
A Systematic Method to Analyze

Cryptographic Protocols using Discrete-Event Systems

by

Shaowu Luo

A thesis submitted to the Department of Electrical and Computer Engineering

in conformity with the requirements for

the degree of

Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

September 1999

Copyright Shaowu Luo, 1999

ii

Abstract

As business applications over the Internet proliferate, cryptographic protocols have

become a hot issue. Owing to their subtlety, however, the design of cryptographic

protocols has proven to be surprisingly error prone. Therefore it is desirable to use formal

methods to analyze cryptographic protocols. In this thesis, a systematic method for the

analysis of cryptographic protocols is proposed based on the supervisory control

framework of Discrete-Event Systems (DESs). The supervisory control framework of

DESs is advantageous in handling the analysis of attacks on cryptographic protocols due

to its exploitation of the theory of automata and formal languages. The basic operations

meet and parallel compositions make the Divide-and-Conquer strategy applicable. An

automatic scheme is proposed, producing related models efficiently. Case studies on the

Meyer-Matyas key distribution protocol, the Needham-Schroeder authentication protocol,

the Tatebayashi-Matsuzaki-Newman key distribution protocol and Netscape’s original

SSL (Secure Socket Layer) protocol have shown the soundness of the proposed method.

In particular, the construction of an attack on Netscape’s original SSL protocol appears to

be novel. So does the construction of an attack on the Tatebayashi-Matsuzaki-Newman

key distribution protocol, and the attack cannot be prevented by the countermeasure

discussed by M. Tatebayashi, N. Matsuzaki and D. B. Newman.

iii

To my parents, wife, and daughter

For their love, support, and understanding

iv

Acknowledgments

I would like to thank my supervisor Dr. Karen Rudie for her help, guidance, and

encouragement.

Special thanks go to Dr. Henk Meijer and Dr. Stafford Tavares for their guidance and

help.

I would like also to thank my classmates and friends for their support and

encouragement.

I gratefully acknowledge the financial support of the School of Graduate Studies and

Research at Queen’s University and the Department of Electrical and Computer

Engineering at Queen’s University.

v

Contents

1 INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 THESIS OUTLINE... 4

2 BACKGROUND... 7

2.1 CRYPTOGRAPHY... 7

2.1.1 Symmetric-key and Asymmetric-key Systems .. 9

2.1.2 Digital Signature and Certificate .. 11

2.1.3 Network Security ... 13

2.2 SUPERVISORY CONTROL FRAMEWORK OF DISCRETE-EVENT SYSTEMS............................. 17

2.2.1 Automata and Languages.. 18

2.2.2 Supervision and Controllability .. 21

3 METHOD.. 25

3.1 REVIEW OF RELATED WORK.. 25

3.2 BASIC OPERATIONS AND IDEAS... 27

3.3 LEGAL LANGUAGE AND CAPABILITY MODEL ... 33

3.4 SYSTEMATIC STEPS.. 41

4 CASE STUDIES ... 45

4.1 ANALYSIS OF THE MEYER-MATYAS KEY DISTRIBUTION PROTOCOL.................................. 45

4.2 ANALYSIS OF THE NEEDHAM-SCHROEDER AUTHENTICATION PROTOCOL......................... 53

4.3 ANALYSIS OF THE TATEBAYASHI-MATSUZAKI-NEWMAN KEY DISTRIBUTION PROTOCOL64

4.4 ANALYSIS OF NETSCAPE’S ORIGINAL SSL PROTOCOL.. 75

vi

5 AUTOMATIC SCHEME AND PERSPECTIVES.. 84

5.1 METHODS AND BEYOND .. 84

5.2 BASIC PRINCIPLES.. 86

5.3 AUTOMATIC SCHEME... 93

6 DISCUSSION AND CONCLUSIONS.. 97

6.1 DISCUSSION.. 97

6.2 CONTRIBUTIONS... 99

6.3 FUTURE DIRECTIONS.. 100

REFERENCES .. 102

APPENDIX A TCT DATA FOR THE ANALYSIS OF THE MEYER-MATYAS KEY

DISTRIBUTION PROTOCOL.. 110

APPENDIX B TCT DATA FOR THE ANALYSIS OF NEEDHAM-SCHROEDER

AUTHENTICATION PROTOCOL.. 112

APPENDIX C TCT DATA FOR THE ANALYSIS OF TATEBAYASHI-MATSUZAKI-

NEWMAN KEY DISTRIBUTION PROTOCOL .. 115

APPENDIX D TCT DATA FOR THE ANALYSIS OF NETSCAPE’S ORIGINAL SSL

PROTOCOL .. 119

VITA ... 121

vii

List of Figures

FIGURE 2.1 BASIC VIEW OF CRYPTOGRAPHY... 8

FIGURE 2.2 A DFSA MODEL FOR A CAR BELT ALARM SYSTEM.. 20

FIGURE 2.3 SUPERVISION OF A DES.. 21

FIGURE 3.1 AN EXAMPLE OF THE MEET COMPOSITION AND PARALLEL COMPOSITION OF TWO

DFSAS.. 29

FIGURE 3.2 TWO INDIVIDUAL DFSAS.. 31

FIGURE 3.3 THE COMPOSITE DFSA RESULTING FROM THE INITIAL -STATE JOIN COMPOSITION. 32

FIGURE 3.4 GENERAL MODEL OF AN INTRUDER.. 35

FIGURE 3.5 AN EXAMPLE OF LEGAL LANGUAGE K.. 39

FIGURE 3.6 THE GENERAL MODEL OF AN INTRUDER’S CAPABILITY.. 41

FIGURE 3.7 THE FLOWCHART OF THE PROPOSED METHOD.. 44

FIGURE 4.1 A DFSA MODEL FOR THE MM KEY DISTRIBUTION PROTOCOL.................................. 46

FIGURE 4.2 THE LEGAL LANGUAGE K FOR AN ATTACK ON THE MM KEY DISTRIBUTION PROTOCOL

.. 48

FIGURE 4.3 THE CAPABILITY MODEL P1 FOR THE MESSAGE {A,B, EPA(ESS{A,PI,NA))}................ 49

FIGURE 4.4 THE CAPABILITY MODEL P2 FOR THE MESSAGE {A,I, EPS(ESA(A,NA))}...................... 49

FIGURE 4.5 THE MODEL MA FOR THE INITIATOR A OF THE MM PROTOCOL................................. 50

FIGURE 4.6 THE MODEL MS FOR THE SERVER S OF THE MM PROTOCOL...................................... 51

FIGURE 4.7 THE CHANNEL CHNL1 BETWEEN THE INITATOR A AND THE INTRUDER IS OF THE MM

PROTOCOL...51

FIGURE 4.8 THE CHANNEL CHNL2 BETWEEN THE INTRUDER IA AND THE SERVER S OF THE MM

PROTOCOL...51

FIGURE 4.9 THE INTRUDER MODEL FOR AN ATTACK ON THE MM PROTOCOL.............................. 52

viii

FIGURE 4.10 THE ESSENCE OF THE NS AUTHENTICATION PROTOCOL... 55

FIGURE 4.11 THE LEGAL LANGUAGE K FOR AN ATTACK ON THE NS AUTHENTICATION PROTOCOL

.. 57

FIGURE 4.12 THE CAPABILITY MODEL P1 FOR THE MESSAGE { EPB(NA,A)} 58

FIGURE 4.13 THE CAPABILITY MODEL P2 FOR THE MESSAGE { EPB(NB)} 58

FIGURE 4.14 THE CAPABILITY MODEL P3 FOR THE MESSAGE { EPA(NA,NB)} 59

FIGURE 4.15 THE DFSA MODEL MA FOR THE INITIATOR A OF THE NS PROTOCOL...................... 60

FIGURE 4.16 THE DFSA MODEL MB FOR THE RESPONDER B OF THE NS PROTOCOL.................... 61

FIGURE 4.17 THE DFSA MODEL MS FOR THE SERVER S OF THE NS PROTOCOL.......................... 61

FIGURE 4.18 THE CHANNEL CHNL1 BETWEEN A AND I OF THE NS PROTOCOL............................ 62

FIGURE 4.19 THE CHANNEL CHNL2 BETWEEN B AND I OF THE NS PROTOCOL............................ 62

FIGURE 4.20 THE CHANNEL CHNL3 BETWEEN A AND S OF THE NS PROTOCOL........................... 62

FIGURE 4.21 THE CHANNEL CHNL4 BETWEEN B AND S OF THE NS PROTOCOL........................... 63

FIGURE 4.22 THE CHANNEL CHNL5 BETWEEN I AND S OF THE NS PROTOCOL............................ 63

FIGURE 4.23 THE INTRUDER MODEL FOR AN ATTACK ON THE NS PROTOCOL.............................. 64

FIGURE 4.24 A DFSA MODEL FOR THE TMN KEY DISTRIBUTION PROTOCOL.............................. 67

FIGURE 4.25 THE LEGAL LANGUAGE K FOR AN ATTACK ON THE TMN PROTOCOL...................... 69

FIGURE 4.26 THE CAPABILITY MODEL P FOR THE MESSAGE {I,I ′,E1PS(NB)}................................. 70

FIGURE 4.27 THE MODEL MA FOR THE INITIATOR A OF THE TMN PROTOCOL.............................. 71

FIGURE 4.28 THE MODEL MB FOR THE RESPONDER B OF THE TMN PROTOCOL........................... 71

FIGURE 4.29 THE MODEL MS FOR THE SERVER S OF THE TMN PROTOCOL.................................. 72

FIGURE 4.30 THE CHANNEL CHNL1 BETWEEN THE INTIATOR A AND THE INTRUDER IS OF THE

TMN PROTOCOL... 72

FIGURE 4.31 THE CHANNEL CHNL2 BETWEEN THE RESPONDER B AND THE INTRUDER IS OF THE

TMN PROTOCOL... 72

ix

FIGURE 4.32 THE CHANNEL CHNL3 BETWEEN THE SERVER S AND THE INTRUDER I OF THE TMN

PROTOCOL...73

FIGURE 4.33 THE CHANNEL CHNL4 BETWEEN THE SERVER S AND THE INTRUDER I �′ OF THE TMN

PROTOCOL...73

FIGURE 4.34 THE CHANNEL CHNL5 BETWEEN THE SERVER S AND THE INTRUDER IA OF THE TMN

PROTOCOL...73

FIGURE 4.35 THE CHANNEL CHNL6 BETWEEN THE INTRUDER IB AND THE SERVER S OF THE TMN

PROTOCOL...74

FIGURE 4.36 THE ESSENCE OF THE CLIENT AUTHENTICATION IN SSL PROTOCOL........................ 76

FIGURE 4.37 THE LEGAL LANGUAGE K FOR AN ATTACK ON THE SSL PROTOCOL........................ 78

FIGURE 4.38 THE CAPABILITY MODEL P1 FOR THE MESSAGE EKAS(CA,ESA(NS)) 79

FIGURE 4.39 THE CAPABILITY MODEL P2 FOR THE MESSAGE { EKAI(NS)}..................................... 80

FIGURE 4.40 THE MODEL MA FOR THE INITIATOR A OF THE SSL PROTOCOL................................ 81

FIGURE 4.41 THE MODEL MS FOR THE SERVER S OF THE SSL PROTOCOL.................................... 81

FIGURE 4.42 THE CHANNEL CHNL1 BETWEEN A AND I OF THE SSL PROTOCOL.......................... 82

FIGURE 4.43 THE CHANNEL CHNL2 BETWEEN IA AND S OF THE SSL PROTOCOL........................ 82

FIGURE 4.44 THE INTRUDER MODEL FOR AN ATTACK ON THE SSL PROTOCOL............................. 83

FIGURE 5.1 A SYSTEM FOR SUPPORTING THE APPLICATION OF OUR PROPOSED METHOD............. 94

x

List of Tables

TABLE 3.1 GENERAL NOTATION ... 33

TABLE 4.1 THE BASIC SYMBOLS FOR THE ANALYSIS OF THE MM KEY DISTRIBUTION PROTOCOL47

TABLE 4.2 THE BASIC SYMBOLS FOR THE ANALYSIS OF THE NEEDHAM-SCHROEDER

AUTHENTICATION PROTOCOL.. 55

TABLE 4.3 THE BASIC SYMBOLS FOR THE ANALYSIS OF TATEBAYASHI-MATSUZAKI-NEWMAN

KEY DISTRIBUTION PROTOCOL.. 67

TABLE 4.4 THE BASIC SYMBOLS FOR THE ANALYSIS OF NETSCAPE’S ORIGINAL SSL PROTOCOL77

1

1 Introduction

In recent years, business applications over computer networks, in particular the Internet,

have been proliferating. As a result, network security has become a hot issue, especially

after some security breaks were publicly reported. Cryptography and cryptographic

protocols have been recognized as the main means for securing communications over

networks. A cryptographic protocol is a sequence of messages between two or more

parties in which encryption is used to provide authentication or to distribute

cryptographic keys for new conversations. Cryptographic protocols are relatively simple

in structure, but their security properties are not always intuitively obvious. A number of

protocols that have appeared in the literature and subsequently proved to be flawed

suggests that more formal analysis is necessary. In this chapter, we will first present the

potential value of this thesis. Then we will describe the context and outline of the project.

1.1 Motivation

As technology advances, computer networks result in more and more applications. They

are used in banking for everyday actions such as e-Commerce (Electronic Commerce),

Electronic Funds Transfer (EFT), and Automated Teller Machine (ATM) transactions.

They are used to store and transfer trade secrets for corporations, and military and

diplomatic secrets for governments. According to an International Data Corporation

report [1], Internet Commerce Market Model, the value of business conducted over the

2

Internet is expected to grow from $2.6 billion in 1996 to some $220 billion in 2001. Even

this almost hundred-fold increase is regarded by some as a conservative prediction.

Within just the last three years, a whole new industry of e-Commerce service providers

has appeared. Meanwhile, the standards required to run a stable and secure e-Commerce

are proliferating and maturing rapidly. However, some serious computer network security

issues have been found, such as undetected theft of credit-card data and security lapses in

the Internet world-wide-web. Visa International Corporation reported that although

transactions over the Internet amounted to only 2% of the total transactions, about half of

all transaction disputes resulted from so-called e-Commerce. In fact, related security

breaches can take a variety of forms. These include the following:

• An unauthorized person, such as a contractor or visitor, might gain access to a

company’s computer system.

• An employee or supplier authorized to use the system for one purpose might use it for

another. For example, an engineer might break into the human resources database to

obtain confidential salary information.

• Confidential information might be intercepted as it is being sent to an authorized user.

For example, an intruder might attach a network sniffing device to the network.

While sniffers are normally used for network diagnostics, they can also be used to

intercept data travelling over the wire.

• Users may share documents between geographically separated offices over the

Internet or Extranet, or telecommuters accessing the corporate Intranet from their

home computers can expose sensitive data as it is sent over the wire.

3

• Electronic mail can be intercepted in transit.

These are not merely theoretical concerns. A number of computer hackers breaking into

corporate computer systems over the Internet have received a great deal of press in recent

years. Passwords are also largely ineffective against inside attacks. Most passwords are

notoriously easy to guess. Even when passwords are not guessed, or when more

sophisticated access control methods are used, it is important to note that access control

alone can not ensure that information remains confidential. The growth in network

complexity has increased the potential points of attack both from outside and from within

organizations. The TCP/IP (Internet) protocols and technology are inherently designed to

be open. The TCP/IP is a connectionless protocol: data is broken up into packets that

travel freely over the network, seeking the best possible route to reach their final

destination. Therefore, unless proper precautions are taken, data can readily be

intercepted and/or altered—often without either the sending or the receiving party being

aware of the security breach. Because dedicated links between the parties in a

communication are usually not established in advance, it is easy for one party to

impersonate another party.

