(p) are represented) and defined as

Set 1: vT · f(p) > 0, N · v = 0, Set 5: vT · f(p) < 0, N · v = 0,

Set 2: vT · f(p) > 0, N · v > 0, Set 6: vT · f(p) < 0, N · v < 0,

Set 3: vT · f(p) = 0, N · v > 0, Set 7: vT · f(p) = 0, N · v < 0,

Set 4: vT · f(p) < 0, N · v > 0, Set 8: vT · f(p) > 0, N · v < 0,

and where vT represents the transpose of vector v.

p f(p)

N
j1

j2

j3

j4

j5

j6

j7

j8

Figure 6.4: Sets with distinct inner products

The following four-step procedure, which we refer to as the “L-procedure”, per-

forms a search for a leaf segment whose tangent vector at p is encountered first if one

rotates f(p) around p in the direction of N .

1. For each leaf segment connected to p that differs from La, evaluate the vector

field at p.

2. Compute the angle that each vector makes with respect to both f(p) and N

and determine the region of Figure 6.4 to which the vector belongs.
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3. Search through the set of vectors and identify those belonging to the region

with the lowest number. If this happens for regions 1 to 5 (resp., 6 to 8), then

select the leaf segment whose vector forms the minimum absolute angle with

respect to f(p) (resp., −f(p)) and denote it by L∗.

4. If the region identified in the previous step belongs to {2, 3, 4} (resp., {6, 7, 8})

then the normal to L∗ is selected such that it makes an angle within (−1
2
π, 1

2
π)

with respect to f(p) (resp. −f(p)). Otherwise, the vector must be perturbed

so that it belongs to a region in either {2, 3, 4} or {6, 7, 8}.

For instance, if the above procedure is applied to the leaf segment bounded by points

p and p′ in Figure 6.5(b) with the indicated normal, then the segment p− p′′ with its

normal corresponds to the closest subsequent leaf segment.

If the solution obtained by the first three steps is unique, then the L-procedure can

be used repeatedly until La is reached, or until no other subsequent leaf segment is

found. Prior to showing the uniqueness of solution for the L-procedure, we illustrate

how leaf segments may connect to a point p ∈ E.

Proposition 6.2

Let Γ̂ be a set of first integrals satisfying (H1), and let p ∈ E be an arbitrary point

belonging to a leaf induced by an element of Γ̂. Then

p ∈ Ω(Γ̂) ⇔
(∀(γa, γb) ∈ Γ̂ × Γ̂, γa 6= γb, dγa(x)|x=p 6= 0, dγb(x)|x=p 6= 0)

∃λ ∈ R, dγa(x)|x=p = λdγb(x)|x=p

(6.1)

⋄

Expression (6.1) stipulates that a point p belonging to Ω(Γ̂), the set of points

where there are fewer than n (here n = 2) first integrals in Γ̂ with linearly independent

differential (see page 85), is equivalent to saying that any pair of first integrals in Γ̂

has linearly dependent differentials at p.
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Proof: (⇐) Let Γ̂ be represented by the following collection of first integrals

{γ1, . . . , γ#Γ̂}. After some reordering, one gets γ1,k = {γ1, . . . , γk} ⊆ Γ̂ with 1 ≤ k ≤

#Γ̂, the set of first integrals with a non-trivial differential at p, i.e., dγi|p 6= 0 for all

i ∈ {1, . . . , k}. By assumption each pair of first integrals taken in γ1,k has linearly de-

pendent differentials p. Thus for each j ∈ {1, . . . , k − 1} there exists an αj ∈ R\{0}

such that dγj|p = αjdγj+1|p. Consequently, at p a chain of linearly dependent differ-

entials of first integrals can be created, thus leading to rank([dγ1, . . . , dγk]T |p) = 1.

The remaining first integrals in Γ̂ do not have a leaf defined at p so that rank([dγk+1,

. . . , dγ#Γ̂]T |p) = 0. Therefore rank([dγ1, . . . , dγ#Γ̂]T |p) = rank(dΓ̂|p) = 1, which leads

to p ∈ Ω(Γ̂).

(⇒) By definition, p belongs to a leaf, i.e., dγa|p 6= 0 for some γa ∈ Γ̂. If there

exists no other leaf defined at p and induced by a first integral in Γ̂ then the right-

hand side of (6.1) holds. Now assume that γb ∈ Γ̂ \ {γa} is another first integral

with a leaf defined at p, i.e., dγb|p 6= 0, and denote the pair {γa, γb} by Γ̃. By

assumption, p ∈ Ω(Γ̂), which leads to rank(dΓ̂|p) < 2. As {γa} ⊂ Γ̃ ⊆ Γ̂ one gets

that rank(dΓ̂|p) ≥ rank(dΓ̃|p) ≥ rank(dγa|p) = 1, which leads to rank(dΓ̃|p) = 1.

Consequently dγb|p = λdγa|p for some λ ∈ R, i.e., the leaves induced by γa and γb are

tangent (non-transversal) at p. As γa and γb are arbitrary first integrals, the previous

result holds for any pair of leaves passing through p, which completes the proof.¤

Remark 6.3 The result of Proposition 6.2 is due to the fact that E is a subset of

R
2. In R

n with n > 2 two leaves may be transversal at p even though p ∈ Ω(Γ̂).⋄

If p is an intersection point of leaves induced by first integrals in Γ̂ then Proposition

6.2 stipulates that one of two possible situations holds: either p ∈ Ω(Γ̂) and all pairs

of leaves defined at p are mutually non-transversal (as illustrated in Figure 6.5(a)),

or p 6∈ Ω(Γ̂) and at least one pair of leaves is transversal at p (see Figure 6.5(b)).

In any case some vector fields evaluated at point p may be indistinguishable, which
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could compromise the uniqueness of solution for the L-procedure. A similar difficulty

arises in the last step of the L-procedure whenever a leaf segment has a tangent vector

in region 1 or 5. A solution to this problem consists of using the L-procedure with

approximate tangent vectors. Notice that each of those vectors are required to have a

distinct orientation in order to obtain a unique solution. The next result shows that

it is indeed possible to find approximate vectors with the desired property.

uPPPq
f(p)p

u
p′

u

u

u

u

u

(a) Case with p ∈ Ω(Γ̂)

uPPPq
f(p)p

u
p′

u

up′′

u

u

u

AAK©©

££PPq

(b) Case with p 6∈ Ω(Γ̂)

Figure 6.5: Possible configurations of leaf segments

Proposition 6.4

Consider a leaf-partition π and a CSSπ
E such that hypothesis (H5) holds and let p ∈ E

be an intersection point between leaves induced by a set of first integrals in Γ̂. Then

for each leaf segment defined at p there exists an approximate tangent vector at p

with a unique orientation.⋄

Proof: Let {La, Lb, . . .} represent the set of all leaf segments defined at p, that is,

dLa|p 6= 0, dLb|p 6= 0, . . . where dLa represents the differential of the first integral

generating La. We begin by obtaining approximate vectors for two leaf segments that

are non-transversal at p. Then we study the case of two transversal leaf segments.

An extension to all leaf segments follows.

For the first case we consider La an arbitrary leaf segment. Also let Lb 6= La

be any leaf segment such that dLa|p = αdLb|p for some α ∈ R \ {0}, i.e., dLa and

dLb are dependent at p. Since ∂La/∂xi|p 6= 0 for some i ∈ {1, 2}, it follows that
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∂Lb/∂xi|p 6= 0. From the Implicit Function Theorem, there exists a smooth function

ga : Aa
j → Aa

i which locally characterizes La and where Aa
i ∈ R is a neighborhood of

pi, the ith coordinate of point p. A similar result holds for Lb since La and Lb share a

common dependent variable at p. We then build approximate tangent vectors to La

and Lb by determining two points pa ∈ La and pb ∈ Lb and connecting p to pa and p

to pb. Given a p∗j ∈ Aa
j ∩Ab

j arbitrarily close to pj and such that pa = (p∗j , g
a(p∗j)) ∈ La

and pb = (p∗j , g
b(p∗j)) ∈ Lb, assumption (H5) implies that ga(p∗j) 6= gb(p∗j). Indeed if

ga(p∗j) = gb(p∗j) then (p∗j , g
a(p∗j)) = (p∗j , g

b(p∗j)), which contradicts the existence of

an ǫ-neighborhood around p that contains no other intersection point of La and Lb.

Consequently if pa = (p∗j , g
a(p∗j)) and pb = (p∗j , g

b(p∗j)) then the vector connecting p

to pa has an orientation distinct from the one joining p to pb. If no such p∗j can be

found in an ǫ-neighborhood of p, the same conclusion is reached since La and Lb do

not possess a second point with a common j coordinate. Since Lb is arbitrary, all

leaf segments tangent to La at p have an approximate tangent vector with unique

orientation.

Now consider two leaf segments La and Lb that are transversal at p, that is,

dLa|p 6= αdLb|p for any α ∈ R. Let va and vb be tangent vectors to La and Lb,

respectively. Therefore dLa|p · va = 0 and dLb|p · vb = 0 where va 6= 0 and vb 6= 0.

We show by contradiction that va and vb have distinct orientations. Assume that

va = βvb for some β ∈ R \ {0}. Therefore dLa|p · vb = 0 and vb is orthogonal to

dLa. Since vb is also orthogonal to dLb, then La and Lb must be non-transversal at

p, which leads to a contradiction.

All sets of leaf segments that are mutually tangent at p can be treated as in the

first case. Thus one is left with sets of leaf segments that are mutually transversal.

Since the second case shows that such leaf segments have tangent vectors of distinct

orientation, the proof is complete.¤

The above development is summarized in the following result.
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Proposition 6.5

Consider a leaf-partition π and a CSSπ
E for which hypotheses (H4) to (H7) hold. Let

La be an arbitrary leaf segment given with its extremity point p and its normal. If

there exist subsequent leaf segments then it is possible to identify the closest one and

its normal in a finite number of steps.⋄

Proof: The proof shows that the L-procedure outputs a unique solution in a finite

number of steps. For each leaf segment defined at p, hypothesis (H5) together with

Proposition 6.4 enable the computation of an approximate tangent vector at p. By

assumption (H6), it is possible to compute the angle between any two vectors in E.

Since assumptions (H4) and (H7) imply that the number of leaf segments connecting

to p is finite, the computation of angles required in the L-procedure eventually termi-

nates. The unique solution of the L-procedure is guaranteed by the unique orientation

of each approximate tangent vector computed as in Proposition 6.4. Finally the nor-

mal to L∗, the closest subsequent leaf segment, can be obtained from the approximate

tangent vector of L∗ at p and the last step of the L-procedure, which completes the

proof.¤

As mentioned before, cells with an L-bounded interior can be identified by apply-

ing the L-procedure repeatedly. Since the number of leaf segments is finite and each

leaf segment possesses two normals then (a) the search for such cells can be completed

in a finite number of steps, and (b) the set of cells with an L-bounded interior, whose

label set is denoted by Q, is finite. This is summarized in the following result without

proof.