These problems give rise to network security concerns. In order to tackle them, people

have been proposing and analyzing a number of technologies in recent years, among

which various cryptographic protocols are the major ones. Cryptographic protocols can

help establish secure communication channels in an open environment. A cryptographic

protocol is a sequence of message exchanges between two or more parties in which

4

encryption is used. To communicate securely over insecure channels, it is essential that

the related cryptographic protocols be designed properly, assuming that the basic

cryptographic algorithms are intractable. However, the design of cryptographic protocols

is a notoriously difficult task and is surprisingly error prone. In fact, it has been shown

that it is possible to inadvertently design protocols with subtle security flaws that may go

undiscovered for a long time, even if careful effort is committed. There are a number of

examples: the Needham-Schroeder key distribution protocol [2] was shown to be

vulnerable to several kinds of replay attacks [3,4], and also to a more complicated

impersonating attack [5]. A public-key protocol contained in a draft CCITT X.509

standard [6] was shown to have two separate security flaws [7]. The selective broadcast

protocol of G. J. Simmons [8] was shown to have a subtle flaw in its authentication

mechanism [9]. Some other examples are discussed in [10-15]. Therefore, a systematic

method for analysis of cryptographic protocols has significant practical and theoretical

value.

1.2 Thesis Outline

Based on the supervisory control framework of discrete-event systems (DESs), this thesis

proposes a systematic method to analyze attacks by intruders on cryptographic protocols.

An intruder is an evil entity that takes its seat at the middle of the communications among

the participants and is capable of intercepting the messages passed between them. It even

has a legitimate identity in the communication systems, of which it can take advantage.

5

Bearing this major objective, this thesis presents an analytical discussion about the

applicability of the supervisory control framework of DESs to the analysis of

cryptographic protocols. In order to show the soundness of the proposed method, we

conduct case studies with some well-known protocols. All the computational results of

this thesis were produced using TCT, a software package for analysis of DESs, designed

at the University of Toronto and provided by Professor W. M. Wonham. In addition, we

examine the characteristics of the proposed method, such as merits, drawbacks and

enhancements. After discussion of the shortcomings of the proposed method, we give

some suggestions on how the proposed method may be suitably enhanced. In other

words, this thesis not only applies the supervisory control framework of DESs to the

analysis of cryptographic protocols, but also provides future directions in this area.

In Chapter 2, we introduce the basic technology of cryptography and the main principles

of the supervisory control framework of DESs. Symmetric-key and asymmetric-key

systems, digital signature and certificate, and network security are introduced, and

automata and languages, supervision and controllability are also discussed.

In Chapter 3, we propose a systematic method for the analysis of attacks on

cryptographic protocols, after introducing some basic operations and ideas. In addition,

some considerations for establishing finite state automata (FSA) models for the

application of the proposed method are discussed. For example, what we call a general

“capability model” and general view of an intruder are presented, where the capability

model describes a probable way for the intruder to achieve its objectives.

6

In Chapter 4, we apply the proposed method to four cryptographic protocols. They are the

Meyer-Matyas key distribution protocol, the Needham-Schroeder authentication protocol,

the Tatebayashi-Matsuzaki-Newman key distribution protocol and Netscape’s original

Secure Socket Layer (SSL) protocol. The SSL protocol is the most recent protocol in this

collection.

In Chapter 5, the shortcoming of the supervisory control framework of DESs for the

analysis of cryptographic protocols is discussed and analyzed. Then we introduce and

discuss some useful principles for creating legal languages, capability models, and a

principle for rapid decision-making about whether or not there is a capability model for

certain kinds of messages. Finally, we present an automatic scheme for the proposed

cryptographic protocol analysis.

In Chapter 6, we give a summary discussion about cryptographic protocols and their

analysis methods. Then we give a review of the contributions of this thesis. Finally, we

conclude with suggestions for possible future work.

7

2 Background

In this chapter we introduce basic concepts and theorems for both cryptography and

supervisory control framework of discrete-event systems (DESs). First, the basic concept

of cryptography is presented. Then symmetric-key and asymmetric-key cryptographic

systems, and digital signature and certificate are addressed. Second, the principal features

of the supervisory control framework of DESs are discussed.

2.1 Cryptography

As the Internet and other forms of electronic communication become more prevalent,

electronic security is becoming increasingly important. Cryptography is used to protect e-

mail messages, credit card information, and corporate data. Cryptography is defined as

the technology of protecting information by transforming it into an unreadable format,

called cyphertext [16,17]. Only those who possess a secret key can decrypt the message

into plaintext. Encryption and decryption are defined as key-dependent transformations

of a message that may be inverted only by using a definite key; the keys used for

encryption and decryption are the same or different, depending on the cryptographic

algorithm used. Encrypted messages can sometimes be broken by cryptanalysis [16];

however, in this thesis, we assume that the basic cryptographic algorithms are

unbreakable. No matter whether the message is delivered by common mail or by electric

signal, the basic scenario for message passing is the same and is depicted in Figure 2.1.

8

The route along which the message travels is recognized as a channel. In order to prevent

the leakage of significant information contained in the message, the plaintext message is

encrypted into cyphertext first, then it is sent to the receiver. After receiving the

cyphertext message, the receiver decrypts it back to plaintext. However, since the channel

is open and insecure, interception is possible. The foremost goal of a spy is to violate the

secrecy of the communication and benefit from the secret information. More

sophisticated goals might be to alter the message so as to confound the receiver with a

corrupted message, for instance deceiving the receiver about the identity of the sender.

Figure 2.1 Basic view of cryptography

A system is called computationally secure if it is secure given limited computational

capability of cryptanalysis. A system is called unconditionally secure if it can resist any

crypt-analytic attack, no matter how much computation is allowed. Shannon discussed

two principles to provide a sound theoretical basis for constructing cryptographic

algorithms: confusion and diffusion [18]. Confusion uses substitution to mask the

Encryption DecryptionSender Receiver

Plain
Text

Cypher
Text

Plain
Text

Intruder

Encryption Key Decryption Key

9

plaintext and the key. Diffusion then spreads that effect across the entire cyphertext, thus

canceling out any statistical properties of the plaintext. In addition, cryptographic systems

can be broadly classified into symmetric-key systems that use a single key that both the

sender and recipient have, and asymmetric-key (public-key) systems that use two keys, a

public key known to everyone and a private key that only the recipient of messages uses.

Encryption is an atomic operation in cryptography. However, encryption is not

synonymous with security, and its improper use can lead to errors. One must be clear

about why encryption is being done and its objective. The following list gives some

major applications of encryption:

• To obtain confidentiality. In such cases it is assumed that only intended recipients

know the key needed to recover a message.

• To guarantee authenticity. In such cases it is assumed that only the proper sender

knows the key used to encrypt a message. The encryption clearly contributes to the

overall meaning of the message.

• To bind together the parts of a message. Receiving eK(X,Y) is not always the same as

receiving eK(X) and eK(Y), where eK(M) indicates that the message is encrypted

using a key K.

2.1.1 Symmetric-key and Asymmetric-key Systems

The term “symmetric-key” is used for a cryptographic system in which the sender and

receiver of a message share a single, common key to encrypt and decrypt the message.

10

The most popular symmetric-key system is the Data Encryption Standard. A symmetric-

key system is simple and fast, but its main drawback is that the two parties must

somehow exchange the key in a secure way. Public-key encryption [17,19] avoids this

problem because a public key can be distributed publicly within a certificate, and the

private key is never transmitted, assuming that a public key is known to everyone and a

secret key is known only to the recipient of the message. Public key cryptography was

invented in 1976 by Diffie and Hellman [19]. It is also called asymmetric encryption

because it uses two keys instead of one key (symmetric encryption), i.e., a public key and

a private or secret key. For example, when Alice wants to send a secure message to Bob,

she uses Bob's public key to encrypt the message. Bob then uses his private key to

decrypt it. In other words, in asymmetric-key cryptographic systems, each user has both a

public and a private key, and the two users can communicate knowing only each other's

public-key.

In a public-key cryptographic system, let P denote an encryption key and let S denote its

corresponding decryption key, then it follows a prerequisite that the keys should be so

skillfully constructed that the derivation of the deciphering key S from the enciphering

key P is intractable. A task is said to be intractable (computationally infeasible) if its cost

as measured by either the amount of memory employed or the runtime spent is perhaps

finite but prohibitively large. The prerequisite is usually satisfied by means of the

difficulty of solving a related inverse problem within a well-defined algebraic structure

[20]. A characteristic of public-key cryptographic systems is that the encryption key P

can be made public without compromising the secrecy.

11

2.1.2 Digital Signature and Certificate

Sometimes documents are stored in digital form, and digital signatures may be required.

A digital signature is a digital code that can be attached to an electronic message that

uniquely identifies the sender. Like a written signature, the purpose of a digital signature

is to guarantee that the individual sending the message really is who he or she claims to

be. Like any digital information, digital signatures can be copied arbitrarily. This implies

that the signatures of the same signer on different messages have to be completely

different. Therefore, digital signatures cannot be any sort of digitized version of

handwritten signatures. Instead, digital signature schemes are a specially developed class

of mathematical functions. Digital signatures usually employ asymmetric-key

cryptography. The signature can be verified by anyone using the signer’s public

verification key. A one-way function is usually employed in digital signature schemes. A

function f is a one-way function if, for any argument x in the domain of f, it is easy to

compute the corresponding value f(x), yet, for almost all y in the range of f, it is

computationally infeasible to solve the equation y=f(x) for any suitable argument x.

Digital signatures are especially important for e-commerce and are a key component of

most authentication schemes. To be effective, digital signatures must be unforgeable.

There are a number of different encryption techniques to guarantee this level of security.

A detailed discussion on digital signatures can be found in [21,22,23].

A digital certificate, also known as a Digital ID, is the electronic equivalent of a passport

or a business license. It is a credential, issued by a trusted authority, that individuals or

12

organizations can present electronically to prove their identity or their right to access

information. When a certification authority issues Digital IDs, it verifies that the owner is

not claiming a false identity. Just as when government issues a passport, it is officially

vouching for the identity of the holder. In other words, a digital certificate is an electronic

"credit card" that establishes the owner’s credentials when doing business or other

transactions through computer network. A digital certificate is issued by a certification

authority (CA). It contains the owner’s name, a serial number, expiration dates, a copy of

the certificate owner's public key (used in successive communications for encrypting and

decrypting messages and digital signatures), and the digital signature of the certificate-

issuing authority so that a recipient can verify that the certificate is real. The X.509

standard [6] is the most widely used standard for digital certificates; many digital

certificates conform to it. Digital certificates can be kept in registries so that the

authenticated users can look up other users' public keys. The CA makes its own public

key readily available through print publicity or perhaps on the Internet. The most

common use of a digital certificate is to verify that a user sending a message is who he or

she claims to be, and to provide the receiver with the means to encode a reply. The

recipient of an encrypted message uses the CA's public key to decode the digital

certificate attached to the message, verifies it as issued by the CA, and then obtains the

sender's public key and identification information held within the certificate. With this

information, the recipient can send an encrypted reply.

13

2.1.3 Network Security

In communication networks, an intruder can intercept messages while they are exchanged

among entities such as computers, terminals or users. As a result, sensitive information

such as passwords or secret documents is at risk of exposure, unless it is protected in

some way. It has become clear to both communication suppliers and users that security in

communication networks must be addressed. In addition, to communicate securely over

insecure channels it is essential that secret keys be distributed securely. Even with

asymmetric-key systems, a principal has to know the recipient's public key to encrypt a

message for him or her. With all symmetric schemes, each pair of participants who want

to communicate securely must have exchanged their own secret key. In the extreme, it

might be necessary for the participants to have previously met privately. With

asymmetric-key systems, in contrast, only one public key per participant needs to be

distributed. As we know, a property characteristic of public-key cryptographic schemes is

that the enciphering key can be made public without compromising the secrecy of the

deciphering key. So that if a public-key cryptographic scheme is used, the two

participants do not have to meet, indeed, they do not have to know each other. If

symmetric encryption is used, and there are n users in a system, then
()

2

1−nn
 keys are

needed to allow any two to communicate, and every user has to store n-1 keys. This gives

a rise to a key agreement protocol. Key agreement protocols typically use symmetric

encryption algorithms or variations of the Diffie-Hellman key exchange protocol [19].

The goal of a key agreement protocol is to establish a fresh session key, known only to

the participants in the session and possibly some trusted third party, called an

Authentication Server (AS). A protocol based on a symmetric-key system assumes that

14

each user has registered a private (secret) key with the AS. It is vulnerable to attack

because there is a possibility, though very small, for some hacker to log in to the server,

then obtain the registered secret keys. In an asymmetric-key system, an agent, say A,

possesses a public key, denoted PA, which any other agent can obtain from a key server;

also an agent, say A, possesses a secret key SA. The AS uses the public keys to protect (by

encryption) the session keys transmitted to the users. Actually, in both systems, key

distribution protocols are needed so that the users can acquire keys to establish a secure

channel. In symmetric-key systems, the users must acquire a shared communication key;

in asymmetric-key systems, the users must acquire each other’s public keys. The secrecy

of certain pieces of information is critical to the functioning of some cryptographic

protocols. Even if it is computationally infeasible to break the encryption algorithm used,

the entire system is vulnerable if the keys are not securely distributed.

Advances in computer networks have resulted in tremendous distributed computing

systems. In these distributed computing systems, it is essential for any two principals to

authenticate each other before communicating. Generally speaking, entity authentication

mechanisms allow the verification of an entity’s claimed identity by another entity. In

terms of cryptography, a claim about the identity of an entity becomes a claim about the

identity of the originator of a message. Therefore, entity authentication usually consists of

message origin authentication and prevention of the re-use of the message. A principal to

be authenticated could corroborate his/her identity by demonstrating knowledge of

his/her secret signature key, using his/her signature to sign specific data. A digital

signature of a message uniquely defines the identity of the originator. Authentication

15

protocols are employed for applications like remote login. A principal announces its

identity, e.g., as a user name, then the system issues a challenge and accepts the principal

if a proper response is received. In a challenge/response authentication protocol [16,19], a

principal, say A, sends a message containing a challenge NA, usually a nonce (random

number used only once), to a principal, say B. Then A expects a response from B to its

challenge NA. Principal B responds with a message containing F(X, NA), a suitable

function of NA and further data fields X. If A can attribute this message to B, then B has

been authenticated. When an entire communication session has to be authenticated, the

initial message exchange will serve to establish a shared secret between the two entities.

Further messages are then protected by an integrity mechanism employing the shared

secret. When guarding against replay messages from an earlier run of a protocol it is

common to use nonces as part of a challenge-response exchange. In fact, a nonce is a

random number, with less possibility for replication, since every newly generated random

number is quite likely to be different from the one generated before, although, in theory,

the same random number could be generated again. Two messages consisting of one

block of the same data but bound with different nonces should be recognized as different

in the analysis of cryptographic protocols. Nonces are exploited not only as proofs of

timeliness but also as substitutes for names. Freshness can also be proved by the use of

timestamps. Timestamps are appealing because they seem easier to use than random

numbers. If a timestamp is used as a kind of nonce, extra care is needed because

timestamps may be predictable to a large extent.