Corollary 6.6

Consider a leaf-partition π and a CSSπ
E such that hypotheses (H4) to (H7) hold. Then

one can determine the set Q in a finite number of steps.⋄

Note that by assumption (H8) the set Q is nonempty. We recall from Chapter 3

that an element i ∈ Q is referred to as a state to which corresponds a cell qi ⊆ E.
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Remark 6.7 For practical reasons we assume that for each leaf segment belonging

to the boundary of a cell with an L-bounded interior, the normal to the leaf segment

is recorded. By construction, this normal points towards the interior of the cell.⋄

6.2.3 Transition Structure

Given a collection of cells with label set Q the next task amounts to determining the

cell-to-cell transitions induced by input values in Σ. These transitions are based on

continuous trajectories defined by Σ and the way the trajectories intersect with the

bounding leaf segments of each cell when leaving it. Figure 6.6 shows four distinct

cells q1, q2, q3, and q4 defined by the points a − b − f − c, a − c − d, c − e − f and

c− d− e, respectively. Three trajectories initiated from q1 and crossing its boundary

(represented by solid lines) are shown in Figure 6.6. Two of those trajectories cut

through the interior of leaf segments (a − c and c − f) whereas another one goes

through the extremity point c (also denoted an intersection point previously).

a
b

c

d

e

f
q1

q2 q3

q4

Figure 6.6: Transitions through the boundary of an L-bounded cell q1

Given a cell with a label in Q, one compares the direction of the flow (that is, the

vector field) induced by each input value σ ∈ Σ with respect to the bounding leaf

segments. The characterization of trajectories through the interior of leaf segments

(that is, the leaf segment minus its extremity points) is facilitated due to assumption
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(H9). Indeed this hypothesis implies that each leaf segment can be divided into

subleaves where the transversality with the vector fields holds. By the boundedness

of E in hypothesis (H3) and the smoothness of first integrals and vector fields it

can be shown that there only exists a finite number of subleaves. In this case only

one point in the interior of each subleaf needs to be evaluated in order to determine

cell-to-cell transitions for each event in Σ.

Proposition 6.8

Consider a leaf-partition π and a CSSπ
E such that hypotheses (H3), (H6), (H8), (H9),

and (H10) hold. Let La be a leaf segment belonging to the boundary of a cell qi with

i ∈ Q, and let Σ be the set of input values. Then it is possible to determine, in a

finite number of steps, the state-to-state transitions departing from state i, induced

by Σ, and based on continuous trajectories intersecting with the interior points of La

in a transversal manner.⋄

Proof: Since La is a leaf segment it is defined by an input value σa ∈ Σ where

σa only induces trajectories that evolve non-transversally with respect to La. Now

consider an arbitrary input value σ ∈ Σ\{σa}. Because of assumptions (H3) and (H9),

La has a finite number of subleaves with well-determined transversality with respect

to σ. For each subleaf one can determine an interior point by using the Implicit

Function Theorem as performed in Proposition 6.4. By Remark 6.7 and hypothesis

(H6) it is possible to evaluate at those points the direction of the vector field defined

by σ with respect to the normal of La. Whenever the vector points outward from

qi then a search for the cells neighboring qi is initiated. Since the set Q is finite,

the search eventually terminates. If the vector points toward another cell qj with

j ∈ Q, then the discrete transition i
σ→ j is recorded as an “enabled” state-to-state

transition. Otherwise it is recorded as a “disabled” transition. Finally hypothesis

(H10) guarantees that the loop over all elements in Σ \ {σa} proceeds in finite time,

which proves the claim.¤
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Cell-to-cell transitions through intersection points require more analysis than those

through the interior of leaf segments. Indeed, transitions through a unique leaf seg-

ment can, at most, lead to one cell, whereas transitions through intersection points

may lead to many cells. For instance in Figure 6.6 one could draw trajectories de-

parting from cell q1, going through intersection point c, and leading to cell q2, q3 or

q4. Given a fixed input value σ ∈ Σ, the conditions for having a transition from a

“departure” cell qd to an “arrival” cell qa through an intersection point p are three-

fold: (i) a vector field f(x, σ) evaluated at p ∈ ∂d needs to point outward from qd,

(ii) the vector field f(x, σ)|x=p needs to point toward the interior of qa, (iii) there

must exist a point p′ in the interior of qd leading to the point p under input value

σ. Since an intersection point may belong to a set of non-transversal leaf segments a

procedure similar to the one developed in Proposition 6.4 can be applied to compute

approximate vectors.

Remark 6.9 A necessary condition for the existence of cell-to-cell transitions through

intersection points is that #Σ > 2. Indeed an intersection point results from the en-

counter of two leaves induced by distinct input values, say σa and σb. If Σ = {σa, σb}

then any flow initiated from an intersection point will only travel along one of the

two leaves, thus never reaching the interior of a cell.⋄

Since the procedure for transitions through intersection points is simple, we sum-

marize the overall approach in the following result.

Corollary 6.10

Consider a leaf-partition π and a CSSπ
E for which hypotheses (H3), (H4), (H6), (H7),

(H8), (H9), and (H10) hold. Let Q be the label set of cells in π and let Σ be the input

value set. Then it is possible to determine, in a finite number of steps, the state-to-

state transitions induced by Σ and based on continuous trajectories intersecting with

the boundary points of cells in π in a transversal manner.⋄
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Proof: Due to assumptions (H3), (H6), (H8), (H9), and (H10) Proposition 6.8

holds for any leaf segment bounding a cell with a label in Q. The finite number of

leaf segments implied by (H4) and (H7) ensures that all cell-to-cell transitions based

on trajectories intersecting transversally with the interior of leaf segments can be

deduced in finite time. Moreover the finite number of intersection points required in

(H4) enables the computation of transitions through intersection points in a finite

number of steps, which completes the proof.¤

Corollary 6.10 implies that enabled and disabled state-to-state transitions (in-

duced by cell-to-cell transitions through leaf segments and intersection points) can

be obtained by analyzing trajectories at the boundary of partition cells with an L-

bounded interior. This leads to the main result.

Theorem 6.11

Consider a leaf-partition π and a CSSπ
E for which assumptions (H1) to (H10) hold.

Then an FSM abstraction A := (Q, Σ, δ) as in Definition 3.3 can be obtained in a

finite number of steps.⋄

Proof: The proof relies on previous results. Proposition 6.1 provides the leaf seg-

ments associated with the leaf-partition π. Proposition 6.5 allows the detection of the

closest subsequent leaf segment, which, in turn, enables the construction of partition

cells with an L-bounded interior in finite time (ref. Corollary 6.6). This provides the

state set Q with the leaf segments bounding each cell qi with i ∈ Q. Corollary 6.10

then stipulates that all state-to-state transitions based on the transversal crossing

of leaf segments can be determined in a finite number of steps. This results in a

transition map δ : Σ × Q → 2Q capturing transitions from one state i ∈ Q to states

in Q \ {i} under any input value in Σ.

If #Q = 1 then there is no transition from one state to another, and consequently

the triple (Q, Σ, δ) is an FSM abstraction for the CSSπ
E as stated in Definition 3.3

(page 29). A similar result holds with #Q > 1 and a map δ without state-to-state
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transitions. Now consider the case where #Q > 1 and δ possesses state-to-state

transitions. As per Corollary 6.10 a state-to-state transition i
σk→ j with i, j ∈ Q,

i 6= j, and σk ∈ Σ occurs if there is a point p on the leaf segment(s) separating

qi from qj such that the vector field f(x, σk)|x=p points away from qi and toward

qj. If p is an intersection point between leaves then there exists another point in

qi leading to p under σk and such that f(x, σk)|x=p points toward the interior of qj.

Such a trajectory qualifies for condition (3.10)(ii) of Definition 3.3. Now assume that

p is not an intersection point between leaves. Thus f(x, σk)|x=p is transversal to a

leaf segment contained in the common boundary between qi and qj, i.e., in ∂i ∩ ∂j,

which has an empty interior. Since locally f(x, σk)|x=p approximates the trajectory

defined by σk at p, it follows that φk(0
+, p) ∈ qj and φk(0

−, p) ∈ qi. Once again

this satisfies the condition (3.10)(ii) of Definition 3.3. Therefore all state-to-state

transitions recorded in the transition map δ are such that the triple A := (Q, Σ, δ)

qualifies as an FSM abstraction for the CSSπ
E, which proves the claim.¤

In reference to the problem definition provided in §3.2.4 (page 38), Theorem 6.11

addresses the finiteness of computation of an FSM abstraction of a CSSπ
E.

As mentioned in §3.2.4 the completeness property as stated in Definition 3.6 may

not hold for those trajectories evolving within partition cells. However a weaker no-

tion of completeness that only involves trajectories intersecting with the partition

boundary could be satisfied. For instance, the above construction (especially Corol-

lary 6.10) detects all trajectories transiting through cell boundaries.

Verification of the consistency property

In order to handle the second part of the problem defined in §3.2.4, we must con-

sider the dynamical singularities of the CSSπ
E that are contained in E. Because of

assumption (H10) there is a finite number of sets of equilibrium points. Moreover

the first integrals defining the leaf segments can be used to detect (i) isolated equi-
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librium points that are contained in the interior of a cell, or (ii) equilibrium points

intersecting with a leaf. With the finite number of leaves, cells, and input values, and

if only one equilibrium point is used to define a self-looping transition at a state, then

the investigation terminates in finite time. Moreover if we add those transitions to

the transition map δ obtained by the procedure of Theorem 6.11, the triple (Q, Σ, δ)

remains an FSM abstraction for the CSSπ
E. For the detection of cyclic continuous

trajectories contained in E, one can always check if the first integrals are proper

functions, i.e., functions having compact sets as their preimages. Otherwise visual

inspection is always possible for two-dimensional systems. Therefore we assume that

all continuous singularities contained in the cells of the leaf-partition π over E are

detected and that the transition map δ is extended by the addition of self-looping

transitions.

We recall from §3.2.4 that a nonsingular d-path generated by an FSM abstraction

is a general d-path that does not contain any singular pair of state and event (i, σ).

Moreover the notion of consistency presented in Definition 3.5 (page 36) requires the

existence of a continuous trajectory that coexists with the general d-path of interest.

In the remainder of this section, we propose a technique to verify the consistency

property of nonsingular d-paths based on the technique presented in §4.2.2 (see page

76).

To illustrate the approach, consider a partition cell qi with i ∈ Q, and an input

value σ ∈ Σ. Also assume that under σ there is a cell-to-cell transition exiting through

a leaf segment La of ∂i. We define a back-propagating flow of a point p ∈ La under

σ as the flow obtained by reversing the trajectory leading to p under input value

σ. In essence we back-propagate the leaf segment La with respect to σ onto the

other leaf segments bounding qi. Figure 6.7 shows a cell qi with a leaf segment La

represented by a thicker line. Moreover we assume that under σ there is a trajectory

exiting qi through La. The back-propagation of La is illustrated at some locations by
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streamlines (dashed lines with an arrowhead). The final step amounts to determining

those subsets of leaf segments of ∂i from which a forward flow induced by σ leads to

La. In reference to Figure 6.7 those subsets correspond to the hatched regions of leaf

segments L1, L3, L4, and L5.

X


p
La

L1

L2

qi

L3

L4

L5

L6

ca

cb

cc

cd
ce

Figure 6.7: The back-propagation of a leaf segment La on other leaf segments of a cell qi

Even though we referred to the back-propagation of a leaf segment the procedure

to follow enforces the above steps in a different manner. Indeed the approach makes

explicit use of first integral constants (FICs) related to the input value σ, called here σ-

FICs. Notice that it is always possible to evaluate first integral constants everywhere

in E. Without loss of generality, we assume that the interior of leaf La is transversal to

the flow induced by the input value σ. Indeed due to assumption (H9) the leaf segment

La can always be divided into subleaves whose interior is transversal to the trajectories

generated by σ. Consequently an evaluation of σ-FICs at the extremity points of La

provides the largest interval of σ-FIC values spanned by La, which we denote by

[cσ
min, c

σ
max]. Similarly one can get the σ-FIC values of the other leaf segments that

belong to ∂i and record those contained in the interval [cσ
min, c

σ
max] in order to form
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S, an increasing sequence of σ-FIC values. In reference to the leaf segment La of

Figure 6.7, one gets the sequence S := [cσ
min = ca, cb, cc, cd, c

σ
max = ce], where ca and

ce correspond to extremity points for La, cb and cd relate to non-transversality points

between the flow induced by σ and leaves L1 and L5, respectively, while cc takes into

account the intersection point between leaves L3 and L4. Also an ordered sequence

of leaves LS whose σ-FIC interval contains values in S can be generated. This results

in LS := [{L1, L3}, {L1, L3}, {L3, L4}, {L4, L5}, {L4, L5}] for the case illustrated in

Figure 6.7. For instance both L4 and L5 have a σ-FIC interval that contains cd and

ce.