16

E-commerce applications using the Internet to promote business have been proliferating

[1,23,24,25]. Consequently, there is growing interest in the design and development of

electronic protocols for conducting commercial transactions over the Internet. However,

if electronic transactions on the Internet fail to provide the same degree of accountability

as real-life transactions, they are liable to be susceptible to dispute. Accountability is the

property by which a third party can verify the unique originator of an object or action. If

Alice and Bob share a secret key and Bob receives a message encrypted with this key, he

can believe that Alice sent this message. But Bob cannot prove this to a third party,

unless he is trusted by the third party not to fake a message using the shared key and hold

Alice responsible for that message. Without additional assumptions of trust, symmetric-

key encryption schemes do not allow us to hold principals accountable for statements.

However, such an assumption of trust would not be necessary if Alice were to digitally

sign the message, either using her private key, or using some other strong digital

signature algorithm which allows signature authentication. A principal who signs a

statement could attempt to repudiate his own statement by intentionally compromising

his private key. This fraud can be countered in part by notarization, which shows the time

a statement was made. However, this solution would require that, in the absence of

overriding proof for the time of key compromise, principals be held accountable for any

messages signed with their keys till the key compromise is reported to authorities.

In summary, we can list the five fundamental objectives of computer network security as

follows:

17

• Authenticity —ensuring that entities sending messages, receiving messages, or

accessing systems are who they say they are, and have the privilege to undertake

certain actions.

• Confidentiality —enabling only the intended recipient to view an encrypted message.

• Integrity —guaranteeing that messages have not been altered by another party since

they were sent.

• Accountability—including two basic kinds of non-repudiations: non-repudiation of

origin is intended to protect against the originator’s false denial of having sent the

message, establishing the source of a message so that the sender cannot later claim

that they did not send the message. Non-repudiation of receipt is intended to protect

against a recipient’s false denial of having received the message, establishing the

destination of a message so that the recipient cannot later claim they did not receive

the message.

• Applicability —ensuring that security systems can be consistently and thoroughly

implemented for a wide variety of applications without unduly restricting the ability

of individuals or organizations to go about their daily business.

2.2 Supervisory Control Framework of Discrete-Event Systems

Ramadge and Wonham [26,27] established a supervisory control framework of DESs. It

is based on automata theory and the theory of formal languages. The behavior of a DES

is described by an automaton and its generated language. Such systems furnish useful

18

models for high-level control of complex systems, such as communication and

transportation networks [28,29], computer databases [30], manufacturing systems [31],

and power generating stations [32].

2.2.1 Automata and Languages

In the theory of formal languages, a finite nonempty set ∑ is called an alphabet. The

elements of ∑ are referred to as letters. Finite strings of elements of ∑ are referred to as

words or traces. The same letter may occur several times in a word. Also the string

consisting of zero letters is considered as a word, i.e., the empty word ε. The length of a

word ω is the number of letters in ω, where each letter is counted as many times as it

occurs. The set of all words over ∑ is denoted by ∑*. Subsets of ∑* are referred to as

formal languages over ∑. In the supervisory control framework, the alphabet ∑ represents

a set of events. Strings in supervisory control theory correspond to sequences of events.

The process to be controlled can be modeled by a five-tuple deterministic finite-state

automaton, defined as follows.

Definition 2.1 [Deterministic Finite-State Automaton]

A deterministic finite-state automaton (DFSA), denoted by G, is a five-tuple,

G = (X, ∑, δ, xo, Xm)

that generates the language L(G) and marks the language Lm(G) where

19

X = A finite set of states of G

∑ = A set of events associated with the transitions in G

δ = A partial transition function of G, δ: X × ∑ → X, for each state (perhaps not every

state) x ∈ X, at which δ(x, ⋅) is defined

xo = The initial state of G

Xm = The subset of X which represents a set of marked states, which are used to

distinguish certain sequences generated by G.

The transition function, δ , is often extended from events to traces recursively:

δ(x, ε) = x

And for t ∈ ∑*, σ ∈ ∑:

δ(x, tσ) = δ (δ(x, t), σ)

The language generated by G is defined to be

L(G) = { t ∈∑* : δ(xo, t) is defined }

Likewise, a special subset Lm(G) called the marked language of G is defined as follows:

Lm(G) = { t ∈∑* : δ(xo, t) ∈ Xm }

20

A marked language allows some subset of plant behavior of particular interest – typically,

completed tasks – to be identified.

For example, let us consider a car belt alarm system. It can be modeled by the DFSA as

shown in Figure 2.2, where X = {0, 1, 2}, 0 stands for initial state, 1 for test state, 2 for

alarm state. The event set is ∑ = {SensedKeyOn, SensedBeltOn, SensedBeltOff,

Sensed5SecondPassed}. The transition function δ is characterized by the set of transitions

{(0, SensedKeyOn, 1), (1, SensedBeltOn, 0), (1, SensedBeltOff, 2), (2, SensedBeltOn, 0),

(2, Sensed5SecondPassed, 0)}. The initial state is xo = 0, and is identified by an arrow

leading to state 0. The set of marked states is Xm = {0, 2}, identified by arrows leaving

state 0 and state 2. The state 2 will sound an alarm, so it is included in the set of marked

states. In general, an arrow entering a state identifies the initial state and an arrow leaving

a state identifies a marked state.

Figure 2.2 A DFSA model for a car belt alarm system

SensedBeltOff

Sensed5SecondPassed

SensedKeyOn

SensedBeltOn

SensedBeltOn

1

0 2

21

2.2.2 Supervision and Controllability

Supervisory control theory deals with the control of discrete-event systems. It is assumed

that some behavior of a plant modeled as a DES is illegal and must be prevented by a

controller, called a supervisor [26,27]. Some of the events have a mechanism for their

disablement at any time, and the others do not have such a mechanism. Thus the event set

∑ is partitioned into two disjoint subsets

∑ = ∑u ∪ ∑c

where ∑u ⊆ ∑ is a set of uncontrollable events associated with G, which cannot be

directly disabled by control.

Figure 2.3 Supervision of a DES

The control scheme is shown in Figure 2.3, where the supervisor is a function

“Supervisor”
S

“Plant”
G

Observe t

Control C(t)

22

C: L(G)→{ γ ∈ 2∑ : ∑u ⊆ γ}

As shown in Figure 2.3, after a sequence is generated by the plant G, the C indicates

which events should be enabled, subject to the requirement that uncontrollable events

cannot be disabled. Let G = (X, ∑, δ, xo, Xm) and S = (Q, ∑, ξ, qo, Qm). The generated and

marked languages of the closed-loop system under the control C of S are denoted by

L(S/G) and Lm(S/G)=L(S/G)∩Lm(G), respectively. A supervisor S is complete with

respect to G, if the following is true: for all s ∈ ∑*, σ ∈ ∑ the three conditions

(1) s ∈ L(S/G)

(2) sσ ∈ L(G) (i.e., δ(sσ, xo) is defined)

(3) σ is enabled at ξ(s, qo)

together imply that sσ ∈ L(S/G), i.e., ξ(sσ, qo) is defined.

Here, we present the definition of prefix-closed language. A string u is a prefix of a string

v∈∑* if for some w∈∑*, v = uw. The prefix-closure of a language L ⊆ ∑* is defined as

follows:

L ={u : uv ∈ L for some v ∈ ∑*}

The over-bar notation denotes prefix-closure (of languages). We say that L is prefix-

closed if LL = .

23

Consider a sub-language K of L(G), which is the desired set of traces for the controlled

discrete-event system. The basic problem in the supervisory control framework of DESs

is as follows:

Problem 2.1 [Supervisor Problem]

Given a DES modeled by a DFSA G, ∑u ⊆ ∑, denoted by G, and a desired language,

)(GLKK ⊆= , build a complete supervisor S such that L(S/G) = K.

In order to discuss how the set of traces may be restricted to the desired subset K, the

notion of the controllability of a language with respect to another language is introduced

as follows:

Definition 2.2 [Controllable Language]

A language K ⊆ L(G) is controllable with respect to G if

() KGLK u ⊆∩Σ

Where, for any languages L and M, the notation LM stands for {st | s ∈ L and t ∈ M}.

If we interpret L(G) as physically possible behavior and K as legal behavior, an informal

description of controllability is that K is controllable if for any sequence of events s that

starts out as a legal sequence ()s K∈ , the occurrence of an uncontrollable event (σ ∈ ∑uc)

24

which is physically possible (sσ∈L(G)) does not lead the sequence out of the legal range

()s Kσ ∈ . According to the work [26,27] of Ramadge and Wonham, we have the

following theorem:

Theorem 2.1 [Existence of Supervisor]

Consider a DES, modeled by G. Let K ⊆ L(G) and K ≠ ∅, if K is prefix closed and

controllable, then there exists a complete supervisor S such that L(S/G) = K.

As mentioned above, the supervisory control framework of DESs draws from automata

theory and the theory of formal languages. An automaton model contains not only the

language information about a DES, but also the branching structure of allowable

sequences of events. It allows the supervisory control problem to be generalized to

several process-theoretic semantics. The supervisory control framework of DESs has

been used for protocol verification [28,29], it suggests that the supervisory framework of

DESs may be applicable to cryptographic protocol verification.

25

3 Method

In this chapter, we give a brief survey of work related to the analysis of cryptographic

protocols. Then we present some basic operations of automata and ideas for establishing

the proposed method. In addition, notation and some issues that must be considered for

modeling cryptographic protocols and intruders are discussed. Finally, a systematic

method for the analysis of cryptographic protocols is proposed.

3.1 Review of Related Work

A protocol is a set of rules or conventions defining an exchange of messages between a

set of two or more partners. In cryptographic protocols, all or part of some or all of the

messages is encrypted. Cryptographic protocols can help establish secure communication

channels in an open environment. It is essential for communicating securely over

insecure channels that the related cryptographic protocols be designed properly provided

the basic cryptographic algorithms are intractable or secure. However, the design of

cryptographic protocols is a notoriously difficult task, and such protocols are themselves

subtle, so that a systematic method for the analysis of cryptographic protocols is desirable

[7,9,12].

Various techniques and tools have been proposed to analyze cryptographic protocols. For

authentication and key distribution protocols, there are some techniques that focus on

26

failures due to message modifications. Meadows [9] gave a survey of the state of the art

in the application of formal methods to the analysis of cryptographic protocols. In her

paper, she described the most commonly followed approaches to the application of

formal methods to cryptographic protocol analysis, i.e., methods based on

communicating state machine models, approaches based on a logic of knowledge and

belief [33-36], and methods of algebra [37-43]. In particular, some analysis methods are

based on the representation of the execution of protocols by finite-state machines (FSMs)

[44-47] or by Petri Nets (PNs) [48,49]. These representations lend themselves to

algorithmic methods by which a computer can explore systematically the possible

sequence of steps of a FSM or a PN. To declare that a protocol is secure, the automatic

method must explore the possible sequences of steps of the protocol and verify that all

these sequences do not present any security threats. In the case of a complex protocol

with a very large number of acceptable sequences of steps, the automatic procedure

spends excessive time exploring many sequences before detecting a problematic one. In

many cases, this time-consuming search limits the complexity of protocols that can be

verified automatically by some existing methods. Thus some papers [9,46] have proposed

that automatic procedures should provide an interface for exploiting human experience.

However, they have not provided relevant principles for how to incorporate human

experience.

27

3.2 Basic Operations and Ideas

First we introduce some key operations with regard to DFSAs. Unless otherwise

specified, these concepts are taken from [26-28,50,51].

Definition 3.1 [Meet Composition]

The meet composition of two automata G1 and G2 where

G1 = (X1, ∑1, δ1, x1o, X1m)

G2 = (X2, ∑2, δ2, x2o, X2m)

is

G1 × G2 = (X1 × X2, ∑1 ∩ ∑2, ∆, (x1o, x2o), X1m × X2m)

where,

()() () ()() () ()

=∆
otherwiseundefined

defined are and
,, 22112211

21

,1x/,1x/if,1x,/,1x/
xx σ

A resulting composite state is to be marked if and only if both constituent states are

marked. Intuitively, the meet composition machine represents the set of possible actions

that are common to both machines G1 and G2, hence L(G1 × G2) = L(G1) ∩ L(G2) and

28

Lm(G1 × G2) = Lm(G1) ∩ Lm(G2). The composition defined above is sometimes called

“product.”

Definition 3.2 [Parallel Composition]

The parallel composition of two automata G1 and G2 is

G1 || G2 = (X1 × X2, ∑1 ∪ ∑2, ∆, (x1o, x2o), X1m × X2m)

where,

()()

() ()() () ()
()() ()

()() ()

Σ∉
Σ∉

=∆

otherwise

 and defined is , if,,

 and defined is , if,,

defined are , and , if,,,

,,
122221

211211

22112211

21

undefined

xxx

xxx

xxxx

xx
σσδσδ
σσδσδ

σδσδσδσδ

σ

The composition defined above is sometimes called “synchronous product.” The parallel

composition requires that common events shared by both original DFSAs should occur

synchronously. Only if the prerequisite conditions (originating states) in the original

DSFAs are met simultaneously can the corresponding transition be defined in the

composite DFSA. Those events belonging to either one of the original DFSAs but not

belonging to both can occur independently, if they are defined in the corresponding

original DFSA. As a matter of fact, there are some other complicated composition

operations used in process algebra, for instance, so-called prioritized synchronous

composition introduced by Heymann [52], however these are not needed here.

29

Let us consider an example shown in Figure 3.1.

Figure 3.1 An example of the meet composition and parallel composition of two DFSAs
Where DFSA3 = DFSA1 × DFSA2 and DFSA4 = DFSA1 || DFSA2.

The meet composition of DFSA1 and DFSA2 results in DFSA3, i.e., DFSA3 = DFSA1 ×

DFSA2 and the parallel composition of DFSA1 and DFSA2 results in DFSA4, i.e., DFSA4

= DFSA1 || DFSA2. Though events α, β, and µ occur in both DFSA1 and DFSA2, only β

DFSA1 DFSA2

α

β

γ
µ

α
β

µ

ρ

0

1

2

3 4

A

B C

D

E

β

DFSA3

DFSA4

ρ

β

γ

γ

µ

ρ

0A 2B
0A

2B

3A

4D

0E 3E

30

can occur simultaneously in both DFSA1 and DFSA2, thus only β is defined in the

resultant automaton DFSA3 from the meet composition of DFSA1 and DFSA2. As for the

parallel composition, since γ occurs in only DFSA1, it can occur in the resultant

automaton DFSA4 from the parallel composition of DFSA1 and DFSA2. However, after γ

occurs, µ can then occur simultaneously in both DFSA1 and DFSA2, thus µ is defined

accordingly in the DFSA4.