For each interval bounded by two consecutive values in S, say s := [S(k), S(k+1)],

one must then identify which leaf segment in the kth and the k + 1th entries of LS

is encountered first by the back-propagation of La. This can be achieved by back-

propagating a point of La whose σ-FIC value belongs to s (say the point p marked by

an “X” in Figure 6.7 and belonging to the subinterval s = [ca, cb]) until an element of

LS(k) or LS(k+1) is encountered (here L1 is encountered before L3). If L′ corresponds

to the closest leaf segment encountered then one identifies the subset of L′ with the

subinterval s. The above procedure can be repeated for any subinterval of S so that all

subleaves of ∂i leading to La under the input value σ are identified. Since the number

of leaf segments contained in each cell is finite the above procedure terminates in

finite time. The following result summarizes the approach.

Proposition 6.12

Consider a leaf-partition π and a CSSπ
E such that hypotheses (H1) to (H10) hold. Let

qi, i ∈ Q, be an arbitrary cell and let Σ be the set of input values. Then for each

cell-to-cell transition induced by σ ∈ Σ and starting at qi, where qi does not contain

any dynamical singularity generated by σ, it is possible to extract the corresponding

boundary-to-boundary transitions in a finite number of steps.⋄

Proof: Assumptions (H1) to (H10) enable the identification of cell-to-cell transi-
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tions leading outside of qi under any input value. Because of the finite number of

subleaves bounding qi, the above procedure identifies boundary-to-boundary transi-

tions under a given input value in finite time. As the number of input values is finite

(ref. hypothesis (H10)), the overall procedure terminates in a finite number of steps.¤

In the presence of an FSM abstraction as built previously, Proposition 6.12 ensures

that for every simple d-path i − σ − j not containing a singular pair, it is possible

to determine the subleaves of cell qi through which a trajectory induced by σ must

enter and exit in order to reach the cell qj. Nonsingular d-paths are made of at

least two such simple d-paths. Therefore in the presence of a nonsingular d-path

one can construct a sequence of boundary-to-boundary transitions. Also with such a

sequence it is possible to verify if the consistency property is satisfied by comparing

the subleaves involved with two consecutive boundary-to-boundary transitions. In

the following section we use an example to illustrate how the technique applies.

6.3 Examples of FSM Abstractions

In this section, leaf-partitions and FSM abstractions are obtained for the Lotka-

Volterra system and the double integrator. The first system contains equilibrium

points and is used to introduce the approach without the extra burden of back-

propagation. The double integrator without equilibrium points is then used to illus-

trate the benefits of back-propagation. The following results are generated automati-

cally by a program developed in c©Maple (see http://www.mapleapps.com). In §B.2

one can find the output of the program for the double integrator.

Example 6.13 (Lotka-Volterra) We begin by recalling from Example 5.10 (on

page 90) the first integral of the Lotka-Volterra system

γσ
1 (x1, x2) = x3

1x
3
2 − 6x2

1x
3
2σ + 6x2

1x
4
2 + 9x1x

3
2σ

2 − 18x1x
4
2σ + 9x1x

5
2, (6.2)
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defined on D′ := R
2 and its differential

[
3x3

2(−σ + x1 + x2)(x1 − 3σ + 3x2) 3x1x
2
2(−3σ + x1 + 5x2)(x1 − 3σ + 3x2)

]
.(6.3)

For this system we consider the input value set Σ := {σ1 = 1, σ2 = 2}, the set

Γ̂ = {γ1
1 , γ

2
1}, and the FICs C2

1 := (0.035, 0.5) and C2
2 := (0.5, 1.5). Therefore the

system satisfies assumptions (H1) and (H7) automatically.

As per Example 5.10 we restrict E to belong to R>0×R>0. For this reason we select

E := (0 < x1 < 4) × (0 < x2 < 2), which by construction fulfills hypothesis (H3).

One can verify that condition (4.3) of hypothesis (H10) is satisfied. From the leaf-

partition associated with the above Γ̂, Σ, and FICs one notices that the containment

of all intersection points in E required in (H4) is respected (see Figure 6.8). By

equation (6.3) the Lotka-Volterra system is a nearly integrable CSS on E. The non-

transversality is characterized by ψ(x1, x2) = −6x1x
3
2(x2−x1)(x1+3x2−3α)(−σ1+σ2)

and dγα
1 (x1, x2)∧dψ(x1, x2) = 18x1x

5
2(x1 +3x2−3α)(−x2α+8x1x2−3x1α)(−σ1 +σ2)

with α ∈ {σ1, σ2}. Therefore assumption (H9) is satisfied since G1
1,2 := {(x1, x2) =

(1, 1)} and G2
1,1 := {(x1, x2) = (1

2
, 1

2
)} of equation (4.8) do not intersect any leaf of

the partition.

In Figure 6.8 the integers are meant to number the leaf segments whereas the

circled integers stand for cell numbers. For clarity, some ells are not represented on

the diagram. Those are given in (6.4) in the following format cell# = [leaf segment#,

leaf segment#, ...] where numbers in the brackets correspond to the number of leaf

segments bounding the cell

10 = [10, 14, 5, 19], 11 = [2, 21], 1 = [4, 16], 5 = [5, 15, 3, 20]. (6.4)

For instance, the cell number 1 is bounded by the leaf segments number 4 and 16

(lower left corner of Figure 6.8). Overall there are eleven cells with an L-bounded inte-
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Figure 6.8: Leaf-partition for the Lotka-Volterra system

rior so that the state structure of the resulting FSM abstraction is Q := {1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11}. Moreover one notices that the Lotka-Volterra system possesses a dis-

tinct equilibrium point for each input value. For input value σ1 = 1 (resp., σ2 = 2)

the equilibrium point is (x1, x2) = (1
2
, 1

2
) (resp., (x1, x2) = (1, 1)) and is located in the

cell number 2 (resp., 9).

The FSM abstraction for the Lotka-Volterra system is provided in Figure 6.9.

Therein transition labels are given as pairs, (iσ, iL), where the argument iσ is the index

of the active input value whereas the second argument iL captures the number of the

leaf segment that is crossed under the flow induced by the input value with index

iσ. Transitions whose line terminates with a square captures disabled transitions,

namely (2, 4), (1, 13), (1, 14) and (1, 15), are forbidden because they lead outside of

the L-bounded region formed by the union of all cells with an L-bounded interior.

The self-looping transitions due to equilibrium points are represented by dotted lines

at cell 2 and 9. Notice that nondeterministic transitions arise at states 2, 4, 6, 7, and

9 because there is more than one transition induced by the same input value. For

116



instance, one finds transitions (1,16) and (1,21) leaving state 2.•

1

2

11

6

4

9

7

3
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8

(2,4)
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(2,2)

(2,6)
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(1,18)

(2,1)
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(1,17)

(2,8)(2,3)

(2,5)

(2,10)

(1,11)

(1,19)

(1,15)

(1,14)
(1,13)

Figure 6.9: FSM abstraction for the Lotka-Volterra system

The following example illustrates the removal of nondeterministic transitions.

Example 6.14 As mentioned previously the double-integrator has a first integral

γσ
1 := −σx1 + 1

2
x2

2 defined on D′ := R
2. We assume we have the following set of input

values Σ := {σ1 = 1, σ2 = −1, σ3 = 2}, of first integrals Γ̂ := {γ1
1 , γ

2
1 , γ

3
1}, and of first

integral constants C3
1 := (−2, 1, 3), C3

2 := (−4, 0, 5), and C3
σ3

:= (−8,−4, 8). We also

consider a subset of R
2 that is defined as E := (−5 < x1 < 11) × (−6 < x2 < 6).

Consequently, assumptions (H1), (H3), and (H7) are satisfied. As shown in Example

3.27 the double-integrator as defined above qualifies as a nearly integrable CSS and

an ICSS over D′′ = D′. Moreover, Example 4.13 demonstrates that hypotheses (H9)

and (H10) hold. Notice that no dynamical singularity is induced by Σ over the region

E.

Figure 6.10 illustrates the leaf-partition that is generated from Γ, Σ and the above
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set of FICs. One notices that assumption (H4) is satisfied. For clarity, Figure 6.10

only shows some leaf segment numbers (there are 39 of them in total) whereas all

partition cells possess a circled number. Consequently the state structure of the FSM

abstraction is Q = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}.
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30
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l2
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l8 l17

l5

XXXXXz

σ2 = −1

»»»»»:

σ1 = 1

»»»»»:

σ3 = 2

Figure 6.10: A leaf-partition for the double-integrator

Overall, sixty state-to-state transitions are enabled, and 24 are disabled. Since

the FSM abstraction cannot be illustrated in its entirety, Figure 6.11 provides a

schematic of the transition structure where each line with an arrowhead represents

(possibly many) enabled transitions and any line terminated with a square captures

(possibly many) disabled transitions. The full details of the transition structure can

be found in §B.2 on page 153.
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Figure 6.11: An FSM abstraction for the double-integrator

In order to explain how the boundary-to-boundary transitions can serve to verify

the consistency property, we focus on enabled transitions exiting partition cell number

13, i.e.,

(13, 1, 15, 14), (13, 1, 24, 6), (13, 2, 5, 7), (13, 2, 9, 12),

(13, 3, 9, 12), (13, 3, 15, 14), (13, 3, 24, 6), (13, 3, 3, 3),

with the format (departure cell #, input value index, exiting leaf segment #, arrival

cell #). From the previous set of transitions one notices that under the input value

σ1 partition cells number 14 and 6 can be reached. A similar phenomenon occurs

with σ2 and cells (7, 12), and input σ3 and the cells (3, 6, 12, 14). Therefore once in

cell 13 any input value leads to more than one possible partition cell.

A preliminary step toward the construction of boundary-to-boundary transitions

under input value σ consists of dividing the leaf segments of cell 13 into subleaves

that are transversal to the flow defined by σ. This is illustrated in Figure 6.12 where

leaf segments 15 and 9 are partitioned into subleaves 15000, 15001, 9000, and 9001.

119



With respect to those subleaves the above set of cell-to-cell transitions is extended to

a set of boundary-to-boundary transitions

(13, 1,18, 15, 14), (13, 1,15001, 24, 6), (13, 1,18, 24, 6), (13, 2,3, 5, 7),

(13, 2,9001, 5, 7) (13, 2,3, 9, 12), (13, 3,18, 9, 12), (13, 3,5, 15, 14),

(13, 3,18, 15, 14), (13, 3,15001, 24, 6), (13, 3,9000, 24, 6), (13, 3,15001, 3, 3),

where numbers in bold represent the leaf segment leading to the exiting transition.

For example the transition (13, 1, 24, 6) is extended in two boundary-to-boundary

transitions (13, 1, 15001, 24, 6) and (13, 1, 18, 24, 6). Therefore if a trajectory enters

cell 13 through leaf segment 15001 (or leaf segment 18) and that the input value σ1

is selected, then the leaf segment number 24 is reached, thus leading to partition cell

number 6. One can observe that these subdivisions do not remove nondeterminsitic

transitions as seen by transitions (13, 3, 15001, 24, 6) and (13, 3, 15001, 3, 3), i.e., if

subleaf 15001 is hit and the input value is σ3 then leaf segments 3 or 24 can be

reached, thus leading to cell 3 or 6.

15000

15001 9000

9001

3
24

5
18

Figure 6.12: Partition cell number 13

One can remove nondeterministic transitions by referring to the σ3-FIC inter-

vals. Indeed the σ3-FIC interval for the whole subleaf 15001 is [−1.5, 0], whereas the
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transitions (13, 3, 15001, 24, 6) and (13, 3, 15001, 3, 3) occur on the σ3-FIC subinter-

vals [−0.25, 0] and [−1.5,−0.25], respectively. Therefore whenever the subleaf 15001

is encountered under a flow induced by σ3 the σ3-FIC value is used to determine

to which subintervals, [−0.25, 0] or [−1.5,−0.25], it belongs. This, in turn, provides

the leaf segment that will be reached while exiting cell 13 under input value σ3. If

the σ3-FIC value equals −0.25 then the intersection point of leaf segments 3 and 24

is reached. For this example, the overall set of boundary-to-boundary transitions is

formed from a total of 93 transitions.

We now consider nonsingular d-paths. From §B.2 one finds the transitions (7, 3,

5, 13), (7, 3, 14, 9), (13, 3, 3, 3) and (13, 3, 24, 6). Therefore, the following general d-

path 7 − σ3 − 13 − σ3 − 3 qualifies as a nonsingular d-path that can be generated

by the FSM abstraction. Figure 6.13 captures the portion of the FSM abstraction,

which contains the above nonsingular d-path. The boundary-to-boundary transitions

of interest for cell 13 under input value σ3 are (13, 3, 5, 15, 14) and (13, 3, 15001, 3, 3),

and those for the cell 7 under σ3 are (7, 3, 17, 5, 13) and (7, 3, 17, 14, 9). Consequently

the only boundary-to-boundary transition leading to cell 13 while departing from cell

7 is 17
σ3→ 5. However the boundary-to-boundary transition departing from cell 13

and reaching cell 3 under σ3 is 15001
σ3→ 3. Therefore the leaf segment number 5 in

cell 7 does not lead, under the input value σ3, to a leaf segment shared by cell 3.

Moreover, the transition (13, 3, 5, 15, 14) indicates that any point departing from leaf

segment 5 only reaches leaf segment 15 before attaining cell 14. Indeed the σ3-FIC

interval of leaf segment 5 is [−1.5,−0.25] whereas that of leaf segment 15 is [−1.5, 0],

meaning that a back-propagation of leaf segment 15 under σ3 completely covers leaf

segment 5. Therefore no trajectory entering cell 13 through the leaf segment 5 can

reach the cell 3, proving that the d-path 7− σ3 − 13− σ3 − 3 violates the consistency

property.•
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Figure 6.13: A nonsingular d-path

6.4 Summary

In this chapter, we have provided both a set of sufficient conditions (Section 6.1) and

an algorithmic procedure (Section 6.2) to construct an FSM abstraction for a two-

dimensional CSSπ
E where π is a leaf-partition. Moreover we have demonstrated that

the computation of such an FSM abstraction terminates in finite time. In Section 6.3

we have applied the technique to two examples, each of which shows that, like other

partition techniques, one generally obtains an FSM abstraction with nondeterministic

transitions. Also we have proposed techniques for removing nondeterministic transi-

tions and for verifying the consistency property of nonsingular d-paths generated by

the FSM abstraction. The second example has shown that the transition structure

of an FSM abstraction generated by the proposed procedure can violate the consis-

tency property. We have also suggested a weaker notion of completeness that can be

achieved by the present approach.

On one hand, the proposed algorithmic procedure is limited to cells whose interior

is L-bounded. Since the nature and the number of such cells depend on the leaf-

partition π over E, it generally happens that the collection of cells with an L-bounded

interior forms a strict subset of E (see Example 6.13 and Example 6.14). On the other

hand, the sequential use of the L-procedure provides a sufficient condition for the
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existence of cells with an L-bounded interior. Therefore one could use the algorithm

to insert additional leaves and see if a satisfactory subset of E is covered by cells with

an L-bounded interior. Moreover, the technique for checking the consistency property

suggests that if additional boundary information is embedded in the transition map

of an FSM abstraction one can possibly satisfy the consistency property.

In the following chapter, we extend the material of the previous chapters to another

class of nonlinear systems.
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Chapter 7

Extension to Lyapunov Functions

In practice, many industrial processes do not have any first integrals. In this situation

one could always seek approximate first integrals with a common local domain (Blouin

et al., 2003). One can also look at another concept of local submersions that is of

great use in modern control theory of continuous systems, that of Lyapunov functions.

In the next section we compare the characteristics of Lyapunov functions with that

of first integrals and we discuss an extension of the previous material to Lyapunov

functions. We conclude this chapter by applying the approach to two case studies in

chemical engineering.

7.1 Lyapunov Functions

In this section, we extend the material of the previous chapters by using Lyapunov

functions for generating FSM abstractions for the class of Controlled Switched Sys-

tems. Namely, we present a method for constructing the state set and the transi-

tion structure of an abstraction from Lyapunov functions. While introducing the

technique, we discuss the resemblances and distinctions between first integrals and

Lyapunov functions.

We denote by Λ a system modeled by a set of ODEs defined over a region D and
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with an equilibrium point xeq. A Lyapunov function for Λ is defined as follows.

Definition 7.1 (Lyapunov Function (Khalil, 1992)) A continuously differentia-

ble mapping V : D → R is a Lyapunov function for Λ if it satisfies the following

conditions (i) V (x)|x=p > 0 for all p ∈ D \ {xeq}, (ii) V (x)|x=xeq
= 0, and (ii)

dV (x(t))/dt|x=p ≤ 0 for all p ∈ D.⋄

In general, there exists no useful technique for constructing Lyapunov functions

for a continuous system with nonlinear dynamics. For systems such as those modeled

in (3.1) with a vector field f(x, u), the time derivative of a Lyapunov function becomes

dV (x)/dt = dV/dx · dx/dt = dV/dx · f(x, u).

Given a Controlled Switched System (ref. Definition 3.2 on page 26) one must find,

for each fixed input value u ∈ Σ, a corresponding Lyapunov function Vu (for u = σk

we use the compact representation Vk). Thus a Lyapunov function Vu is a local

submersion except at those locations where dVu(x)/dx vanishes. Furthermore, Vu is

a local submersion on D \ {xu
eq} if dVu(x)/dt|x=p < 0 for all p ∈ D \ {xu

eq}, where xu
eq

denotes the equilibrium point associated with the input value u ∈ Σ. In this case,

any element of R>0 is a regular value of the function Vu.

We now provide a method for obtaining the state set of an FSM abstraction by

partitioning a region of the state space with the level sets of Lyapunov functions.

As seen above, Lyapunov functions are similar to first integrals in the sense that

their preimage may form a submanifold of D (ref. §A.2.4 on page 147). Since the

partitioning technique presented in §3.3.2 (see page 47) also relies on submersion

properties, it can be extended to Lyapunov functions. Indeed, by considering Vk

instead of γk
j in Definition 3.21, equation (3.22), and equation (3.23), then Proposition

3.22 and Corollary 3.26 apply. A difference when using Lyapunov functions is that

for each input value there is only one submersion, compared to n − 1 in the case of
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first integrals.

The main distinctions between first integrals and Lyapunov functions lie in the

transversality features of the partitions generated by their level sets. From a continu-

ous trajectory point of view, Lyapunov functions (resp., Lyapunov level sets) can be

seen as the dual of first integrals (resp., leaves). Indeed recall from Chapter 4 that the

trajectories induced by an input value σa ∈ Σ are non-transversal to the leaves of first

integrals defined by σa (ref. equation (3.12) on page 39). In contrast, the trajectories

resulting from the input value σa are transversal to the level sets of the corresponding

Lyapunov function wherever dVa(x)/dt is distinct from zero. If dVa(x)/dt|x=p < 0

for all p ∈ D \ {xa
eq}, then the equilibrium point xa

eq is the only location where the

transversality property collapses. Moreover, unlike first integrals, the transversality

(resp., non-transversality) of Lyapunov level sets does not imply the transversality

(resp., non-transversality) of trajectories. This is because continuous trajectories are

constrained to evolve on leaves, whereas they are not in the case of Lyapunov level

sets. Consequently the non-transversality locations between Lyapunov level sets do

not necessarily coincide with a change in the behaviour of continuous trajectories.

We now illustrate how one derives the transition structure of an abstraction based

on Lyapunov functions. Similar to first integrals, the non-transversality between the

surfaces defined by a Lyapunov function Va(x) and a vector field f(x, σb) corresponds

to the locations where the function

β(x) := dVa(x) · f(x, σb) (7.1)

equals zero. Equation (7.1) is the analog of (4.2) (page 57) in the presence of a

Lyapunov function Va instead of the first integral γa
j . In that sense, a development

similar to that of §4.1 with β(x) instead of ψ(x) can be undertaken. Indeed if one

considers V −1
a (c) instead of the leaf Lc

j,a, where c is a regular value, then Lemma
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4.7 and Corollary 4.10 can be utilized to check for a well-conditioned transversality

property. In the special case of two-dimensional systems such as those presented

in the next section, one can detect the non-transversality between a Lyapunov level

set induced by the input value σa and trajectories enforced by input value σb by

monitoring the sign of β(x) while searching for intersection points along Lyapunov

level sets.

Throughout the thesis we have singled out results pertaining to analytic vector

fields. If in addition such a vector field has an Hurwitz Jacobian at an equilibrium

point, the technique in (Kazantzis et al., 2002) enables the construction of local

candidate Lyapunov functions. The approach amounts to constructing a Taylor series

for a Lyapunov function Vu(x) based on the expansion of the series for f(x, u) and

a positive real analytic function Q(x) around an equilibrium point xu
eq such that

dVu(x)·f(x, u) = −Q(x) < 0 holds. The coefficients for the Taylor series for Vu(x) are

then obtained in a recursive manner by progressively increasing the series truncation

order. Consequently the local nature of the candidate Lyapunov function dictates the

characteristics of the region that can be partitioned.

7.2 Case Studies

In this section we briefly illustrate the approach with Lyapunov functions for the class

of CSSs by using two industrial applications. Both examples possess analytic vector

fields.

Example 7.2 (Nonisothermal Continuous Stirred Tank Reactor) The first

example to consider is a nonisothermal continuous stirred tank reactor (CSTR) shown

in Figure 7.1, in which a first order and irreversible chemical reaction A → B takes

place (Ogunnaike and Ray, 1994).

A reactant A is fed into the tank at a given flowrate Fin, concentration cin, and
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Fin, cin

Tin

Fout, c

T

A → B

T, c

u

Figure 7.1: A nonisothermal continuous stirred tank reactor

temperature Tin. The conversion of reactant A into product B is governed by a

reaction constant k0 and it depends on the temperature and the concentration of

the mixture in the tank. Under a well-mixed assumption, the liquid in the tank is

homogeneous in T , the temperature, and c the concentration of A. Heat can be

transferred (either added or removed) to the mixture via the coil. In the presence

of a constant hold-up, i.e., Fin = Fout, and by assuming constant density and heat

capacity (Joule/(oC kg)) of the reacting material, the reactor dynamics are described

by the following set of ODEs

dc

dt
= −Dc − k0e

(−E/RT )c + Dcin,

dT

dt
= −DT + βk0e

(−E/RT )c + DTin − u.

(7.2)

The input variable u corresponds to the heat transferred to the mixture. For the sim-

ulation the following parameters are used: k0 = 1.287 × 1012 h−1, E/R = 9758.3 oC,

β = 1.4936 oC L/mole, D = 14.19 h−1, cin = 0.5 mole/L and Tin = 100 oC. We

assume the input variable can take two distinct values, i.e., Σ := {−50, 50}, for which

the equilibrium points are (c0, T0)u=−50 = (0.5, 103.52) and (c0, T0)u=50 = (0.5, 96.48).

By using the technique presented in (Kazantzis et al., 2002) with a truncation order
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of two, one obtains the following local candidate Lyapunov functions

V (c, T )u=−50 = 0.0514T 2 − 10.6454T + 20.5661 c (c − 1) + 556.1652, (7.3)

V (c, T )u=50 = 0.0361T 2 − 6.9745T + 14.4585 c (c − 1) + 340.0527. (7.4)

Both (7.3) and (7.4) are Lyapunov functions for the nonisothermal reactor over the

region E := {(c, T ) ∈ (0, 1)× (60, 130)}. Notice that dV (c, T )u=−50 and dV (c, T )u=50

are linearly dependent along the line {(c = 0.5, T )} only.