Always for communication systems, a plant, modeled by a DFSA G, comprises several

processes operating concurrently, where each of the constituent processes may be

modeled by a five-tuple automaton. We extend the parallel composition from 2 to n,

where n is the number of processes under consideration. Let Gi = (Xi, ∑i, δi, xio, Xim), i =

1, …, n be DFSAs; and let ∑ = ∪i∑i, and for each σ let I(σ) = { i | σ∈∑i}. Then G = G1

||…|| Gn, and G = (X, ∑, ∆, Xo, Xm), where X = X1 ×…× Xn, Xo = (x1o, …, xno), Xm = X1m ×

… × Xnm, and ()σ,X∆ is undefined if δi(xi,σ) is undefined for some i ∈ I(σ); and

X′∈∆(X,σ) with X′=(x1′,x2′,…,xn′) where xi′∈δi(xi,σ) for all i ∈ I(σ), and xi′=xi for i ∉

I(σ). Thus, in the resultant machine G, events that are common to more than one Gi must

occur simultaneously.

In addition, we introduce an operation, called Initial-State Join Composition, as follows:

Definition 3.3 [Initial-State Join Composition]

Consider n DFSAs: Gi = (Xi, ∑i, δi, xio, xim), i = 1, …, n; ∀i, j ∈ [1, n] and i ≠ j, ∑i ∩ ∑j =

∅. Let ∑ = ∑1 ∪ ∑2 ∪ … ∪ ∑n, and introduce the following n DFSAs:

31

Gi′ = Gi with self-loop of ∑ \ ∑i at the initial state of Gi; i∈[1, n].

Then G = G1′ × G2′ × … × Gn′ is denoted by G = G1 ⊕ G2 ⊕ … ⊕ Gn, and is called the

Initial-State Join Composition of G1, G2, …, Gn.

For example, consider two individual DFSAs, denoted by G1 and G2, shown in Figure

3.2. Let G = G1 ⊕ G2. By the definitions of the Initial-State Join Composition and Meet

Composition (Definition 3.1), we get the DFSA shown in Figure 3.3 for G. From Figures

3.2 and 3.3, we can see that G is formed by joining together both G1 and G2 at their initial

states.

Figure 3.2 Two individual DFSAs

α1

α3

α2

G1

β1

β3

β2

β4

G2

0

1

2

A

B

C

D

32

Figure 3.3 The composite DFSA resulting from the Initial-State Join Composition

In order to establish a systematic approach to analyze cryptographic protocols, we cast

the problem of cryptographic protocol analysis into whether or not we can construct a

controller such that

• The process to be controlled is the behavior process of given entities trying to achieve

some secure communication goals, where entities act in accordance with the

specification of a cryptographic protocol.

• The objective of the controller is to break the security of the cryptographic protocol.

• The controller is assumed to be able to observe the process, take part in the protocol

process, and apply some limited cryptographic operations.

Therefore the analysis of a cryptographic protocol can be reduced to solving a

supervisory control problem of DESs, where the legal language K describes a successful

attack. If a controller exists, the corresponding cryptographic protocol is considered to be

α1

α3

α2

G

β1

β3

β2

β4

0A

0B

0C

0D

1A

2A

33

insecure with respect to the attack described by the legal language K. In addition, for the

application of supervisory control theory to cryptographic protocol analysis, we also have

to figure out the following key issues:

• How does one produce a legal language? I.e., what are the relevant sequences of

events that describe an intruder’s attack of the given protocol?

• Just because a legal language gives us a roadmap that the intruder may use to achieve

an attack, it does not guarantee that this attack will be successfully achieved. There

will be additional constraints (called capability models) which describe the possible

ways for an intruder to acquire messages that have to be sent to other participants, as

required by the legal language.

How to build legal language and capability models will be addressed in the next section.

3.3 Legal Language and Capability Model

We introduce the following notation as shown in Table 3.1, for the sake of simplicity,

which exploits many conventions from related articles.

Table 3.1 General Notation

Symbol Meaning
X,Y The concatenation of two message X and Y
eK(X) Encryption of message X with a key K
dK(X) Decryption of message X with a key K

34

sK(X) Digital signing of message X with a key K
CA A certificate of principal A issued by a trusted certification authority.

Usually, it contains a public key of its owner and an indicator of the
corresponding symmetrical cryptographic scheme, enabling one to
verify the identity of the owner via a challenge-response protocol.

vK(X) Verification of message X with a key K
PA A public key of principal A
SA A secret key of principal A
KAB A secret key between principal A and B, usually used as a session key
NA A nonce produced by principal A. A nonce is a random number

generated with the purpose of being used in a single run of a protocol.
Nonces are of two kinds: one is predictable and another is not. Sequence
numbers and timestamps can be considered as predictable. However,
random numbers should be considered as unpredictable. A nonce is used
to indicate freshness of its accompanied message, i.e., as an identifier of
a protocol run, distinguishing between recent and past.

A→B:X A principal A sends message X to a principal B.
A→B:ePB(X) A principal A sends to a principal B a message X encrypted with B’s

public key. So that only B can decrypt it to get the message X. It is
assumed that there is a confidential channel in that A can decide that
only B be allowed to read the message.

A→B:eSA(X) A principal A sends to a principal B a message X encrypted with A’s
secret key, so that only A can encrypt X using SA. This assumes that
there is an authentic channel in that B can decide A must have sent the
message X after receiving eSA(X).

Any principal can encrypt a message X using A’s public key AP to produce ePA(X). Only

A can decrypt this message, so that this ensures secrecy. A principal A can sign a message

X using its secret key, to produce sSA(X); any other principal in possession of A’s public

key can then verify it using A’s public key AP , i.e, vPA(X). The encryption of a message

using A’s secret key should assure other agents that this message did really originate from

A.

35

In the interests of simplicity and readability, an event label that refers to a common

phrase is written as a single string of characters, which is formed by concatenating all the

words or the corresponding abbreviations in the phrase, where a capital letter indicates

the beginning of another word. For example, “Send To” and “Receive From” are written

as “SendTo” and “RcvFrom,” respectively.

Because what we are studying is whether there are any attacks by an intruder on a given

protocol, we focus on the procedures where an intruder is involved in the message

communications according to the given protocol. An intruder is assumed to be able to

intercept any information traveling in a network, which yields the general view of an

intruder as shown in Figure 3.4. By “compose” in Figure 3.4, we mean the intruder

transforms some received message into the required message using relevant

cryptographic operations discussed in section 2.1.

Figure 3.4 General model of an intruder

Message

In
te

rc
ep

t

Compose

T
ra

ns
fe

r

Message
Intercepted

Intruder

36

As shown in Figure 3.4, any message could be intercepted by an intruder, denoted by I.

For example, let us consider the Meyer-Matyas Protocol [53, Illustrates 11-32], which is

designed to distribute authenticated public keys to users who request other users’ public

keys from a key distribution center (KDC). In this protocol, users and the KDC initially

have a pair of secret and public keys as assumed by the Meyer-Matyas Protocol. Only

each individual owner knows its own secret key, in addition to knowing the public key of

the KDC. Let S denote the KDC, A and B denote an arbitrary pair of users A and B, where

A wants to get B’s public key through the KDC. Because the intruder can intercept any

message exchanged between S and A, the message sent to S by A as originally intended

may in reality go to the intruder. In what follows, I is used to denote an intruder and “IA”

can be interpreted as “I impersonates A.” Then the basic procedures of the Meyer-Matyas

protocol can be described as follows:

A → S: {A,B,ePS(eSA(A,NA))}, represented by an event

ASendToS{A,B,ePS(eSA(A,NA))}.

S → A: {A,B,ePA(eSS(A,PB,NA))}, represented by an event

SSendToA{A,B,ePA(eSS(A,PB,NA))}.

They will be changed to the following in consideration of an intruder:

A → IS: {A,B,ePS(eSA(A,NA))}, represented by an event

ASendToIS{A,B,ePS(eSA(A,NA))}.

37

IA → S: {A,B,ePS(eSA(A,NA))}, represented by an event

IASendToS{A,B,ePS(eSA(A,NA))}

The above two steps will be used to replace the original first step of the protocol; also the

following two steps will be used instead of the original second step of the protocol.

S→ IA: {A,B,ePA(eSS(A,PB,NA))}, represented by an event

SSendToIA{A,B,ePA(eSS(A,PB,NA))}.

IS→ A: {A,B,ePA(eSS(A,PB,NA))}, represented by an event

ISSendToA{A,B,ePA(eSS(A,PB,NA))}.

There is a general procedure for producing a legal language that is used to describe an

impersonation attack. Usually, a protocol gives a series of events for participants to

follow. Then in the descriptions of those events in the protocol specification, we can use

a concatenation of the letter “I” and its original identity character to substitute for the

identity of the entity to be impersonated by an intruder. For example “A” is replaced

with “IA”. After this replacement, we get the legal language for an impersonation attack.

For instance, let us consider the following authenticating protocol:

A → S: {ePS(KAS)}, i.e., ASendToS{ePS(KAS)}.

S → A: {eKAS(NS)}, i.e., SSendToA{eKAS(NS)}.

A → S: {eKAS(CA,eSA(NS))}, i.e., ASendToS{eKAS(CA,eSA(NS))}.

38

First, the client A sends to the server S a session key KAS, encrypted using public key PS

of the server S. Then S produces a challenge NS. After receiving NS, A signs and returns it

along with a certificate CA. To study an attack where an intruder impersonates A in that

protocol, we substitute every “A” with “IA” in the subjective and objective place of every

item defining an event. For instances, “ASendToB” is replaced with “IASendToB”, the

“A” in a subjective place; and “BRcvFromA” is replaced with “BRcvFromIA”, the “A”

in an objective place. This replacement yields the following procedures:

IA → S: {ePS(KAS)}, i.e., IASendToS{ePS(KAS)}.

S → IA: {eK AS(NS)}, i.e., SSendToIA{eKAS(NS)}.

IA → S: {eKAS(CA,eSA(NS))}, i.e., IASendToS{eKAS(CA,eSA(NS))}.

Then, we can build the corresponding DFSA model for the so-called legal language,

shown in Figure 3.5, where ∑L stands for a set of other events involved in the analysis. In

this way, the legal language allows for the occurrence of those other events in between

the events that are not in the self-loop shown on the Figure 3.5. In fact, it does represent

the real situation in that a number of processes may act simultaneously. However, before

building up all related DFSA models, we cannot determine what ∑L should include.

When a legal language is used to describe how an intruder could get some secret from

other entities, it is necessary for us to determine in what situation the intruder could be

able to reach its objective. Though this requirement is very similar to that for describing

an impersonation attack, the general procedure for creating such a legal language does

39

not exist. It is rather tricky to obtain this kind of legal language, requiring knowledge of

the corresponding cryptographic scheme and experience.

Figure 3.5 An example of legal language K
Where the ∑L is a set of other events to be concerned in analysis

A legal language gives a description of a specific way by which an intruder is going to

achieve an attack on a protocol. But such a legal language cannot, and does not,

guarantee that an attack described by it is possible. Although the legal language does not

guarantee that an attack really exists, the legal language gives us a roadmap along which

the intruder may go to realize its objective. If every event shown in the legal language

could occur in reality, then the attack follows. This is especially so for those events

identifying the intruder’s sending some messages. In fact, for each message an intruder

must send in the legal language, there will be what we call a capability model. For

example, in the legal language shown in Figure 3.5, it is necessary for the intruder to send

to S the message {ePS(KAS)} and then the message {eKAS(CA,eSA(NS))}, so there will be

SSendToIA
{eKAS(NS)}

IASendToS
{eKAS(CA,eSA(NS))}

IASendToS
{ePS(KAS)}

∑L

∑L ∑L

2

1

0

40

corresponding capability models for them. Before sending an intended message to a

target, usually the intruder must compose it first, and therefore the intruder must intercept

or obtain some relevant messages from other entities, including from the key distribution

center. It is the limited capability that necessitates some prerequisite messages for the

intruder to compose a related message. Therefore, we introduce a capability model to

describe such a situation, which can be constructed backwards from the corresponding

intended message.

The general model of an Intruder’s capability for sending a message is shown in Figure

3.6. In order to send the message {ePA(Y)}, which is required by the corresponding legal

language, the intruder would have to intercept or get some message, such as {ePB(X)}, so

that he/she can then compose the message {ePA(Y)}, then send to A the message

{ePA(Y)}. Of course, it is possible that an intruder has to intercept several kinds of

messages to enable the intruder to compose the message required by a legal language.

Thus, Figure 3.6 serves only as an indication, not as an exact description. For every

message that has to be sent by the intruder, shown on the DFSA for the legal language,

there should be a DFSA for the corresponding capability model. If there are a number of

messages required by a legal language to be sent by an intruder, it is not convenient for

people to create the overall capability model at once. Instead, we try to create a capability

model separately for every message required by a legal language to be sent by an

intruder, then compose, using the Initial-State Join Composition (Definition 3.3), all

those individual capability models to obtain the corresponding overall capability model.

41

Figure 3.6 The general model of an Intruder’s capability
where {IARcvFromB{ePB(X)} stands for

an event that will allow the intruder to compose ePA(Y).

3.4 Systematic Steps

In summary, the method proposed in this paper for analysis of a cryptographic protocol

can be described as follows:

1) Build a legal language K and the corresponding DFSA, which describes what

constitutes an intruder’s attack on a given protocol.

2) For every message required by the legal language K to be sent by the intruder, try to

construct the corresponding capability DFSA. An iterative building of capability

models for messages required to be sent by the intruder results from the fact that to

compose a required message the intruder has to get a set of other messages, which, in

turn, requires that the intruder send other messages, and so on. If for any such

message it can be proven that no corresponding capability DFSA exists, or if after

IC
o

m
p

o
se

{e
P A

(Y
)}

IARcvFromB{ePB(X)}

IBSendToA{ePA(Y)}

0

1

2

42

thorough study, we cannot build a capability model, then an attack identified by the

legal language does not exist. Otherwise, if necessary, use the Initial-State Join

Composition to build the overall capability DFSA, denoted by P, with alphabet ∑P.

3) Construct DFSAs of entities under study according to the specification of a given

protocol, in consideration of the existence of an intruder with defined objective K.

That is, those DFSAs should comprise those events which occur in either the legal

language or the model of the intruder’s capability. In addition, there is a kind of so-

called channel model that describes the sending-receiving relationship among related

events, because a message cannot be received before it is sent. The principle of cause-

effect relationship has to be kept. The composite DSFA of several DFSAs through

Parallel Composition is denoted by G, with alphabet ∑G.

4) Build a modified model G′ through introducing at every state of the corresponding G

self-loops of those events belonging to ∑P but not belonging to ∑G.

5) Let ∑=∑G∪∑P. Apply the Supervisory Control Theorem 2.1 in Section 2.2.2 and its

supporting software TCT to build S′ such that L(S′/G′) = K. If S′ does not exist, then

using this capability model, the attack defined by the legal language K on the given

protocol does not exist. In that case, go to step 2 and try to establish other capability

models with the legal language remaining the same. A different capability model

would give another way for the intruder to obtain some different messages if possible,

then to compose the messages to be sent by it, and required by the same legal

language.

6) If S′�exists, let S′′ = S′ × P, where the capability model P is introduced at this stage to

ensure that the attack behaves in accordance with an intruder's abilities. If S′′ = ∅,

43

then the attack using current capability models does not exist, go to step 2; otherwise

go to step 7.

7) In S′′ strip off those transitions labelled by events that other participants except for the

intruder or intruders incur, namely those events whose labels do not start with “I.”

It is worth drawing a flowchart Figure 3.7 for the proposed method, which could give us

a clearer image of the proposed method. In addition, in step 2, when we can prove that

there is no way for an intruder to compose the necessary message, we claim that an attack

described by the corresponding legal language does not exist. As shown in Figure 3.7, the

proposed method can be characterized as follows: Firstly, we build a legal language.