Then level sets for the Lyapunov function (7.3) are obtained for the constants

0.1, 0.5, 1.2, and 2, whereas we associate the constants 0.1, 0.4, 0.9, and 1.5 to the

Lyapunov function (7.4). The resulting partition is provided in Figure 7.2, where

one-dimensional objects are numbered by integers and two-dimensional objects by

circled integers.
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Figure 7.2: A partition for the nonisothermal reactor
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The algorithmic procedure presented in §6.2 (see page 96) was modified to accom-

modate the treatment of Lyapunov functions. In the present context the displacement

along level sets can only be performed by using Method (II) given in appendix §B.1

(on page 151). Consequently a schematic representation of the FSM abstraction in-

duced by the partition of Figure 7.2 and the ODEs (7.2) is shown in Figure 7.3.

Note that lines with arrowheads may represent many transitions. The detailed tran-

sition map, which contains 90 transitions, can be found in appendix §B.3 (page 159).

In Figure 7.3 one notices the self-loops at state 18 and 19 that are induced by the

equilibrium points under distinct input values.•

12
 13


17
 19


22


1
4


3


21
5


20


18
 8


7
 16


10


6


9


14


2


15


Figure 7.3: An FSM abstraction for the partition of Figure 7.2

Example 7.3 (Mixing Tank) The second example consists of a mixing tank first

introduced in (Stursberg et al., 2000) and illustrated in Figure 7.4. This process has

been utilized to synthesize timed FSM abstractions by using two static partitioning
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techniques. The system has two controlled inlet streams F1 and F2 (m3/s) with

distinct concentrations c1, c2 (mole/L) of a dissolved substance, and a free outlet

stream F of concentration c. It is assumed that the tank is well-mixed so that c is

uniform throughout the volume of the tank, and that the densities are constant and

similar, i.e., ρ1 ≈ ρ2 ≈ ρ. The state variables of the system are the height of liquid h

(m), and the concentration c.

A mass balance performed on the tank provides the following set of differential

equations.

dh

dt
=

F1 + F2 − k2

√
h

k1

dc

dt
=

F1(c1 − c) + F2(c2 − c)

k1h

ρ1 c1

F1

ρ2 c2

F2

F, c

ρ c

h

Figure 7.4: A mixing tank

The parameters k1 and k2 and the inlet concentrations are: k1 = 1 m2, k2 = 0.02

m2.5/s, c1 = 1 mole/L, c2 = 2 mole/L. Unlike the previous system the input vari-

able for the mixing tank consists of a pair of values, i.e., u = (F1, F2). Given an
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input value set Σ := {σ1, σ2, σ3} where σ1 = (0.0184, 0.0046), σ2 = (0.0158, 0.0158),

σ3 = (0.0046, 0.0184), the resulting equilibrium points are (h0, c0)1 = (1.3225, 1.2),

(h0, c0)2 = (2.5, 1.5), and (h0, c0)3 = (1.3225, 1.8). Once again the method in (Kazantzis

et al., 2002) is used to build the following local Lyapunov functions

V (h, c)1 = 716.43 c2 − 1719.44 c + 3537.76 + 1432.87 h2 − 3789.93 h, (7.5)

V (h, c)2 = 4316.36 c2 − 12949.09 c + 63666.35 + 8632.73 h2 − 43163.63 h, (7.6)

V (h, c)3 = 1305.43 c2 − 4699.53 c + 8795.98 + 2610.85 h2 − 6905.71 h. (7.7)

The functions (7.5), (7.6), and (7.7) are Lyapunov functions over the region E :=

{(h, c) ∈ (1, 5) × (1, 5)}. The constants associated to input values σ1, σ2, and σ3 are

chosen arbitrarily to be (50, 700, 2200), (1400, 5000, 12000), and (80, 1400, 3800),

respectively. The corresponding partition is shown in Figure 7.5, whereas the com-

plete FSM abstraction is shown in Figure 7.6. In this case there exist more than 160

transitions (not provided here).•

7.3 Summary

In this chapter, we have proposed an extension of the results in the previous chapters

to a class of systems for which Lyapunov functions can be determined. Since Lya-

punov functions are also local submersions most of the results apply almost directly.

The algorithm that computes FSM abstractions of two-dimensional systems in finite

time has been altered to treat systems with Lyapunov functions. Two industrial

processes illustrate the type of abstractions that can be obtained.
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Figure 7.5: A partition for the mixing tank
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Figure 7.6: An FSM abstraction for the mixing tank
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Chapter 8

Conclusions

The design of abstractions for continuous systems is an active research field spanning

many areas such as verification, model validation, hierarchical control, and supervi-

sory control. The construction of an abstraction is also a preliminary step to syn-

thesizing a controller for those systems equipped with continuous and logical control

objectives. In particular, abstractions can be utilized for the high-level control of

complex chemical engineering processes.

In this thesis a framework was developed for the generation, in finite time, of

finite-state machine abstractions for planar continuous systems. A particular em-

phasis was put on a class of nonlinear continuous systems satisfying an integrability

property, called nearly integrable controlled switched systems. A dynamical equiva-

lence between the abstract system and the original one was formulated in terms of

consistency and completeness. Consistency ensures that given a sequence of discrete

transitions generated by the abstraction, the existence of a corresponding trajectory

induced by the continuous system is guaranteed. On the converse, completeness en-

sures that a trajectory induced by the continuous system has a corresponding sequence

of discrete transitions generated by the abstraction.

The procedure that was chosen is comprised of two sequential steps. The state
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structure of the abstraction is first determined, then followed by the construction of

the transition structure of the abstraction. Given a state-space region of a nearly

integrable controlled switched system, dynamical invariants are used to decompose

the region into subsets, which act as the discrete states of the abstraction. Unlike

other partitioning techniques (Zhao, 1994; Lunze et al., 1999; Stursberg et al., 2000;

Stiver et al., 2001; Bernard and Gouzé, 2002), the present procedure is model-based,

independent of any specification, and it results in a single partition capturing the

effect of a set of input values. Such abstractions are attractive since they can be

used to achieve control tasks on continuous processes (such as hierarchical control,

verification, and logical control), to validate dynamical models, and to perform process

design.

An approach was then proposed to construct the transition structure of the finite-

state machine abstraction. The procedure relies on the analysis of a transversality

property that qualifies the dynamical behaviour of continuous trajectories with re-

spect to partition boundaries. Moreover, a notion of well-conditioned transversality

was introduced. This property facilitates the analysis of continuous trajectories that

intersect with the partition boundary in a transversal manner. In particular, the prop-

erty enables the characterization of such trajectories by analyzing a reduced number

of points in the region. It was also demonstrated that, in general, nearly integrable

controlled switched systems do not satisfy the well-conditioned transversality prop-

erty. Consequently, sufficient conditions were provided in terms of constraints on

the objects used to partition the state-space region. Furthermore, it was shown that

a well-conditioned transversality property permits the removal of nondeterministic

transitions.

In order to fully benefit from well-conditioned transversality, the method was

further specialized to those partitions whose subsets have boundary points defined

by dynamical invariants only. In an attempt to characterize the existence of such
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partitions, local and semi-global boundedness properties were defined. Semi-global

boundedness aims at detecting subsets with a boundary characterized by dynamical

invariants, whereas local boundedness provides insight into the capability of forming

subsets of arbitrary size. Sufficient conditions for both categories of boundedness were

given for a generalized partitioning with invariants. However, necessary conditions

are required in order to determine the violation of a boundedness property for the

proposed type of partitions. A discussion about such conditions was provided.

An algorithm exploiting the above properties was developed in order to generate

finite-state machine abstractions for two-dimensional systems. In particular, the al-

gorithm provides a method for detecting partition subsets satisfying the semi-global

boundedness property. Sufficient conditions were given in order to ensure the finite-

ness of computation. Also, simulation results have demonstrated that, like other

partitions, one generally obtains a finite-state machine abstraction with nondeter-

ministic transitions. In addition, it was shown that a weak notion of completeness

can be achieved by the present algorithm. The verification of the consistency prop-

erty for a continuous system and one of its abstractions was then undertaken. In

general, it turns out that consistency does not hold unless more information is added

to the abstraction transition map. Identification of the hyperplanes involved in the

transitions as well as the time period during which a transition can take place were

recommended as additional transition map arguments.

In the last chapter, the theory and the algorithmic procedure were extended to

a class of systems for which Lyapunov functions can be determined. Such functions

are advantageous because they relate directly to a wide spectrum of methods for

synthesizing controllers. The above procedure was utilized to obtain finite-state ma-

chine abstractions for two chemical processes with actuators operating in finite modes

(“on”, “off”, etc.). A potential application for the present research is the synthesis of

a supervisory controller for such processes.
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In a global sense, this thesis extends and generalizes verification techniques based

on dynamical invariants, such as those developed in (Broucke, 1998; Stiver et al.,

2001). To the best of our knowledge, there exist only two other specification-indepen-

dent strategies for generating abstractions of continuous systems with nonlinear dy-

namics (Stursberg et al., 2000; Bernard and Gouzé, 2002). In comparison to those

approaches, this research contributes in providing an in-depth analysis of the transver-

sality of trajectories with respect to partition boundaries. Also the development of

boundedness properties has provided indications about possible obstructions that may

arise during the design of partitions using surfaces that are dynamically meaningful

such as the level sets of a Lyapunov function.

This thesis offers many possible avenues for future research projects. On one

hand, many useful results still need to be developed in order to fully benefit from the

present construction of abstractions. First, a necessary condition for the local bound-

edness property of an abstraction is required. Also, it would be beneficial to have a

sufficient condition for the semi-global boundedness that does not require the con-

struction of lower dimensional objects (such as intersection points and leaf segments).

In addition, finite-machine abstractions with a transition map that incorporates time

and boundary information would enable one to satisfy stronger notions of complete-

ness and consistency. With such finite-state machine abstractions, one then needs to

develop a control theory for synthesizing a discrete supervisor.

On the other hand, the present results can be generalized in different directions.

The major generalizations consist of extending the algorithm for treating higher-

dimensional systems (n > 2) as well as developing a theory that considers larger

classes of systems. By the latter, we consider systems that evolve on more general

spaces than on an open subset of an Euclidean space, and also hybrid systems. In

both cases the present material may still be useful. In particular, the hybrid model

for the two-tank system can be analyzed by neighboring partitions of two subsets of
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an Euclidean space. Similarly, the transversality analysis of the inverted pendulum

could be performed even though the system evolves on a submanifold of the three-

dimensional Euclidean space.
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Appendix A

Cited Results

The purpose of this appendix it to present results used throughout the thesis.

A.1 Algebra

Let X be a set. A binary relation ≤ is a partial order on X if it is reflexive, transitive,

and antisymmetric. Two elements of a partial order need not be comparable, i.e.,

(x, y ∈ X) x 6≤ y and y 6≤ x is possible. The pair (X,≤) is called a poset.

For a poset (X,≤) an element l ∈ X is a meet (or greatest lower bound) for

x, y ∈ X if and only if

l ≤ x and l ≤ y and (∀a ∈ X) a ≤ x and a ≤ y ⇒ a ≤ l. (A.1)

The meet of x and y is denoted by x ⋆ y. Let R be an equivalence relation on X. For

xRx′ we also write x ≡ x′ (mod R). As shown in (Rosen, 2003), a partition of a set

induces an equivalence relation and an equivalence relation induces a partition.

Let E(X) be the collection of all equivalence relations over X. A partial order on

E(X) is defined as

(∀R1, R2 ∈ E(X)) R1 ¹ R2 iff (∀x, y ∈ X) xR1y ⇒ xR2y, (A.2)
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where R1 is said to be “finer” than R2.

Proposition A.1 ((Wonham, 1999))

In the poset (E(X),¹), the meet R1 ⋆ R2 of elements R1, R2 ∈ E(X) defined as

(∀x, x′ ∈ X) x ≡ x′ (mod R1 ⋆ R2) iff x ≡ x′ (mod R1) & x ≡ x′ (mod R2), (A.3)

always exists.⋄

Consequently R1 ⋆ R2 is the coarsest partition that is finer than both R1 and R2.