Secondly, we create related capability models according to the legal language. Then we

produce corresponding models for related participants and channels based on the

capability models and the legal language. It is apparent that this method has the trait of

goal-guided back-tracking. Consequently, it efficiently reduces the number of states and

transitions under analysis. We could proceed in another way: First, we build models for a

set of participants and corresponding channels. Second, we produce a legal language,

then try to solve the so-called supervisory control problem. In this case, we would have to

take a good number of participants into account so as to make it more likely to find an

attack, which results in a huge state-transition space under analysis. Moreover, it would

be difficult for us to decide which participants should be taken into consideration before

the establishment of a legal language. Clearly, the establishment of a capability model is

not an easy task and needs experience.

44

Figure 3.7 The flowchart of the proposed method

Can we prove no
corresponding capability
model for any message
sent by the intruder ?

No

Build Legal Language
Describing a Possible Attack on

the Given Protocol

Build Capability Models
for Messages Required to
Be Sent by the Intruder

Based on Legal Language and Capability
Models, Build Corresponding Models for All

Participants and Models for Channels for Every
Pair of the Participants

Apply the Supervision Theorem to Get
the Behavior Model for the Controller

Use the Resultant Model for
the Controller to Get the Behavior

Model for the Intruder
Does It Exist

?

This Attack
Does Not Exist

This Attack
Does Exist

No

Yes

Yes

45

4 Case Studies

In this chapter, we present some case studies to show the soundness of our proposed

method. Those cases include the Meyer-Matyas key distribution protocol, the Needham-

Schroeder Authentication Protocol, the Tatebayashi-Matsuzaki-Newman Key

Distribution Protocol, and Netscape’s original SSL Protocol. The SSL protocol is the

most recent protocol. Moreover, the attack presented in this paper on the Tatebayashi-

Matsuzaki-Newman key distribution protocol cannot be prevented by the related

countermeasure discussed by M. Tatebayashi, N. Matsuzaki and D. B. Newman.

4.1 Analysis of the Meyer-Matyas Key Distribution Protocol

The Meyer-Matyas key distribution protocol (abbreviated MM) is designed to distribute

authenticated public keys to users who request other users’ public keys from a key

distribution center, called a “server” hereafter [53]. In this protocol, users and the server

are initially assumed each to have a pair of secret and public keys. Only each individual

owner knows his/her own secret key. The public initially knows the server’s public key.

It is required that the public key endorsed by a user must be the genuine one belonging to

him/her when his/her public key is requested by another user. The procedures can be

described as follows:

46

(1) A → S: A,B,ePS(eSA(A,NA))

(2) S → A: A,B,ePA(eSS(A,PB,NA))

The DFSA model for the MM key distribution protocol is sketched in Figure 4.1.

Figure 4.1 A DFSA model for the MM key distribution protocol

In Figure 4.1, A stands for an entity that wants to get the public key of another entity,

denoted by B, from the key distribution center, denoted by S. The above shows that the

entity A sends to the server S the message {A,B,ePS(eSA(A,NA))}, saying that I, the A,

want to get the public key of B, and encloses a challenge (A,NA) consisting of the identity

of A and a nonce NA. For authenticity the challenge is enciphered using the secret key of

A, indicating that the challenge originates from A. Also for secrecy, the authenticated

challenge is enciphered using the public key of the server, and only the server can

decipher it. Though such measures are employed, the challenge can be broken by an

intruder, which will be analyzed in detail below.

SSendToA
{A,B,ePA(eSS(A,PB,NA))}

ASendToS
{A,B,ePS(eSA(A,NA))}

0 1

47

For simplicity, some notation is introduced and listed in Table 4.1.

Table 4.1 The basic symbols for the analysis of the MM key distribution protocol

Symbol Definition of Events Integer ID for TCT
α1 ASendToIS{A,B,ePS(eSA(A,NA))} 2

α2 ARcvFromIS{A,B,ePA(eSS(A,PI,NA))} 4

β1 SRcvFromIA{A,I,ePS(eSA(A,NA))} 12

β2 SSendToIA{A,I,ePA(eSS(A,PI,NA))} 14

γ1 ISRcvFromA{A,B,ePS(eSA(A,NA))} 20

γ2 ICompose{A,I,ePS(eSS(A,NA))} 21

γ3 IASendToS{A,I,ePS(eSA(A,NA))} 23

γ4 IARcvFromS{A,I,ePA(eSS(A,PI,NA))} 24

γ5 ICompose{A,B,ePA(eSS(A,PI,NA))} 25

γ6 ISSendToA{A,B,ePA(eSS(A,PI,NA))} 27

∑G = {α1, α2, β1, β2 }
∑P = {γ1, γ2, γ3, γ4, γ5, γ6}
∑ = ∑G ∪ ∑P

∑c = {γ2, γ3, γ5, γ6}
∑L = ∑\{ α1, γ6}

As discussed in Section 3.4, first we have to define the legal language to depict the

objective of an assumed intruder. The intruder’s purpose here is to try to let A endorse the

key of the intruder as the public key of B, in turn enabling the intruder to impersonate B

to A in a future communication. According to the specification, it is not difficult to

construct the legal language K as in Figure 4.2. That is, the legal language K stands for

the objective of the intruder impersonating B to A. The intruder hopes that PI could be

endorsed by A as the public key of B, achieved in a legal way in accordance with the

specification of the corresponding protocol.

48

Figure 4.2 The legal language K for an attack on the MM key distribution protocol

As shown in the legal language of Figure 4.2, the intruder has to send the message

{A,B,ePA(eSS{A,PI,NA))}. Bearing in mind the general capability model shown in Figure

3.6, the intruder has to compose the message {A,B,ePA(eSS{A,PI,NA))}. However, a

possible way for the intruder to accomplish this is to get the message

{A,I,ePA(eSS(A,PI,NA))} first, since the difference between the message

{A,B,ePA(eSS{A,PI,NA))} and the message {A,I,ePA(eSS(A,PI,NA))} is very small in that

only the items at the second place of them are different, and these items are not

encrypted. Thus follows the capability model P1 shown in Figure 4.3 for the message

{A,B,ePA(eSS{A,PI,NA))}.

As shown in Figure 4.3, the intruder has to get the message {A,I,ePA(eSS(A,PI,NA))}

from the server S, enabling it to compose the required message coming from the legal

language. In order to get this message from server S, the intruder has to send the message

{A,I,ePS(eSA(A,NA))} to the server S. Therefore, the intruder must compose it first. For

ISSendToA
{A,B,ePA(eSS(A,PI,NA))}

ASendToIS
{A,B,ePS(eSA(A,NA))} ∑L∑L

0 1

49

the intruder to achieve this, it must get the message {A,B,ePS(eSA(A,NA))} first. So

follows another capability model P2 for the message {A,I,ePS(eSA(A,NA))}, that is shown

as Figure 4.4.

Figure 4.3 The capability model P1 for the message {A,B,ePA(eSS{A,PI,NA))}

Figure 4.4 The capability model P2 for the message {A,I,ePS(eSA(A,NA))}

IARcvFromS
{A,I,ePA(eSS(A,PI,NA))}

IC
o

m
p

o
se

{A
,B

,e
P

A
(e

S S
(A

,P
I,N

A
))

}

ISSendToA
{A,B,ePA(eSS(A,PI,NA))}

0

1

2

ISRcvFromA
{A,B,ePS(eSA(A,NA))}

IC
o

m
p

o
se

{A
,I

,e
P

S(
e

S A
(A

,N
A
))

}

IASendToS
{A,I,ePS(eSA(A,NA))}

0

1

2

50

Thus the overall capability model is

P = P1 ⊕ P2 + Self-Loop of ∑G\∑P at every state

Based on the capability models, we can derive the corresponding models for the initiator

denoted by MA, the server denoted by MS, and the channels CHNL1 and CHNL2. Those

models are shown in Figures 4.5-4.8, respectively. For instance, the

ISSendToA{A,B,ePA(eSS(A,PI,NA))} indicates that A is expected to receive the message

{A,B,ePA(eSS(A,PI,NA))}, so there will be an event

ARcvFromIS{A,B,ePA(eSS(A,PI,NA))}. In Figure 4.3 and 4.4, there are events

IARcvFromS{A,I,ePA(eSS(A,PI,NA))} and IASendToS{A,I,ePS(eSA(A,NA))}, which give

us a roadmap for the server S. After establishing those models for A and S, the

corresponding channels that govern the sending-receiving relationship can be produced

accordingly, where the sending-receiving relationship prevents a message from being

received before it is sent.

Figure 4.5 The model MA for the initiator A of the MM protocol

ARcvFromIS
{A,B,ePA(eSS(A,PI,NA))}

ASendToIS
{ePS(A,B,eSA(A,NA))}

0 1

51

Figure 4.6 The model MS for the server S of the MM protocol

Figure 4.7 The channel CHNL1 between the initator A and the intruder IS of the MM protocol

Figure 4.8 The channel CHNL2 between the intruder IA and the server S of the MM protocol

SSendToIA
{A,I,ePA(eSS(A,PI,NA))}

SRcvFromIA
{A,I,ePS(eSA(A,NA))}

0 1

ISRcvFromA
{A,B,ePS(eSA(A,NA))}

ASendToIS
{A,B,ePS(eSA(A,NA))}

ARcvFromIS
{A,B,ePA(eSS(A,PI,NA))}

ISSendToA
{A,B,ePA(eSs(A,PI,NA))}

02 1

SRcvFromIA
{A,I,ePS(eSA(A,NA))}

IASendToS
{A,I,ePS(eSA(A,NA))}

IARcvFromS
{A,I,ePA(eSS(A,PI,NA))}

SSendToIA
{A,I,ePA(eSs(A,PI,NA))}

0
2 1

52

After application of the Initial-State Join Composition (Definition 3.3 in Section 3.3), we

get the overall channel model, denoted by MC, i.e., MC = CHNL1 ⊕ CHNL2. Finally, the

plant for the analysis of the MM key distribution protocol is given by G = MA || MS ||

MC.

The result produced by the proposed approach and using TCT is shown in Figure 4.9.

The result shows exactly what the intruder is supposed to perform. It is not difficult for us

to verify the soundness of the result in that the key PI will be endorsed by A as a public

key of B, which confirms the documented attack [48]. The detailed data are presented in

Appendix A.

Figure 4.9 The intruder model for an attack on the MM protocol

ISRcvFromA
{A,B,ePS(eSA(A,NA))}

ICompose
{A,I,ePS(eSA(A,NA))}

IARcvFromS
{A,I,ePA(eSS(A,PI,NA))}

IA
S

e
nd

T
o

S
{A

,I
,e

P
S(

e
S A

(A
,N

A
))

}

ICompose
{A,B,ePA(eSS(A,PI,NA))}

IS
S

en
d

T
o

A
{A

,B
,e

P
A
(e

S S
(A

,P
I,N

A
))

}

0 1 2

345

53

4.2 Analysis of the Needham-Schroeder Authentication Protocol

In a distributed computer network, it is necessary to have some mechanism whereby a

pair of agents can be assured of each other’s identity—each should become sure that they

really are talking to the other, rather than to an intruder impersonating the other agent.

The Needham-Schroeder authentication protocol (abbreviated NS) aims to establish

mutual authentication between an initiator A and a responder B using a public-key

cryptographic system [2]. Each principal possesses a public key and a secret key. The

public key can be accessed by another principal from a key server. According to the NS

authentication protocol, the basic procedures for both the initiator and the responder to

authenticate each other are defined as follows:

(1) A → S: {A,B}

(2) S → A: {eSS(PB,B)}

(3) A → B: {ePB(NA,A)}

(4) B → S: {B,A}

(5) S → B: {eSS(PA,A)}

(6) B → A: {ePA(NA,NB)}

(7) A → B: {ePB(NB)}

As described above, A sends to a server S the message {A,B}, saying that I, participant A,

want to get the public key of B. In response, the server S sends to A the message

{eSS(PB,B)} which consists of the public key of B. Because the message is enciphered

54

using the secret key of the server S, this indicates the authenticity of the message, as only

the server knows its own secret key. After getting the public key PB of B, A composes and

sends the message {ePB(NA,A)} to B, saying “I am A and I want to talk to you, B.” The

challenge NA enclosed is used to ensure that the upcoming response indeed comes from

B, since it is assumed that only the B can decipher the message {ePB(NA,A)} to get NA,

and NA is a nonce. After decrypting the message {ePB(NA,A)}, B asks for the public key

PA from the server S by sending the message {B,A} to it. After getting PA, B composes

and sends the message {ePA(NA,NB)} to A, presuming that only A can decrypt it.

Similarly, NB is a nonce. After receiving and decrypting the message {ePA(NA,NB)}, A

responds to B by sending the message {ePB(NB)}. Up to then, A and B have authenticated

each other. At first glance, this procedure would function well, but unfortunately, there is

an attack on it, which will be analyzed in detail below.

From the description of the protocol, the key steps for participants A and B to authenticate

each other are (3), (6) and (7). That is, A sends a challenge {ePB(NA,A)} in a confidential

way, i.e., (NA,A) is encrypted under the public key of B so that only B is supposed to be

able to get (NA,A) via decrypting using his/her own secret key. This protocol demands

that B respond to the key element NA of the challenge in a simple way that just gives NA

back to the initiator A. It is accompanied by a challenge NB to the initiator A from B, so as

to save communication load. Both NA and NB are encrypted using the public key of A so

that A is the only one who is supposed to be able to decrypt it, then read it. Also the

response to the challenge NB of A is just to send it back to B. Therefore, we can conclude

55

that after the steps shown in Figure 4.10, the participants A and B will authenticate each

other.

Figure 4.10 The essence of the NS authentication protocol

For simplicity, some symbols are introduced and listed in Table 4.2.

Table 4.2 The basic symbols for the analysis of the Needham-Schroeder Authentication Protocol

Symbol Definition of Events Integer ID for TCT
α1 ASendToS{A,I} 2

α2 ARcvFromS{eSS(PI,I)} 4

α3 ASendToI{ePI(NA,A)} 6

α4 ARcvFromI{ePA(NA,NB)} 8

α5 ASendToI{ePI(NB)} 10

β1 BRcvFromIA{ePB(NA,A)} 22

β2 BSendToS{B,A} 24

β3 BRcvFromS{eSS(PA,A)} 26

β4 BSendToIA{ePA(NA,NB)} 28

β5 BRcvFromIA{ePB(NB)} 30

ρ1 SRcvFromA{A,I} 42

ρ2 SSendToA{eSS(PI,I)} 44

ρ3 SRcvFromB{B,A} 46

ρ4 SSendToB{eSS(PA,A)} 48

ρ5 SRcvFromI{I,B} 50

ASendToB
{ePB(NA, A)}

BSendToA
{ePA(NA,NB)}

ASendToB
{ePB(NB)}

0

12

56

ρ6 SSendToI{eSS(PB,B)} 52

γ1 IRcvFromA{ePI(NA,A)} 62

γ2 ISendToS{I,B} 63

γ3 IRcvFromS{eSS(PB,B)} 64

γ4 ICompose{ePB(NA,A)} 65

γ5 IASendToB{ePB(NA,A)} 67

γ6 IRcvFromA{ePI(NB)} 68

γ7 ICompose{ePB(NB)} 69

γ8 IASendToB{ePB(NB)} 71

γ9 IARcvFromB{ePA(NA,NB)} 72

γ10 ISendToA{ePA(NA,NB)} 73

∑G = {αi, i=1…5}∪{ βi, i=1…5}∪{ γ2, γ3, γ4}
∑P = {γ1, γ5, γ6, γ7, γ8, γ10, γ11, γ12, γ13, γ14}
∑ = ∑G ∪ ∑P

∑c = {γ2, γ4, γ6, γ7, γ9, γ11, γ12, γ13, γ14}
∑L = ∑\{ β4, γ6, γ10, γ13, γ14}

According to the proposed analysis scheme, we will start with the establishment of a

legal language, capturing an intruder’s objective of breaking the NS authentication

protocol. The legal language should be a sequence of actions of an intruder, which is

supposed to allow it to do the "bad thing" in a feasible way. Here the intruder under

investigation is going to impersonate A to B without being detected. Therefore the events

ASendToB{ePB(NA,A)}, BSendToA{ePA(NA,NB)} and ASendToB{ePB(NB)} in Figure

4.10 should be replaced by IASendToB{ePB(NA,A)}, BSendToIA{ePA(NA,NB)} and

IASendToB{ePB(NB)}, respectively. Consequently, the model shown in Figure 4.11 for

the legal language allows the intruder to fulfill his/her objective, i.e., impersonating A to

B. In addition, through comparison, we can find there is a difference between Figure 4.10

and Figure 4.11, in that there are additional self-loops at every state of Figure 4.11.