A.2 Differential Geometry and Topology

A.2.1 Measure Zero Sets, Dense Sets, Connected Sets

A subset A ⊂ R
n is of measure zero (also called Lebesgue measure zero) if, for every

ǫ > 0, there is a countable covering of A by open rectangles Ui such that the sum of

the volumes of Ui is less than ǫ (Boothby, 1986).

A subset A ⊂ B is dense in B if the closure of A coincides with B, that is, A = B,

or said otherwise, if for any point p ∈ B every neighborhood of p, Np, is such that

Np ∩ A 6= ∅ (Abraham et al., 1988). Notice that the complement of a dense set is of

measure zero.

Theorem A.2 ((Kasriel, 1971))

Suppose K is a collection of connected subsets of B such that if C1 ∈ K and C2 ∈ K,

then C̄1 ∩ C2 6= ∅ or C1 ∩ C̄2 6= ∅. Then
⋃

K is connected.⋄

A.2.2 Regular Points of Distributions/Codistributions

A point p is a regular point of a distribution ∆ defined on the open set D if there

exists a neighborhood of p, Up ⊂ D, such that the rank of the vector fields forming

∆ is constant everywhere in Up (Isidori, 1995).

Lemma A.3 ((Elkin, 1999)) The set of all regular points of a smooth distribution

∆ defined on an open set D, is an open and dense subset of D.⋄
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Additional conditions on the distribution and the set D lead to a stronger result.

Proposition A.4

The set of all regular points of maximal rank of an analytic distribution ∆ defined

on an open and connected set D, is an open and dense subset of D.⋄

Sketch of proof: We assume that ∆ is a distribution spanned by r vector fields

f1(x), . . . , fr(x). Let the function h : D → N defined by h(x) = rank{f1(x), . . . , fr(x)}
provide the maximum order of any non-vanishing determinant on D, and denote by k

the maximal value of h (i.e., the maximal rank of the distribution ∆) over D. Notice

that h is an algebraic function of analytic functions, that is, h is an analytic function

(Boothby, 1986).

If k = 0 then the distribution has maximal rank over the whole of D thus proving

the claim. Now suppose that p is a regular point of maximal rank k > 0. If k < r

then on D there are at most k linearly independent vector fields. In this case, one

can simply redefine ∆ so that it is spanned by the k vector fields that are linearly

independent at p. Now we show by contradiction that the set of regular points with

maximal rank forms an open and dense subset of D. Namely let us assume that

h−1(R \ {0}) is not dense in D. Therefore there exists an open subset U ⊂ D where

the rank of ∆ is less than k. Because h is analytic, it vanishes everywhere in the

connected subset of D containing U . Since by assumption D is connected, then h

vanishes everywhere in D, contradicting the fact that p is such that h(x)|x=p 6= 0.¤

Similar conclusions hold for codistributions.

A.2.3 Implicit Function Theorem

Theorem A.5 ((Isidori, 1995))

Let A ⊂ R
m and B ⊂ R

n be open sets. Let f : A × B → R
n be a smooth mapping.

Let

(x, y) = (x1, . . . , xm, y1, . . . , yn) (A.4)
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denote a point of A × B. Suppose that for some (xo, yo) ∈ A × B, f(xo, yo) = 0 and

the matrix

∂f

∂y
=




∂f1

∂y1
· · · ∂f1

∂yn

· · · · · · · · ·
∂fn

∂y1
· · · ∂fn

∂yn




(A.5)

is nonsingular at (xo, yo). Then there exist open neighborhoods Ao of xo in A and Bo

of yo in B and a unique smooth mapping g : Ao → Bo such that f(x, g(x)) = 0 for

all x ∈ Ao.⋄

A.2.4 Preimage Theorem

This theorem is also called the Submersions Theorem.

Theorem A.6 ((Abraham et al., 1988))

Let f : M → N be a smooth map between manifolds and let n ∈ N be a regular

value. Then the preimage f−1(n) = {m | m ∈ M, f(m) = n} is a submanifold of M

with tangent space given by Tmf−1(n) = kernel(Tmf).⋄

If N is finite dimensional and n is a regular value then codim(f−1(n)) = dim(N).

A.2.5 Sard’s Theorem in R
n

Theorem A.7 ((Abraham et al., 1988))

Let U ⊂ R
m be open and f : U → R

n be of class Ck where k > max(0,m−n). Then

the set of critical values of f has measure zero in R
n.⋄

One can also find in (Abraham et al., 1988) a generalization of the above result

for the case where the mapping involves manifolds.
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A.3 Nonsmooth Analysis

A.3.1 Tangent Cone

From (Clarke, 1990), the (nonsmooth and Lipschitz) distance function from a point

p′ ∈ D′ to the set Ω(Γ̂) is defined as

dΩ(Γ̂)(p
′) = min{|p′ − p| : p ∈ Ω(Γ̂)}. (A.6)

The generalized directional derivative of dΩ(Γ̂), when evaluated at p and in the direction

v ∈ R
n, is given by

d0
Ω(Γ̂)

(p, v) := lim sup
p′→p, λ↓0

dΩ(Γ̂)(p
′ + λv) − dΩ(Γ̂)(p

′)

λ
. (A.7)

The tangent cone to Ω(Γ̂) at a point p ∈ Ω(Γ̂) is given by

CΩ(Γ̂)(p) := {v ∈ R
n | d0

Ω(Γ̂)
(p, v) = 0}. (A.8)

The following result establishes an equivalence between the elements of the tangent

cone and some sequences.

Theorem A.8 ((Clarke, 1990))

An element v of R
n is tangent to Ω(Γ̂) at p if and only if, for every sequence pi in

Ω(Γ̂) converging to p and sequence βi in (∞, 0) decreasing to 0, there is a sequence

vi in R
n converging to v such that pi + βivi ∈ Ω(Γ̂) for all i.⋄

A.4 Control Theory

A.4.1 Class of Admissible Controls

Definition A.9 ((Nijmeijer and van der Schaft, 1990)) Let u be an input map-

ping u : R≥0 → U where U is an input value set. The class of admissible controls,

U , consists of a family of input maps that is closed under concatenation, i.e., with

148



u1(·), u2(·) ∈ U , and for any t ∈ R and

u(t) =





u1(t), t < t

u2(t), t ≥ t

(A.9)

then u(·) ∈ U .⋄

A.4.2 Complete Vector Field

Definition A.10 ((Isidori, 1995)) A vector field f(x) defined on a manifold M is

complete if the flow φ of f(x) is defined on the whole cartesian product R × M .⋄

A.4.3 Complete Integrability

Definition A.11 ((Isidori, 1995)) A nonsingular d-dimensional distribution ∆, de-

fined on an open set D of R
n, is said to be completely integrable if, for each point

x0 of D there exist a neighborhood U0 of x0, and n− d real-valued smooth functions

λ1, . . . , λn−d, all defined on U0, such that the annihilator of ∆, say ∆⊥, is such that

∆⊥ = span{dλ1, . . . , dλn−d} on U0.⋄

A.5 Exterior Differential Systems

The material presented here summarizes some concepts of exterior calculus. For a

thorough treatment of the topic the reader is referred to (Edelen, 1985) and (Abraham

et al., 1988).

Recall that the tangent space to a manifold M at a point p is written as TpM and

that elements of TpM are called vector fields. The tangent space to M turns out to

be a vector space over R and with the Lie product it can be made into an algebra

called the Lie algebra. In the next paragraphs, a similar procedure is performed for

the dual of a tangent space, the cotangent space.

The cotangent space to M at a point p is denoted by T ∗
p M and the elements of

149



T ∗
p M are covectors. A differential form, or one-form, is a function ω that assigns

to each point p of M a covector in T ∗
p M . The collection of one-forms over T ∗

p M is

denoted by Λ1(M). The cotangent space can be made into a vector space over R.

In order to make an algebra out of elements in T ∗
p M , the cotangent space is

equipped with a wedge product and an exterior algebra. The wedge product is a

non-commutative product between two forms satisfying

(aα1 + bα2) ∧ β = aα1 ∧ β + bα2 ∧ β, for α1, α2, β ∈ Λ1(M) and a, b ∈ R

α ∧ (aβ1 + bβ2) = aα ∧ β1 + bα ∧ β2, for α, β1, β2 ∈ Λ1(M) and a, b ∈ R

α ∧ β = −β ∧ α, for α, β ∈ Λ1(M)

(A.10)

The wedge product of k one-forms is called a k-form. The space of k-forms over M ,

denoted by Λk(M), also defines a vector space over R. The exterior algebra over M

is the graded algebra

Λ(M) := Λ0(M) ⊕ · · · ⊕ Λn(M), (A.11)

with Λ0(M) = C0(M).

The exterior derivative of the smooth k-form ω =
∑

i1≤···≤ik
ai1···ikdxi1 ∧ · · · ∧ dxik

is the (k + 1)-form

dω =
∑

i1≤···≤ik

dai1···ik ∧ dxi1 ∧ · · · ∧ dxik . (A.12)

The exterior derivative is such that (i) d(ω1 + ω2) = dω1 + dω2, (ii) d(ω ∧ α) =

dω ∧ α + (−1)kω ∧ dα, ω ∈ Λk(M), and (iii) d(dω) = 0.

A k-form that lies in the kernel of d is said to be closed whereas a k-form, k ≥ 1,

is exact when it lives in the range of d for some (k − 1)-form. A collection of k ≤ n

one-forms ω1, . . . , ωk is linearly independent if and only if

ω1 ∧ · · · ∧ ωk 6= 0. (A.13)
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Appendix B

Program for Two-dimensional

Systems

This appendix introduces some details about the program that generates FSM ab-

stractions of two-dimensional systems.

B.1 Displacement along Leaves

In this section we present a few methods for moving along a leaf.

Method (I) Since the systems of interest live in R
2, a leaf corresponds to a one-

dimensional subspace on which a trajectory evolves, i.e., both the tra-

jectory and the leaf are of the same dimension. Moreover the class of

nearly integrable CSS has an integrable set of ODEs. Consequently

it is possible to use numerical integration in order to move along a

leaf in any direction (a reversal of time provides a displacement in the

opposite direction). However this technique fails whenever a leaf con-

tains equilibrium points. For this reason a more generic approach is

proposed next.

Method (II) The present technique exploits the fact that each leaf L is character-

ized by a first integral γ ∈ Γ, which is an implicit function. Therefore
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for any point of L the Implicit Function Theorem implies a local char-

acterization. Also a metric is required.

The procedure is summarized by the following set of successive steps.

• Let p ∈ L and identify an i ∈ {1, 2} such that

∂γ/∂xi|x=p 6= 0 and ‖∂γ/∂xi|x=p‖ ≥ ‖∂γ/∂xj|x=p‖ for j 6= i.

• Identify the characterization of L that holds at p, i.e., xi = h(xj),

and verify that pi = h(pj) where p = (p1, p2).

• Use the above characterization to define two points p+ and p− re-

sulting from small perturbations ±δj of pj. In order to guarantee

that both p+ and p− remain within a neighborhood of p check if

sign(∂γ/∂xi|x=p) = sign(∂γ/∂xi|x=p+) and sign(∂γ/∂xi|x=p) =

sign(∂γ/∂xi|x=p−). If not then divide δj until the condition is

satisfied.

• The next step amounts to choosing which one among p+ or p−

goes in the selected direction of search. At the first iteration one

determines a direction by picking either p+ or p−. For the next

iterations the method uses the predecessor of point p, say pp.

Namely if p− is farther to pp than p+ is, then pick p− as the next

point on L matching the search direction, otherwise pick p+.

• Repeat the procedure until the displacement along L leads to an

intersection point, or until ∂E is encountered.

Method (III) By condition (4.3)(ii) the equilibrium points form a set of measure zero

in D′. Consequently one can use Method (I) and switch to Method

(II) whenever an equilibrium point is encountered.
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B.2 Maple Output - Double Integrator

The system of interest is a double integrator
---------------------------------------------

vect field :=

[
x2

u1

]

φ1 := x1 −
1

2

x2
2

u1

= cst

first integrals :=

[
x1 −

1

2

x2
2

u1

= cst

]

inputs :=




1

−1

2




fic :=




−2 1 3

−4 0 5

−4 2 4




nts := {x2 = 0}
region := {−5 ≤ x1, x1 ≤ 11, x2 ≤ 6, −6 ≤ x2}

Dimension=

2

The # fic per foliation =

3

The # inputs =

1

The # of input values is =

3

The list of intersection points is = [ index # of intersection point =

[{index # of intersecting leaves} [coordinates of the int. pt]]
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table([1 =
[
{1} [−4., 0.]

]
, 2 =

[
{2} [−2.666666667, −2.309401077]

]
,

3 =
[
{2} [−2.666666667, 2.309401077]

]
, 4 =

[
{3} [−1., −3.464101615]

]
,

5 =
[
{3} [−1., 3.464101615]

]
, 6 =

[
{4, 8, 13} [3., 2.]

]
,

7 =
[
{4, 8, 13} [3., −2.]

]
, 8 =

[
{5} [4.333333333, −1.154700538]

]
,

9 =
[
{5} [4.333333333, 1.154700538]

]
, 10 =

[
{6} [6., 4.]

]
,

11 =
[
{6} [6., −4.]

]
, 12 =

[
{7} [10., −4.898979486]

]
,

13 =
[
{7} [10., 4.898979486]

]
, 14 =

[
{9} [7., −3.464101615]

]
,

15 =
[
{9} [7., 3.464101615]

]
, 16 =

[
{10} [5., 2.]

]
,

17 =
[
{10} [5., −2.]

]
, 18 =

[
{11} [−1., −1.414213562]

]
,

19 =
[
{11} [−1., 1.414213562]

]
, 20 =

[
{12} [1.500000000, −2.645751311]

]
,

21 =
[
{12} [1.500000000, 2.645751311]

]
, 22 =

[
{14} [4., −1.414213562]

]
,

23 =
[
{14} [4., 1.414213562]

]
])

The list of 1D boundary elements is = [ index # of 1D boundary element =

[leaf charact., time dir., ind. IP #1, ind. IP #2]]

table([1 = [[1, 1, 1], 1, 10, 13], 2 = [[1, 1, 1], −1, 10, 21],

3 = [[1, 1, 1], −1, 21, 19], 4 = [[1, 1, 1], −1, 19, 18], 5 = [[1, 1, 1], −1, 18, 20],

6 = [[1, 1, 1], −1, 20, 11], 7 = [[1, 1, 1], −1, 11, 12], 8 = [[1, 1, 2], 1, 6, 15],

9 = [[1, 1, 2], −1, 6, 7], 10 = [[1, 1, 2], −1, 7, 14], 11 = [[1, 1, 3], −1, 16, 23],

12 = [[1, 1, 3], −1, 23, 22], 13 = [[1, 1, 3], −1, 22, 17], 14 = [[2, 2, 2], −1, 2, 18],

15 = [[2, 2, 2], −1, 18, 19], 16 = [[2, 2, 2], −1, 19, 3], 17 = [[2, 2, 3], −1, 4, 20],

18 = [[2, 2, 3], −1, 20, 7], 19 = [[2, 2, 3], −1, 7, 22], 20 = [[2, 2, 3], −1, 22, 8],

21 = [[2, 2, 3], −1, 8, 9], 22 = [[2, 2, 3], −1, 9, 23], 23 = [[2, 2, 3], −1, 23, 6],

24 = [[2, 2, 3], −1, 6, 21], 25 = [[2, 2, 3], −1, 21, 5], 26 = [[3, 3, 1], 1, 1, 3],

27 = [[3, 3, 1], 1, 3, 5], 28 = [[3, 3, 1], −1, 1, 2], 29 = [[3, 3, 1], −1, 2, 4],

30 = [[3, 3, 2], 1, 6, 10], 31 = [[3, 3, 2], −1, 6, 7], 32 = [[3, 3, 2], −1, 7, 11],

33 = [[3, 3, 3], 1, 8, 9], 34 = [[3, 3, 3], 1, 9, 16], 35 = [[3, 3, 3], 1, 16, 15],

36 = [[3, 3, 3], 1, 15, 13], 37 = [[3, 3, 3], −1, 8, 17], 38 = [[3, 3, 3], −1, 17, 14],

39 = [[3, 3, 3], −1, 14, 12]])

The number of 2D elements is =
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17

The set of 2D elements is =

[1 = table([1 = 10, 2 = 19, 3 = 13, 4 = 38]),

2 = table([1 = 30, 2 = 8, 3 = 36, 4 = 1]),

3 = table([1 = 27, 2 = 16, 3 = 3, 4 = 25]),

4 = table([1 = 12, 2 = 23, 3 = 31, 4 = 19]), 5 = table([1 = 13, 2 = 20, 3 = 37]),

6 = table([1 = 30, 2 = 24, 3 = 2]), 7 = table([1 = 29, 2 = 14, 3 = 5, 4 = 17]),

8 = table([1 = 11, 2 = 35, 3 = 8, 4 = 23]),

9 = table([1 = 28, 2 = 26, 3 = 16, 4 = 4, 5 = 14]),

10 = table([1 = 18, 2 = 6, 3 = 32]), 11 = table([1 = 10, 2 = 32, 3 = 7, 4 = 39]),

12 = table([1 = 31, 2 = 9]),

13 = table([1 = 15, 2 = 5, 3 = 18, 4 = 9, 5 = 24, 6 = 3]),

14 = table([1 = 15, 2 = 4]), 15 = table([1 = 33, 2 = 20, 3 = 12, 4 = 22]),

16 = table([1 = 33, 2 = 21]), 17 = table([1 = 22, 2 = 34, 3 = 11])]

The following set 1D element indices intersects with NTS

{4, 9, 12, 15, 21, 31, 33}

Transition table [2D source, input value, 1D element, 2D target]

table([1 = [1, 2, 10, 11], 2 = [1, 1, 19, 4], 3 = [1, 3, 19, 4], 4 = [1, 3, 13, 5],

5 = [2, 2, 8, 8], 6 = [3, 2, 3, 13], 7 = [4, 2, 12, 15], 8 = [4, 3, 12, 15],

9 = [4, 1, 23, 8], 10 = [4, 3, 23, 8], 11 = [4, 1, 31, 12], 12 = [4, 2, 31, 12],

13 = [5, 2, 13, 1], 14 = [5, 1, 20, 15], 15 = [5, 3, 20, 15], 16 = [6, 1, 30, 2],

17 = [6, 2, 30, 2], 18 = [7, 1, 14, 9], 19 = [7, 3, 14, 9], 20 = [7, 3, 5, 13],

21 = [8, 2, 11, 17], 22 = [8, 3, 8, 2], 23 = [9, 1, 16, 3], 24 = [9, 3, 16, 3],

25 = [9, 2, 4, 14], 26 = [9, 3, 4, 14], 27 = [10, 1, 18, 13], 28 = [10, 3, 18, 13],

29 = [11, 3, 10, 1], 30 = [11, 1, 32, 10], 31 = [11, 2, 32, 10], 32 = [12, 1, 31, 4],

33 = [12, 2, 31, 4], 34 = [12, 3, 9, 13], 35 = [12, 2, 9, 13], 36 = [13, 1, 15, 14],

37 = [13, 3, 15, 14], 38 = [13, 2, 5, 7], 39 = [13, 2, 9, 12], 40 = [13, 3, 9, 12],

41 = [13, 1, 24, 6], 42 = [13, 3, 24, 6], 43 = [13, 3, 3, 3], 44 = [14, 1, 15, 13],

45 = [14, 3, 15, 13], 46 = [14, 3, 4, 9], 47 = [14, 2, 4, 9], 48 = [15, 1, 33, 16],

49 = [15, 2, 33, 16], 50 = [15, 3, 12, 4], 51 = [15, 2, 12, 4], 52 = [15, 1, 22, 17],

53 = [15, 3, 22, 17], 54 = [16, 1, 33, 15], 55 = [16, 2, 33, 15], 56 = [17, 3, 11, 8],

57 = [1, 3, [19, 13], 15], 58 = [7, 3, [14, 5], 14], 59 = [14, 3, [4, 15], 3],

60 = [15, 3, [12, 22], 8]

])

The disable table [2D source, input value index, 1D element index] is =
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table([1 = [2, 1, 36], 2 = [2, 2, 36], 3 = [2, 3, 1], 4 = [3, 1, 25], 5 = [3, 3, 25],

6 = [6, 3, 2], 7 = [7, 1, 29], 8 = [7, 2, 29], 9 = [8, 1, 35], 10 = [8, 2, 35],

11 = [9, 1, 28], 12 = [9, 2, 28], 13 = [10, 2, 6], 14 = [11, 2, 7], 15 = [16, 1, 21],

16 = [16, 3, 21], 17 = [17, 1, 34], 18 = [17, 2, 34], 19 = [2, 2, [8, 36]],

20 = [7, 1, [29, 14]], 21 = [8, 2, [11, 35]], 22 = [11, 2, [32, 7]], 23 = [13, 3, [24, 3]],

24 = [15, 1, [22, 33]]

])

The set of transitions with leaf segments intersecting with NTS =

[ source cell, input value, leaf segment, target cell, leaf pts]

table([1 = [4, 2, 12000, 15, [[4., 1.414213562], [3., 0.]]], 2 = [4, 3, 12001, 15,

[[3., 0.], [4., −1.414213562]]], 3 = [4, 1, 31001, 12, [[2., 0.], [3., −2.]]],

4 = [4, 2, 31001, 12, [[2., 0.], [3., −2.]]], 5 = [9, 2, 4000, 14, [[−1., 1.414213562],

[−2., 0.]]], 6 = [9, 3, 4001, 14, [[−2., 0.], [−1., −1.414213562]]],

7 = [12, 1, 31000, 4, [[3., 2.], [2., 0.]]], 8 = [12, 2, 31000, 4, [[3., 2.], [2., 0.]]],

9 = [12, 3, 9000, 13, [[3., 2.], [1., 0.]]], 10 = [12, 2, 9001, 13, [[1., 0.], [3., −2.]]],

11 = [13, 1, 15000, 14, [[−1., −1.414213562], [0., 0.]]],

12 = [13, 3, 15000, 14, [[−1., −1.414213562], [0., 0.]]],

13 = [13, 2, 9000, 12, [[3., 2.], [1., 0.]]], 14 = [13, 3, 9001, 12, [[1., 0.], [3., −2.]]],

15 = [14, 1, 15001, 13, [[0., 0.], [−1., 1.414213562]]],

16 = [14, 3, 15001, 13, [[0., 0.], [−1., 1.414213562]]],

17 = [14, 3, 4000, 9, [[−1., 1.414213562], [−2., 0.]]],

18 = [14, 2, 4001, 9, [[−2., 0.], [−1., −1.414213562]]],

19 = [15, 1, 33001, 16, [[4., 0.], %1]], 20 = [15, 2, 33001, 16, [[4., 0.], %1]],

21 = [15, 3, 12000, 4, [[4., 1.414213562], [3., 0.]]],

22 = [15, 2, 12001, 4, [[3., 0.], [4., −1.414213562]]],

23 = [16, 1, 33000, 15, [[4.333333333, −1.154700538], [4., 0.]]],

24 = [16, 2, 33000, 15, [[4.333333333, −1.154700538], [4., 0.]]],

25 = [16, 1, 21001, [[5., 0.], %1]], 26 = [16, 3, 21001, [[5., 0.], %1]]

])

%1 := [4.333333333, 1.154700538]
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The in-going transition table [2D source, input value, 1D source, largest

FIC interval, FIC interval 1D source, 1D target, 2D target] is =

table([1 = [1, 1, 38, [1., 3.], [1., 3.], 19, 4], 2 = [1, 2, 13, [5., 7.], [5., 7.], 10, 11],

3 = [1, 2, 38, [7., 13.], [7., 13.], 10, 11], 4 = [1, 3, 10, [2., 4.], [2., 3.500000000],