57

Because we should allow for occurrences of a set ∑L of other events between those events

shown in Figure 4.10, therefore the self-loops appear in the legal language K.

Figure 4.11 The legal language K for an attack on the NS authentication protocol

For each message an intruder must send in the legal language, there will be a capability

model. According to the legal language, it is necessary for the intruder to send to B the

message {ePB(NA,A)} as shown in Figure 4.11 and from the general capability model

shown in Figure 3.6, we can produce the capability model P1 for this message, which is

sketched in Figure 4.12.

IASendToB
{ePB(NA, A)}

BSendToIA
{ePA(NA, NB)}

IASendToB
{ePB(NB)}

∑L

∑L ∑L

0

12

58

Figure 4.12 The capability model P1 for the message {ePB(NA,A)}

From the legal language shown in Figure 4.11, one can see that the intruder has to send to

B the message {ePB(NB)}; this requires a capability model P2 for this message, which is

sketched in Figure 4.13. Because the intruder has already got the public key PB of the

responder B while composing the message {ePB(NA,A)}, it is not necessary to ask for the

key from the server again.

Figure 4.13 The capability model P2 for the message {ePB(NB)}

IR
cv

F
ro

m
S

{e
S

S(
P

B
,B

)}

ICompose
{ePB(NA,A)}

IRcvFromA
{ePI(NA,A)}

IASendToB
{ePB(NA,A)}

ISendToS
{I,B}

0

1 2

34

ICompose
{ePB(NB)}

IASendToB
{ePB(NB)}

IRcvFromA
{ePI(NB)}

0

1

2

59

According to the capability model shown in Figure 4.13 for the message {ePB(NB)} and

the specification of the given protocol, we see that the intruder needs to send to A the

message {ePA(NA,NB)} so as to enable it to receive from A the message {ePI(NB)}.

Therefore, from the general capability model shown in Figure 3.6, we can produce the

capability model P3 as sketched in Figure 4.14 for the message {ePA(NA,NB)}.

Figure 4.14 The capability model P3 for the message {ePA(NA,NB)}

Thus, the overall capability model, denoted by P, is as follows:

P = P1 ⊕ P2 ⊕ P3 + Self-Loop of ∑G\ ∑P at every state

The legal language K as shown in Figure 4.11 indicates that B functions as a responder

with relation to IA. Thus, we can derive the models for A and S according to the

specification of the given protocol, in conjunction with Figure 4.12. In addition, the

intruder has to send to B the message {ePB(NB)} according to the legal language given in

Figure 4.11. In order to achieve this, the intruder wants to get the message {ePI(NB)},

ISendToA
{ePA(NA,NB)}

IARcvFromB
{ePA(NA,NB)}

0 1

60

very similar to {ePB(NB)}, therefore, the intruder should send the message {ePA(NA,NB)}

to A so as to get the corresponding message from A. Thus, the DFSA governing the

behavior of the initiator A, denoted by MA, is shown in Figure 4.15. In addition, the

intruder sends the message {ePB(NA,A)} to B so as to initiate a communication session in

the hope that it is considered by B to be A. In turn, the intruder is expecting to get the

message {ePA(NA,NB)} from B. Consequently, the intruder has to send the message

{ePB(NB)} to B to accomplish the authentication. Therefore, MB, the DFSA for modeling

the responder B follows, and is shown in Figure 4.16. Based on the models for A and B, it

is not difficult to derive the model MS for the trusted server, which is depicted in Figure

4.17. In turn, the channel models CHNL1, CHNL2, CHNL3, CHNL4, and CHNL5 for

modeling the relationship of sending-receiving can be constructed as in Figures 4.18-

4.22, respectively. For the sake of simplicity, the information transferred between the

server and another participant is assumed not to be intercepted by the intruder.

Figure 4.15 The DFSA model MA for the initiator A of the NS protocol

ASendToS
{A, I}

ARcvFromS
{eSS(PI,I)}

ASendToI
{ePI(NA,A)}

ARcvFromI
{ePA(NA,NB)}

ASendToI
{ePI(NB)}

0

1 2

34

61

Figure 4.16 The DFSA model MB for the responder B of the NS protocol

Figure 4.17 The DFSA model MS for the server S of the NS protocol

BRcvFromIA
{ePB(NA,A)}

BSendToS
{B,A}

BRcvFromS
{eSS(PA,A)}

BSendToIA
{ePA(NA,NB)}

BRcvFromIA
{ePB(NB)}

0

1 2

34

SRcvFromI
{I,B}

SSendToB
{eSS(PA,A)}

SRcvFromA
{A,I}

SSendToI
{eSs(PB,B)}

SSendToA
{eSS(PI,I)}

SRcvFromB
{B,A}

03

2

1

62

Figure 4.18 The channel CHNL1 between A and I of the NS protocol

Figure 4.19 The channel CHNL2 between B and I of the NS protocol

Figure 4.20 The channel CHNL3 between A and S of the NS protocol

ASendToI
{ePI(NB)}

ARcvFromI
{ePA(NA,NB)}

ASendToI
{ePI(NA,A)}

IRcvFromA
{ePI(NB)}

IRcvFromA
{ePI(NA,A)}

ISendToA
{ePA(NA,NB)}

1

2

3 0

IASendToB
{ePB(NB)}

IARcvFromB
{ePA(NA,NB)}

IASendToB
{ePB(NA,A)}

BRcvFromIA
{ePB(NB)}

BRcvFromIA
{ePB(NA,A)}

BSendToIA
{ePA(NA,NB)}

1

2

3 0

ARcvFromS
{eSS(PI,I)}

SSendToA
{eSS(PI,I)}

SRcvFromA
{A,I}

ASendToS
{A,I}

0
2 1

63

Figure 4.21 The channel CHNL4 between B and S of the NS protocol

Figure 4.22 The channel CHNL5 between I and S of the NS protocol

Thus, the overall channel model is MC = CHNL1 ⊕ CHNL2 ⊕ CHNL3 ⊕ CHNL4 ⊕

CHNL5. Finally, the plant under investigation is given by G = MA || MB || MS || MC.

The result given by TCT shows that an intruder does exist, and its behavior is given in

Figure 4.23. The result conforms to the documented attack [5]. The detailed data are

shown in Appendix B.

BRcvFromS
{eSS(PI,I)}

SSendToB
{eSS(PA,A)}

SRcvFromB
{B,A}

BSendToS
{B,A}

2
0 1

IRcvFromS
{eSS(PB,B)}

SSendToI
{eSS(PB,B)}

SRcvFromI
{I,B}

ISendToS
{I,B}

2 10

64

Figure 4.23 The intruder model for an attack on the NS protocol

4.3 Analysis of the Tatebayashi-Matsuzaki-Newman Key Distribution
Protocol

Key establishment is a critical issue of data protection while the data are transferred

among open networks. M. Takebayashi, N. Matsuzaki and D. B. Newman proposed a key

distribution protocol (abbreviated TMN) for digital mobile communication systems of a

star-type network [54]. Each user terminal in the system communicates with another user

via a network center. The objectives of the proposed key distribution protocol are as

follows:

IRcvFromA
{ePI(NA,A)}

ISendToS
{I,B}

IARcvFromB
{ePA(NA,NB))}

ISendToA
{ePA(NA,NB)}

IRcvFromS
{eSs(PB,B)}

IC
o

m
p

o
se

{e
P

B
(N

A
,A

)}
IA

S
e

nd
T

o
B

{e
P

B
(N

A
,A

)}

IRcvFromA
{ePI(NB)}

IC
o

m
p

o
se

{e
P

B
(N

B
)}

IA
S

e
nd

T
o

B
{e

P
B
(N

B
)}

1 2 3

9

8 7

4

6 5

0

65

• To remove the key management at a network center

• To enable hardware-limited user terminals to establish a session key in a reasonable

time

This protocol assumes that a network has a service center that distributes a session key to

the requesting terminals. The TMN protocol uses the public key scheme proposed by R.

Rivest, A. Shamir, and L. Adleman [21], the so-called RSA public key scheme, to

encrypt a nonce produced at a terminal and decrypt it at a service center. In the classical

key distribution method, a symmetric-key cryptographic scheme is used, the session key

is encrypted by the terminal’s secret key, which requires that the service center should

manage each terminal’s secret key. If an asymmetric-key cryptographic scheme is

employed for securing the session key, then secret key management is shifted to the end

user, thus reducing the secret key management problem for the service center. However,

the corresponding decryption at a user terminal of limited hardware will take an

intolerably long time. Therefore, the TMN protocol uses a simple substitution

cryptographic method to secure the session key.

In order to understand the TMN protocol, we hereby briefly describe both RSA and the

simple substitution cryptographic schemes. First, we consider the RSA scheme. Let N be

a product of two prime numbers p and q. The least common multiplier of p-1 and q-1 is

denoted by L. Choose encryption key PA and the corresponding decryption key SA such

that PASA = 1 (modulo L). Then, ePA(X) = () YNX AP ≡mod and dSA(Y) =

() XNY AS ≡mod . Second, the substitution cryptographic scheme used by the TMN

66

protocol is as follows: eSA(X) = () YNSX A ≡+ mod and dSA(Y) = () XNSY A ≡− mod .

In order to tell the difference, we introduce the following notation:

e1PA(X) = ()NX AP mod

d1SA(X) = ()NX AS mod

e2SA(X) =)(modNSX A+

d2SA(X) =)(modNSX A−

Let A denote an initiator, B denote a responder, and S denote the service center. Thus, the

TMN key distribution protocol can be described as follows:

(1) A → S: {A,B,e1PS(NA)}

(2) S → B: {A,B}

(3) B → S: {A,B,e1PS(NB)}

(4) S → A: {A,B,e2NA(NB)}

A DFSA model for the TMN key distribution protocol is sketched as Figure 4.24.

67

Figure 4.24 A DFSA model for the TMN key distribution protocol

For simplicity, some symbols are introduced and listed in Table 4.3.

Table 4.3 The basic symbols for the analysis of Tatebayashi-Matsuzaki-Newman Key Distribution Protocol

Symbol Definition of Events Integer ID for TCT
α1 ASendToIS{A,B,e1PS(NA)} 2

α2 ARcvFromIS{A,B,e2NA(NB)} 4

β1 BRcvFromIS{A,B} 12

β2 BSendToIS{A,B,e1PS(NB)} 14

ρ1 SRcvFromIA{A,B,e1PS(NA)} 32

ρ2 SSendToIB{A,B} 34

ρ3 SRcvFromIB{A,B,e1PS(NB)} 36

ρ4 SSendToIA{A,B,e2NA(NB)} 38

ρ5 SRcvFromI{I,I′,e1PS(NB)} 40

ρ6 SSendToI′{I,I ′} 42

ρ7 SRcvFromI′{I,I ′,e1PS(K)} 44

ρ8 SSendToI{I,I′,e2K(NB)} 46

γ1 ISendToS{I,I′,e1PS(NB)} 61

γ2 I′RcvFromS{I,I′} 62

γ3 I′SendToS{I,I′,e1PS(K)} 63

γ4 IRcvFromS{I,I′,e2K(NB)} 64

γ5 ISRcvFromB{A,B,e1PS(NB)} 66

γ6 ICompose{I,I′,e1PS(NB)} 67

γ7 ISRcvFromA{A,B,e1PS(NA)} 68

BRcvFromS
{A,B}

ASendToS
{A,B,e1PS(NA)}

BSendToS
{A,B,e1PS(NB)}

ARcvFromS
{A,B,e2NA(NB)}

0 1

23

68

γ8 IASendToS{A,B,e1PS(NA)} 69

γ9 IBRcvFromS{A,B} 70

γ10 ISSendToB{A,B} 71

γ11 IBSendToS{A,B,e1PS(NB)} 73

γ12 IARcvFromS{A,B,e2NA(NB)} 74

γ13 ISSendToA{A,B,e2NA(NB)} 75

∑G = {α1, α2} ∪{ β1, β2} ∪{ ρi, i=1…8}
∪{ γ2, γ3, γ4, γ7, γ9, γ12}

∑P = {γ1, γ5, γ6}
∑ = ∑G ∪ ∑P

∑c = {γ1, γ3, γ6, γ8, γ10, γ11, γ13}
∑L = ∑\{ γ1, γ2, γ3, γ4}

The attack under study on the TMN key distribution protocol is to get a session key used

by two participants A and B. Hereby I and I′ stand for a pair of intruders in cooperation. If

A is the initiator, the session key is a nonce generated by B, denoted by NB. By the

implicit assumption that the RSA algorithm is secure, it follows that intruders cannot

derive NB directly from the knowledge of e1PS(NB). However, if intruders get knowledge

of {I,I ′,e2K(NB)}, then by knowing e2K(NB) = {K+NB (mod N)}, they can derive NB

easily, in conjunction with knowing K. According to the specification of the TMN

protocol, in order to allow the intruder I to receive the message {I,I′,e2K(NB)}, the

intruder I′ has to send to S the message {I,I′,e1PS(K)}. Before that, however, the event

that I′ receives from S the message {I,I′} must occur. Furthermore, the event that I′

receives from S the message must follow the event that I sends to S the message

{I,I ′,e1PS(NB)}. Therefore, the corresponding legal language K is shown as in Figure

4.25.

69

Figure 4.25 The legal language K for an attack on the TMN protocol

In addition, before sending to S the message {I,I′,e1PS(NB)}, the intruder has to compose

this message first. Since an intruder is assumed to be able to intercept any message

transmitted among any pair of participants in the network, an intruder can intercept the

message {A,B,e1PS(NB)}. Therefore based on the general capability model shown in

Figure 3.6, it follows that the corresponding capability DFSA model P for this message is

as shown in Figure 4.26.

I′RcvFromS

{ I,I′}

ISendToS

{ I,I′,e1PS(NB)}

I′SendToS

{I,I ′,e1PS(K)}

IRcvFromS

{ I,I′,e2K(NB)}

∑L ∑L

∑L ∑L

3 2

10

70

Figure 4.26 The capability model P for the message {I,I′,e1PS(NB)}

From those events shown in Figure 4.26 and the discussion above, we should take into

consideration a pair of principals, A and B, in a run of the TMN protocol. Based on the

capability models and the specification of the TMN key distribution protocol, we can

derive a model for the initiator denoted by MA, a model for the responder denoted by MB,

a model for the server denoted by MS, and models for channels CHNL1, CHNL2,

CHNL3, CHNL4, CHNL5 and CHNL6. Those models are shown in Figures 4.27-4.35,

respectively. As we know, the channel models are used to keep sending-receiving

orderings among events. No message can be received before it is sent. For the sake of

simplicity, we assume that the information transferred between the server and another

participant is not intercepted by the intruders.

ICompose

{I,I ′,e1PS(NB)}

ISendToS

{I,I ′,e1PS(NB)}

ISRcvFromB
{A,B,e1PS(NB)}

∑G\∑P

∑G\∑P

∑G\∑P

1

0

2

71

Figure 4.27 The model MA for the initiator A of the TMN protocol

Figure 4.28 The model MB for the responder B of the TMN protocol

ARcvFromIS
{A,B,e2NA(NB)}

ASendToIS
{A,B,e1PS(NA)}

10

BSendToIS
{A,B,e1PS(NB)}

BRcvFromIS
{A,B}

10

72

Figure 4.29 The model MS for the server S of the TMN protocol

Figure 4.30 The channel CHNL1 between the intiator A and the intruder IS of the TMN protocol

Figure 4.31 The channel CHNL2 between the responder B and the intruder IS of the TMN protocol

SSendToI′
{I,I ′}

SRcvFromI

{I,I ′,e1PS(NB)}

SRcvFromI′
{I,I ′,e1PS(K)}

IRcvFromS

{I,I ′,e2K(NB)}
SSendToIA
{A,B,e2NA(NB)}

SSendToIB
{A,B}

SRcvFromIA
{A,B,e1PS(NA)}

SRcvFromIB
{A,B,e1PS(NB)}36

4

05

1

2

ARcvFromIS
{A,B,e2NA(NB)}

ISSendToA
{A,B,e2NA(NB)}

ISRcvFromA
{A,B,e1PS(NA)}

ASendToIS
{A,B,e1PS(NA)}

2 0 1

ISRcvFromB
{A,B,e2NA(NB)}

BSendToIS
{A,B,e2NA(NB)}

BRcvFromIS
{A,B}

ISSendToB
{A,B}

0 12

73

Figure 4.32 The channel CHNL3 between the server S and the intruder I of the TMN protocol

Figure 4.33 The channel CHNL4 between the server S and the intruder I �′ of the TMN protocol

Figure 4.34 The channel CHNL5 between the server S and the intruder IA of the TMN protocol

IRcvFromS

{ I,I′,e2K(NB)}

SSendToI

{ I,I′,e2K(NB)}

SRcvFromI

{ I,I′,e1PS(NA)}

ISendToS

{ I,I′,e1PS(NA)}

2 0 1

SRcvFromI′
{I,I ′,e1PS(K)}

I′SendToS
{I,I ′,e1PS(K)}

I′RcvFromS
{I,I ′}

SSendToI′
{I,I ′}

2 10

IARcvFromS
{A,B,e2NA(NB)}

SSendToIA
{A,B,e2NA(NB)}

SRcvFromIA
{A,B,e1PS(NA)}

IASendToS
{A,B,e1PS(NA)}

12
0

74

Figure 4.35 The channel CHNL6 between the intruder IB and the server S of the TMN protocol

Thus, the overall channel model is MC = CHNL1 ⊕ CHNL2 ⊕ CHNL3 ⊕ CHNL4 ⊕

CHNL5 ⊕ CHNL6. Finally, the plant under investigation is given by G = MA || MB || MS

|| MC.

The result given by TCT shows that an intruder does exist; the behavior of the intruder is

described by a DFSA that has 84 states and 256 transitions. Though it is hard to depict in

a simple figure, it can be verified that the result satisfies the constraints imposed by the

legal language and the capability model. This can be done by checking if both the legal

language and the capability model are controllable (Definition 2.2 in Section 2.2) with

respect to the plant resulting from the parallel composition of the models for the initiator,

the responder, the server, the intruder and the channels. The related detailed data are

shown in the Appendix C.

In addition, the attack described here cannot be prevented by the countermeasure

introduced by M. Takebayyashi, N. Matsuzaki, and D. B. Newman [54]. As we

SRcvFromIB
{A,B,e1PS(NB)}

IBSendToS
{A,B,e1PS(NB)}

IBRcvFromS
{A,B}

SSendToIB
{A,B}

2
0 1

75

described, in essence, the intruder does not need to find another number, say NI, to

construct {I,I′,e1PS(NINB)} as described in [54]. Instead, the intruder just sends to the

server {I,I′,e1PS(NB)}, leaving no way for the server to check whether or not the received

number is larger than the prescribed upper bound [54].

4.4 Analysis of Netscape’s Original SSL Protocol

Netscape Communications Corporation developed a Secure Sockets Layer protocol

(SSL) in 1994 [55]. It is used to transmit private documents via the Internet. The SSL

protocol creates a secure connection between a client and a server, establishing a

corresponding secret session key. Then both the server and the client use the secret

session key to encrypt data that are transferred over the SSL connection. Both Netscape

Navigator and Internet Explorer support SSL. Many web sites use the protocol to obtain

confidential user information, such as credit card numbers. By convention, web pages

that require an SSL connection start with https instead of http. In order to understand the

protocol, it is necessary to learn about digital certificates.

The related procedures for the client authentication in the SSL protocol are as follows:

(1) A → S: {ePS(KAS)}

(2) S → A: {eKAS(NS)}

(3) A → S: {eKAS(CA,eSA(NS))}

76

First, the client A sends to the server S a session key KAS, encrypted using the public key

PS of the server S. It is worthwhile to point out that KAS is picked by A, usually by means

of a Random Number Generator. Also KAS is not assumed to be of a pattern word

indicating the identity of a generator. Then S produces a challenge NS, which A signs and

returns along with a certificate CA. The protocol appears to work well in that it follows

the principle of so-called signature-then-encryption. However, there is a flaw in the client

authentication with the SSL protocol, as mentioned by Abadi and Needham in [56].

While [56] states that there is a flaw, it does not give a detailed description of how an

intruder attacks the protocol. Here, we use the proposed method to get a model that

describes in detail how the intruder behaves. According to the description of the SSL

protocol, we can draw a diagram, which consists of the procedures for client

authentication, shown in Figure 4.36.

Figure 4.36 The essence of the client authentication in SSL protocol

For simplicity, some symbols are introduced and listed in Table 4.4.

SSendToA
{eKAS(NS)}

ASendToS
{eKAS(CA,eSA(NS))}

ASendToS
{ePS(KAS)}

1

20

77

Table 4.4 The basic symbols for the analysis of Netscape’s original SSL protocol

Symbol Definition of Events Integer ID for TCT
α1 AsendToI{ePI(KAI)} 2

α2 ArcvFromI{eKAI(NS)} 4

α3 AsendToI{eKAI(CA,eSA(NS))} 6

β1 SRcvFromIA{ePS(KAS)} 12

β2 SsendToIA{eKAS(NS)} 14

β3 SRcvFromIA{eKAS(CA,eSA(NS)} 16

γ1 IASendToS{ePS(KAS)} 41

γ2 IrcvFromA{eKAI(CA,eSA(NS))} 42

γ3 Icompose{eKAS(CA,eSA(NS))} 43

γ4 IASendToS{eKAS(CA,eSA(NS))} 45

γ5 IrcvFromA{ePI(KAI)} 46

γ6 IARcvFromS{eKAS(NS)} 48

γ7 Icompose{eKAI(NS)} 49

γ8 IsendToA{eKAI(NS)} 51

∑G = {αi, i=1…3}∪{ βi, i=1…3}∪{ γ1}
∑P = {γ2, γ3, γ4, γ5, γ6, γ7, γ8}
∑ = ∑G ∪ ∑P

∑c = {γ1, γ3, γ4, γ7, γ8}
∑L = ∑\{ β2, γ1, γ4}

Here, we study the attack of an intruder’s impersonating A in that it acts like A, thus we

substitute every A with IA in the event labels (but not in the message contents) in Figure

4.36. This yields the legal language K as shown in Figure 4.37.

78

Figure 4.37 The legal language K for an attack on the SSL protocol

According to the legal language shown in Figure 4.37, it is necessary for the intruder to

send to S the message {ePS(KAS)}. It is easy for an intruder to compose this message in

that KAS is a normal random number, so the intruder can just pick some number, then

encrypt it using the public key PS of the server. The intruder can now claim that the

picked number is KAS, since the server would not be able to tell the difference. Therefore

we don’t need to build a capability model for {ePS(KAS)}. For the message

{eKAS(CA,eSA(NS))}, there will be a capability model. If the intruder, denoted by I, can

get a message {eKAI(CA,eSA(NS))} where KAI is a session key between the client A and

the intruder I, then the intruder can compose the required

message{eKAS(CA,eSA(NS))}from the message {eKAI(CA,eSA(NS))} since the intruder

knows both the KAI chosen by the client A and KAS chosen by itself. Referring to the

general capability model shown in Figure 3.6, we can produce the capability model P1 for

this message as shown in Figure 4.38.

SSendToIA
{eKAS(NS)}

IASendToS
{eKAS(CA,eSA(NS))}

IASendToS
{ePS(KAS)}

∑L

∑L ∑L

0

1

2

79

Figure 4.38 The capability model P1 for the message eKAS(CA,eSA(NS))

From Figure 4.38, we see that the event IRcvFromA{eKAI(CA,eSA(NS))} is a possible

event and so we have to figure out how the event IRcvFromA{eKAI(CA,eSA(NS))} could

occur. Studying the specification of the SSL protocol, we can find one way where if the

intruder first sends to A the message {eKAI(NS)}, then the event will follow. In this case,

we would need a capability model P2 for the message {eKAI(NS)}, which is sketched in

Figure 4.39.

IC
o

m
p

o
se

{e
K

A
S
(C

A
,e

S A
(N

S)
)}

IRcvFromA
{eKAI(CA,eSA(NS))}

IASendToS
{eKAS(CA,eSA(NS))} 2

0

1

80

Figure 4.39 The capability model P2 for the message {eKAI(NS)}

Thus, the overall capability model, denoted by P, is as follows:

P = P1 ⊕ P2 + Self-Loop of ∑G \ ∑P at every state

Based on the capability models and the specification of the SSL protocol, we can derive a

model for the initiator, denoted by MA, a model for the server, denoted by MS, and

models for the channels CHNL1 and CHNL2. They are shown in Figures 4.40-4.43. For

example, since the intruder expects to receive from A messages {ePI(KAI)} and {eKAI(CA,

eSA(NS))}, it follows that A should initiate a secret session with the intruder as a server.

Therefore A is supposed to act as shown in Figure 4.40. It is rather apparent that the

behavior of the server S is governed by the model shown in Figure 4.41. In order to

prevent a message from being received before it is sent, we introduce a channel model to

guarantee this cause-effect relationship. After the establishment of DFSA models for A

IA
R

cv
F

ro
m

S
{e

K
A

S
(N

S)
}

IRcvFromA
{ePI(KAI)}

ICompose
{eKAI(NS)}

IS
e

nd
T

o
A

{e
K

A
I(

N
S)

}
3

0 1

2

81

and S, we can build corresponding DFSA models for the relevant channels. For instance,

in the model shown in Figure 4.42 for a channel between A and the intruder, the event

IRcvFromA{ePI(KAI)} must follow the event ASendToI{ePI(KAI)}. Similarly, the event

ARcvFromI{eKAI(NS)} should occur after the occurrence of the event

ISendToA{eKAI(NS)}. By the Initial-State Join Composition, we get the overall channel

model, i.e., MC = CHNL1 ⊕ CHNL2. Finally, the plant under investigation is given by G

= MA || MS || MC.

Figure 4.40 The model MA for the initiator A of the SSL protocol

Figure 4.41 The model MS for the server S of the SSL protocol

A
R

cv
F

ro
m

I
{e

K
A

I(
N

S)
}

ASendToI
{ePI(KAI)}

ASendToI
{eKAI(CA,eSA(NS))}

0

1

2

S
S

en
d

T
o

IA
{e

K
A

S
(N

S)
}

SRcvFromIA
{ePS(KAS)}

SRcvFromIA
{eKAS(CA,eSA(NS))}

0

1

2

82

Figure 4.42 The channel CHNL1 between A and I of the SSL protocol

Figure 4.43 The channel CHNL2 between IA and S of the SSL protocol

The result given by TCT shows that an intruder does exist; the behavior of the intruder is

given in Figure 4.44. The detailed data are shown in Appendix D. Though the result

shows that the event IASendToS{ePS(KAS)} can occur either before or after the event

ASendToI
{eKAI(CA,eSA(NS))}

ARcvFromI
{eKAI(NS)}

ASendToI
{ePI(KAI)}

IRcvFromA
{eKAI(CA,eSA(NS))}

IRcvFromA
{ePI(KAI)}

ISendToA
{eKAI(NS)}

0 1

2

3

IASendToS
{eKAS(CA,eSA(NS))}

IARcvFromS
{eKAS(NS)}

IASendToS
{ePS(KAS)}

SRcvFromIA
{eKAS(CA,eSA(NS))}

SRcvFromIA
{ePS(KAS)}

SSendToIA
{eKAS(NS)}

3

2

10

83

IRcvFromA{ePS(KAI)}, different ordering of their occurrences will result in different

situations: if the event IRcvFromA{ePS(KAI)} occurs first, then this means that the

intruder can actively start the event IASendToS{ePS(KAS)}. On the other hand, if the

intruder first performs IASendToS{ePS(KAS)}, it has to wait for the occurrence of the

event IRcvFromA{ePS(KAI)}, which is not under its control. Thus it is quite possible that

after long period of time waiting, the server S can then terminate the corresponding run of

the SSL protocol. That is, the intruder may fail to attack the protocol by impersonating A

to S.

Figure 4.44 The intruder model for an attack on the SSL protocol

IRcvFromA
{ePI(KAI)}

ISendToA
{eKAI(NS)}

IRcvFromA
{eKAI(CA,eSA(NS))}

IASendToS
{ePs(KAS)}

IA
R

cv
F

ro
m

S
{e

K
A

S
(N

S)
}

IC
o

m
p

o
se

{e
K

A
I(

N
S)

}

IC
o

m
p

o
se

{e
K

A
S
(C

A
,e

S A
(N

S)
)}

IA
S

e
nd

T
o

S
{e

K
A

S
(C

A
,e

S A
(N

S)
)}

IRcvFromA
{ePI(KAI)}

IASendToS
{ePs(KAS)}

0

1

3

4

5

2

67

8

84

5 Automatic Scheme and Perspectives

In this chapter, we discuss the limiting factors for application of the proposed method

described in Chapter 3. We then touch on the issue of constraints of a state-transition

based modeling approach for the analysis of cryptographic protocols. Finally, we propose

an automatic system for supporting the application of the proposed method.