19, 4], 5 = [1, 3, 10, [2., 4.], [3.500000000, 4.], 13, 5], 6 = [2, 2, 30, [5., 14.],

[5., 13.], 8, 8], 7 = [3, 2, 27, [0., 5.], [−.5000000000 10−9, 5.], 3, 13],

8 = [4, 1, 31000, [1., 2.], [1., 2.], 23, 8], 9 = [4, 1, 19, [1., 3.], [2., 3.], 23, 8],

10 = [4, 1, 19, [1., 3.], [1., 2.], 31, 12], 11 = [4, 2, 31000, [2., 5.], [3., 5.], 12, 15],

12 = [4, 2, 31000, [2., 5.], [2., 3.], 31, 12], 13 = [4, 2, 12001, [3., 5.], [3., 5.],

31, 12], 14 = [4, 3, 19, [2., 3.500000000], [3., 3.500000000], 12, 15],

15 = [4, 3, 19, [2., 3.500000000], [2., 3.], 23, 8],

16 = [4, 3, 12000, [3., 3.500000000], [3., 3.500000000], 23, 8],

17 = [5, 1, 37, [3., 3.666666667], [3., 3.666666667], 20, 15],

18 = [5, 2, 37, [4.999999999, 7.], [5., 7.], 13, 1],

19 = [5, 3, 13, [3.500000000, 4.], [3.500000000, 4.], 20, 15],

20 = [6, 1, 24, [−2., 1.], [−2., 1.], 30, 2],

21 = [6, 2, 2, [5., 14.], [5., 14.], 30, 2], 22 = [7, 1, 17, [−7., −2.],

[−5.333333334, −2.], 14, 9], 23 = [7, 3, 17, [−4., −.2500000000],

[−4.000000001, −1.500000000], 14, 9], 24 = [7, 3, 17, [−4., −.2500000000],

%1, 5, 13], 25 = [8, 2, 8, [5., 13.], [5., 7.], 11, 17],

26 = [8, 3, 23, [2., 3.500000000], [2., 3.500000000], 8, 2],

27 = [8, 3, 11, [3.500000000, 4.], [3.500000000, 4.], 8, 2],

28 = [9, 1, 26, [−5.333333334, −4.], [−5.333333334, −4.], 16, 3],

29 = [9, 1, 14, [−5.333333334, −2.], [−4., −2.], 16, 3],

30 = [9, 2, 26, [−4., 0.], [−2., −.5000000000 10−9], 4, 14],

31 = [9, 3, 14, [−4.000000001, −1.500000000], [−4.000000001, −2.], 16, 3],

32 = [9, 3, 4000, [−2., −1.500000000], [−2., −1.500000000], 16, 3],

33 = [9, 3, 14, [−4.000000001, −1.500000000], [−2., −1.500000000], 4, 14]])

%1 := [−1.500000000, −.2500000000]
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table([34 = [10, 1, 32, [−2., 1.], [−2., 1.], 18, 13],

35 = [10, 3, 6, [−.2500000000, 2.], [−.2500000000, 2.], 18, 13],

36 = [11, 1, 39, [−2., 1.], [−2., 1.], 32, 10],

37 = [11, 2, 10, [5., 13.], [5., 13.], 32, 10],

38 = [11, 2, 39, [13., 22.],

[13., 14.], 32, 10], 39 = [11, 3, 7, [2., 4.], [2., 4.], 10, 1],

40 = [12, 1, 31001, [1., 2.], [1., 2.], 31, 4],

41 = [12, 2, 9000, [1., 5.], [2., 5.], 31, 4], 42 = [12, 2, 9000, [1., 5.],

[1., 2.], 9, 13], 43 = [12, 2, 31001, [2., 5.], [2., 5.], 9, 13],

44 = [12, 3, 9001, [1., 2.], [1., 2.], 9, 13], 45 = [13, 1, 18, [−2., 1.],

[−2., 0.], 15, 14], 46 = [13, 1, 15001, [−2., 0.], [−2., 0.], 24, 6],

47 = [13, 1, 18, [−2., 1.], [0., 1.], 24, 6],

48 = [13, 2, 3, [−.5000000000 10−9, 5.], [−.5000000000 10−9, 1.], 5, 7],

49 = [13, 2, 9001, [1., 5.], [1., 5.], 5, 7],

50 = [13, 2, 3, [−.5000000000 10−9, 5.], [1., 5.], 9, 12],

51 = [13, 3, 5, %1, %1, 15, 14],

52 = [13, 3, 18, [−.2500000000, 2.], [−.2500000000, 0.], 15, 14],

53 = [13, 3, 18, [−.2500000000, 2.], [1., 2.], 9, 12],

54 = [13, 3, 15001, [−1.500000000, 0.], [−.2500000000, 0.], 24, 6],

55 = [13, 3, 9000, [1., 2.], [1., 2.], 24, 6],

56 = [13, 3, 15001, [−1.500000000, 0.], %1, 3, 3],

57 = [14, 1, 15000, [−2., 0.], [−2., 0.], 15, 13],

58 = [14, 2, 4000, [−2., −.5000000000 10−9], [−2., −.5000000000 10−9],

4, 9], 59 = [14, 3, 15000, [−1.500000000, 0.], [−1.500000000, 0.], 15, 13],

60 = [14, 3, 4001, [−2., −1.500000000], [−2., −1.500000000], 4, 9],

61 = [15, 1, 33000, [3.666666667, 4.], [3.666666667, 4.], 33, 16],

62 = [15, 1, 20, [3., 3.666666667], [3., 3.666666667], 22, 17],

63 = [15, 2, 12000, [3., 5.], [4., 4.999999999], 33, 16],

64 = [15, 2, 12000, [3., 5.], [3., 4.], 12, 4],

65 = [15, 2, 33000, [4., 4.999999999], [4., 5.], 12, 4],

66 = [15, 3, 12001, [3., 3.500000000], [3., 3.500000000], 12, 4],

67 = [15, 3, 20, [3.500000000, 4.], [3.500000000, 4.], 22, 17],

68 = [16, 1, 21000, [3.666666667, 5.], [3.666666667, 4.], 33, 15],

69 = [16, 2, 33001, [4., 4.999999999], [4., 4.999999999], 33, 15],

70 = [17, 3, 22, [3.500000000, 4.], [3.500000000, 4.], 11, 8]

])

%1 := [−1.500000000, −.2500000000]
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The in-going disable table [2D source, input value, 1D source, largest

FIC interval, FIC interval 1D source, 1D target] is =

table([1 = [2, 1, 30, [−2., 1.], [−2., 1.], 36], 2 = [2, 2, 30, [5., 14.], [13., 14.], 36],

3 = [2, 2, 1, [14., 22.], [14., 22.], 36], 4 = [2, 3, 8, [2., 4.], [2., 4.], 1],

5 = [3, 1, 27, [−7., −5.333333334], [−7., −5.333333334], 25],

6 = [3, 1, 16, [−5.333333334, −2.], [−5.333333334, −2.], 25],

7 = [3, 3, 16, [−4.000000001, −1.500000000], [−4., −1.500000000], 25],

8 = [3, 3, 3, [−1.500000000, −.2500000000], [−1.500000000, −.2500000000], 25],

9 = [6, 3, 24, [−.2500000000, 2.], [−.2500000000, 2.], 2],

10 = [7, 1, 17, [−7., −2.], [−7., −5.333333334], 29],

11 = [7, 2, 5, [−.5000000000 10−9, 5.], [0., 5.], 29],

12 = [8, 1, 23, [1., 3.], [1., 3.], 35], 13 = [8, 2, 8, [5., 13.], [7., 13.], 35],

14 = [9, 1, 14, [−5.333333334, −2.], [−5.333333334, −4.], 28],

15 = [9, 2, 26, [−4., 0.], [−4., −2.], 28],

16 = [9, 2, 4001, [−2., −.5000000000 10−9], [−2., 0.], 28],

17 = [10, 2, 32, [5., 14.], [5., 14.], 6], 18 = [11, 2, 39, [13., 22.], [14., 22.], 7],

19 = [16, 1, 33001, [3.666666667, 4.], [3.666666667, 4.], 21],

20 = [16, 1, 21000, [3.666666667, 5.], [4., 5.], 21],

21 = [16, 3, 21000, [4., 5.], [4., 5.], 21],

22 = [17, 1, 22, [3., 3.666666667], [3., 3.666666667], 34],

23 = [17, 2, 11, [5., 7.], [4.999999999, 7.], 34]

])

B.3 Maple Output - Exothermic Reactor

The transition structure is:
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table([1 = [1, 2, 5, 14], 2 = [1, 1, 34, 17], 3 = [1, 1, 2, 22], 4 = [1, 1, 40, 17],

5 = [1, 2, 3, 10], 6 = [1, 2, 27, 4], 7 = [2, 1, 24, 5], 8 = [2, 2, 24, 5],

9 = [2, 1, 11, 3], 10 = [2, 1, 29, 15], 11 = [3, 1, 6, 4], 12 = [3, 1, 28, 14],

13 = [3, 2, 11, 2], 14 = [3, 2, 23, 21], 15 = [3, 2, 7, 6], 16 = [3, 1, 32, 10],

17 = [4, 2, 6, 3], 18 = [4, 1, 27, 1], 19 = [5, 1, 24, 2], 20 = [5, 1, 12, 21],

21 = [5, 1, 26, 6], 22 = [5, 2, 13, 8], 23 = [5, 2, 21, 20], 24 = [5, 2, 19, 8],

25 = [6, 1, 7, 3], 26 = [6, 1, 26, 5], 27 = [6, 2, 26, 5], 28 = [6, 1, 31, 9],

29 = [7, 1, 25, 8], 30 = [7, 2, 25, 8], 31 = [7, 1, 18, 2], 32 = [7, 2, 18, 2],

33 = [7, 1, 14, 6], 34 = [7, 2, 14, 6], 35 = [8, 1, 19, 5], 36 = [8, 2, 19, 5],

37 = [8, 1, 22, 18], 38 = [8, 2, 22, 18], 39 = [8, 1, 13, 5], 40 = [8, 2, 13, 5],

41 = [9, 1, 8, 10], 42 = [9, 2, 8, 10], 43 = [9, 1, 31, 6], 44 = [9, 2, 31, 6],

45 = [10, 2, 8, 9], 46 = [10, 2, 32, 3], 47 = [10, 1, 3, 1], 48 = [10, 2, 3, 1],

49 = [12, 1, 36, 15], 50 = [12, 2, 36, 15], 51 = [12, 1, 9, 13], 52 = [12, 2, 9, 13],

53 = [12, 1, 38, 9], 54 = [12, 2, 38, 9], 55 = [13, 1, 39, 10], 56 = [13, 2, 39, 10],

57 = [13, 1, 4, 17], 58 = [13, 2, 4, 17], 59 = [13, 1, 35, 14], 60 = [13, 2, 35, 14],

61 = [14, 2, 28, 3], 62 = [14, 1, 5, 1], 63 = [14, 2, 5, 1], 64 = [14, 2, 10, 15],

65 = [15, 1, 10, 14], 66 = [15, 2, 10, 14], 67 = [15, 1, 29, 2], 68 = [15, 2, 29, 2],

69 = [16, 1, 17, 15], 70 = [16, 2, 17, 15], 71 = [16, 1, 30, 7], 72 = [16, 2, 30, 7],

73 = [16, 1, 15, 9], 74 = [16, 2, 15, 9], 75 = [17, 1, 1, 19], 76 = [17, 2, 1, 19],

77 = [17, 1, 40, 1], 78 = [17, 2, 40, 1], 79 = [17, 1, 34, 1], 80 = [17, 2, 34, 1],

81 = [18, 1, 20, 20], 82 = [18, 1, 22, 8], 83 = [19, 2, 1, 17], 84 = [19, 2, 33, 22],

85 = [20, 2, 20, 18], 86 = [20, 1, 21, 5], 87 = [21, 2, 12, 5], 88 = [21, 1, 23, 3],

89 = [22, 2, 2, 1],

90 = [22, 1, 33, 19]

])
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