5.1 Methods and Beyond

For cryptographic protocols, there are two major classes of analysis techniques: state-

transition based approaches and logical approaches. While there have been successes

with both approaches, each has its limitations and research continues into improving

them. The algebraic approach [47,61-65] is to model the system as a state-transition

based machine, to identify bad states and show that they cannot be reached under the

assumptions of the protocol. A difficulty of the approach is how to fully define the

abilities of the attacking process and what exactly constitutes a bad protocol state. In

addition, there is a need for a computer tool to search the state space. The logical

approach [7,34,46,66] models the belief and/or knowledge of each protocol principal and

uses global inference rules to try to achieve the desired final beliefs after the protocol is

complete. Difficulties here include how to translate between the logical language and the

usual manner of protocol description.

85

Since the supervisory control framework of DESs is based on automata and formal

language theory, our proposed method for the analysis of cryptographic protocols is, in

essence, a state-transition based technique. As long as an approach uses a state-transition

mechanism, no matter what name is used one has to explore those traces that lead to an

insecure scenario. Therefore, it is necessary that the models created for the analysis of

cryptographic protocols include those bad traces. However, such a task cannot be easily

accomplished, because a combinatorial explosion of the number of states can result from

the synchronous actions of all principals, including an intruder under consideration. As

described in the previous chapter, in order to analyze an attack, we have to define a legal

language based on the specification of a given protocol. The legal language tells us the

sequences of events that should occur so as to enable the intruder to achieve its objective.

Accordingly we need to try to build a so-called capability model for every message that is

supposed to be sent by the intruder. We also have to build a number of models for related

participants and channels. Then the intruder problem can be solved by the proposed

method based on the supervisory control framework of DESs, and a resultant DFSA

model will be produced for the intruder. Our proposed method is characterized by its

goal-guided back-tracking mode, i.e., starting with a legal language, through constructing

capability models, to building models for all participants and corresponding channel

models. The state-space created by our method is bounded by the state-space of the

participants that are involved in an intruder attack, the channels, the DFSA for the legal

language, and the DFSA for the capability model. In contrast, in many methods discussed

in [44], a larger number of participants and product runs are considered, thus increasing

the computational efforts necessary to find an attack.

86

Though our proposed method helps a lot in reducing the modeling state space, the

construction of the requisite DFSA models such as the legal language, capability models

and models for all participants and channels still requires human experience, especially

for the capability models. Thus a scheme for automatically creating the related DFSA

models is desirable. Fortunately, since the DFSA models constructed by our methodology

are simple and possess a high degree of modularity, it seems that an automatic scheme

based on the technology of an expert system or artificial intelligence could be developed.

In conjunction with the TCT software package, the following automatic scheme will

make the proposed method fully automatic, so that it will become more attractive and

practical.

5.2 Basic Principles

Although the state-transition based method can describe a run of a cryptographic protocol

clearly and easily, it is well known that the subtlety of cryptographic protocols makes

their design and analysis difficult. What we should ask is how many runs of the protocol

and how many participants should be considered for an attack? There is a prohibitively

huge number of combinatorial state-transitions which could be derived from almost any

cryptographic protocol, because a good number of participants might take part in a

number of runs of protocol. Up to now, we cannot assume an infinite amount of memory

and disk space; neither can we assume an infinite-speed CPU (Central Processing Unit).

87

Therefore, this requires a production mechanism to derive new state-transitions based on

current states, ultimately to construct required capability models, or to assert that an

attack does not exist. The efficiency and effect of a production mechanism depends

mainly on the way of presenting the set of state-transitions, where different

representations result in different data structures and access methods. Using production

rules to represent the set of state-transitions can help. Here we will give a principle for

characterizing a set of valid transitions to get rid of storing a huge number of specific

transitions. The Transition Production Principle is given as follows.

Principle 5.1 [Transition Production Principle]

If a run of a cryptographic protocol gives a set of transitions, involving a group of

participants, then the following hold.

• Any role exchanges among members in this group of participants will produce a new

set of transitions.

• Any member changes of the participants, where some new principals substitute for

old principals, will produce a new set of transitions.

As for role exchange, take the Netscape’s original SSL protocol for an example. Let Ω(A:

Client; B: Server) denote the set of state-transitions produced in a run of the SSL

protocol, where A is a client and B is a server. It is not difficult for us to obtain

Ω(A: Client; B: Server) = {ASendToB{ePB(KAB)}, BRcvFromA{ePB(KAB)},

88

BSendToA{eKAB(NB)}, ARcvFromB{eKAB(NB)},

ASendToB{eKAB(CA,eSA(NB))}, BRcvFromA{eKAB(CA,eSA(NB))} }.

Then we have

Ω(B: Client; A: Server) = {BSendToA{ePA(KBA)}, ARcvFromB{ePA(KBA)},

ASendToB{eKBA(NA)}, BRcvFromA{eKBA(NA)},

BSendToA{eKBA(CB,eSB(NA))}, ARcvFromB{eKBA(CB,eSB(NA))} }.

Any event of both Ω(A: Client; B: Server) and Ω(B: Client; A: Server) should be

considered as a valid transition in the new system.

As for group member change, take the Needham-Schroeder authentication protocol for an

example. Let Ω(A: Initiator; B: Responder; S: Server) denote the set of transitions

produced in a run of the authentication protocol. Then we can get

Ω(A: Initiator; B: Responder; S: Server) = {ASendToS{A,B}, SRcvFromA{A,B},

SSendToA{eSS(PB,B)}, ARcvFromB{eSS(PB,B)},

ASendToB{ePB(NA,A)}, BRcvFromA{ePB(NA,A)},

BSendToS{B,A}, SRcvFromB{B,A},

SSendToB{eSS(PA,A)}, BRcvFromS{eSS(PA,A)},

BSendToA{ePA(NA,NB)}, ARcvFromB{ePA(NA,NB)},

ASendToB{ePB(NB)}, BRcvFromA{ePB(NB)} }.

89

By substituting an intruder I for the participant A, we could have

Ω(I: Initiator; B: Responder; S:Server) = {ISendToS{I,B}, SRcvFromA{I,B},

SSendToI{eSS(PB,B)}, IRcvFromB{eSS(PB,B)},

ISendToB{ePB(NI,I)}, BRcvFromI{ePB(NI,I)},

BSendToS{B,I}, SRcvFromB{B,I},

SSendToB{eSS(PI,I)}, BRcvFromS{eSS(PI,I)},

BSendToI{ePI(NI,NB)}, IRcvFromB{ePI(NI,NB)},

ISendToB{ePB(NB)}, BRcvFromI{ePB(NB)} }.

Then any event of both Ω(A: Initiator; B: Responder; S:Server) and Ω(I: Initiator; B:

Responder; S:Server) should be considered a valid transition in the new system.

In addition, a legal language will introduce some additional transitions, which cannot be

derived from the above Transition Production Principle. The validity of those transitions

has to be proven by determining whether or not there is a corresponding capability

model. Because an intruder is assumed to be able to intercept any message transferred

over the network, among those additional transitions there are some transitions

representing that the intruder has received certain messages, which should be considered

valid transitions. Then the remaining transitions, indicating that the intruder sends certain

messages, require special consideration. For those transitions that require the intruder to

send certain messages, there will be corresponding capability models. If we can prove

that there is no way to build a related capability model, then we can claim that the attack

90

does not exist; otherwise, the capability model describes how the intruder composes the

message under consideration. We establish some principles regarding how to compose

messages.

Principle 5.2 [Cryptographic Operation Principle]

The following operations should be considered legal operations in terms of cryptography:

• Message Decryption: if a key K and a piece of message eK{X}are known to an

intruder, then by decryption, the intruder can determine the value of X.

• Message Extraction: if {X,Y} is known to an intruder, then by extraction, the intruder

can determine the value of X and the value of Y.

• Message Concatenation: if both X and Y are known to an intruder, then by

concatenation, the intruder can compose {X,Y}.

• Message Encryption: if a key and a piece of message X are known to an intruder, then

by encryption, the intruder can compose eK(X).

• Message Signature: if a key and a piece of message X are known to an intruder, then

by digital signature, the intruder can compose sK(X).

For instance, with respect to Netscape’s original SSL protocol, if an intruder knows the

key KAI and gets the message eKAI(CA,eSA(NS)), then it can get {CA,eSA(NS)} by

message decryption. Up to this point, if it knows the key KAS, then it can compose the

message eKAS(CA,eSA(NS)) by message encryption. Consequently, the transition

ICompose{ eKAS(CA,eSA(NS)) } should be considered a valid transition. By application of

91

the Cryptographic Operation Principle iteratively, we can produce a number of transitions

of type ICompose{…}.

In order to prevent fruitless search efforts, we propose following our so-called

Termination Decision Principle. First a relevant concept is introduced below.

Definition 5.1 [Secure Fidelity]

A message block is said to be of secure fidelity, if this block contains at least one secret

data item, a protocol run indicator, and an originator’s identity, and if all of these are

encrypted with a secure key. By “a secure key”, we mean that the intruder does not know

its corresponding decrypt key. By “secret data item”, we mean there is no way for the

intruder to know it due to some secure measures, such as if the item travels over the

network always in the form of cyphertext encrypted using a secure key. A protocol run

indicator may be a nonce or unpredictable time stamp. Every run of a protocol has a

different value of the indicator.

Principle 5.3 [Termination Decision Principle]

If a message is of secure fidelity, then there will be no capability model for this message.

If such a message is required to be sent by an intruder according to a legal language, then

an attack described by the legal language does not exist. Therefore the corresponding

analysis process can be terminated with a conclusion that no such attack exists.

92

The soundness of Principle 5.3 can be reasoned as follows. Because the message block is

of secure fidelity, it contains a secret data item, a protocol run indicator, an originator’s

identity, and they are bound a secure key. An intruder has no way to achieve its

impersonating objective by simply passing it on to another participant. Indeed, an

intruder has to compose a similar message block with a different identity in the

corresponding place for an originator’s identity. However, the fact that the message block

contains a secret data item prevents the intruder from composing a similar message block

in that the intruder has no idea what should be put in place of the secret data item. The

fact that the message block consists of a protocol run indicator prevents the intruder from

replaying such a message block. Therefore, the claim that there is no corresponding

capability model for an intruder to get this type of message block follows. For example, if

the Needham-Schroeder authentication protocol is changed as follows, the attack

described in section 4.2 can be prevented:

(1) A → S: {A,B}

(2) S → A: {eSS(PB,B)}

(3) A → B: {ePB(NA,A)}

(4) B → S: {B,A}

(5) S → B: {eSS(PA,A)}

(6) B → A: {ePA(NA,NB,B)}

(7) A → B: {ePB(NB)}

93

Note that the modification made to the message block in step (6) makes it to be of secure

fidelity, i.e., it contains a secret data item, a protocol run indicator, an originator’s

identity, and they are bound with a secure key PA. In fact, the nonce NB is a secret data

item, the nonce NA can be used as a protocol run indicator, and B is an identity of the

originator. So we can conclude that the attack defined by the legal language described in

section 4.2 does not exist. If the identity of a principal is essential to the meaning of a

message, it is prudent to mention the principal’s name explicitly in the message.

It is necessary for us to establish a reasoning mechanism to be able to build capability

models based on the Transition Production Principle and the Cryptographic Operation

Principle. In the next section, we will give a description of an automatic scheme for

application of our proposed systematic method to analyses of cryptographic protocols.

5.3 Automatic Scheme

Based on the discussion in Section 5.2, we propose an automatic scheme for the

application of our systematic method. The automatic system as a whole is sketched as

Figure 5.1.

94

Figure 5.1 A system for supporting the application of our proposed method

As shown in Figure 5.1, the scheme consists of the following major components:

• An interface for a user to input a specification of a protocol and get an analysis result.

The result will provide an answer about whether or not there are some attacks. If there

User Interface

Mechanism for
Producing

Legal Language

Mechanism for
Creating

Capability Model

Mechanism for Creating
Models for all Participants and Their Channels

Problem Solver based on TCT Subroutines

System Manager

Knowledge
Base

95

are one or more attacks, the result should provide DFSA models, showing how the

intruder achieves its objectives.

• An automatic mechanism for producing various kinds of legal languages, each of

which represents some attack. There may be a number of different attacks. It is

necessary for us to establish principles regarding how to create a legal language based

on the knowledge of existing attacks.

• An automatic reasoning mechanism for searching and building capability models for

those transitions in the legal language that require an intruder sending certain

messages. Principles 5.1 and 5.2 can be applied to create and analyze possible ways

for an intruder to get or compose messages.

• An automatic modeling mechanism for creating models for all participants and

channels. After analyzing the relevant legal language and capability models, it defines

what role every participant except the intruder plays, in turn leading to a composite

DFSA model for the plant under consideration.

• A problem solver for the Intruder Problem (Problem 3.1) which is based on Theorem

3.1, and TCT subroutines. It is the Meet and Parallel Compositions that make it

possible to build an overall capability model from a number of individual capability

models, and that make it possible to build an overall channel model from a group of

individual channel models. In turn, this makes the Divide-and-Conquer method

applicable. As a result, the capability models can be created individually and

iteratively for every message required to be sent by an intruder. Also the channel

models can be built individually for every pair of participants. The Divide-and-

Conquer method is an efficient and effective way for solving a large-scale problem.

96

The analysis of cryptographic protocols is a large-scale problem in terms of possible

states and transitions, if a state-transition based approach is used.

• A knowledge base for storing and retrieving rules for guiding the creation of legal

language, capability models, and models for all participants and their channels. Note

that the DFSA model for the behavior of the intruder will be produced by the Problem

Solver.

• A system manager for creating and updating the knowledge base, so that the system

has the flexibility to integrate future work on the analysis of cryptographic protocols.

Iteratively applying the proposed method until no new attacks are discovered will help

achieve the goal of securing a cryptographic protocol. If the system finds that there is no

way for an intruder to compose or get certain required messages in the phase of creating

capability models, it follows that the corresponding attack described by a legal language

does not exist. Therefore, in Figure 5.1 there is an arrow line leaving from the mechanism

for creating capability models to the user interface.

97

6 Discussion and Conclusions

In this chapter, first we give a brief discussion about cryptographic protocols and their

analysis methods. Then we summarize and review the contributions of this thesis. Finally

we present some possible future work related to this thesis.

6.1 Discussion

It is well known that the security of a system that uses encryption relies not only upon the

soundness of the encryption algorithm employed, but also upon the security of the

protocols by which information is shared. Authentication and key exchange protocols are

typically the initial step in setting up a secure communications session; they are therefore

critical in ensuring that security is maintained. In fact, an authentication protocol is at the

heart of any system involving business transactions over a computer network. Without it,

so-called e-business cannot function. However, cryptographic protocols have been shown

to be prone to errors of every kind, especially where used in open networks for

authentication and related purposes. Even when they have been developed carefully by

experts and reviewed carefully by other experts, they are often found later to have flaws

that may go undiscovered for a long time. One problem is the combinatorial complexity

of the messages that an intruder could generate. A systematic approach is proposed for

the analysis of attacks to cryptographic protocols, which casts the analysis of an attack to

a cryptographic protocol as a supervisory control design problem for a discrete-event

98

system. It is the operations meet and parallel compositions of two DFSAs that make this

proposed approach attractive. This is because a complex system of multiple states and

transitions can be decomposed into a number of sub-systems, each of which has fewer

states and transitions, through the meet and the parallel compositions.

The main problem with a state-transition based method lies in the complexity of the

combinatorial explosion of transitions resulting from multiple runs of a protocol with a

number of participants. In essence, it is not efficient and effective for a protocol analyst to

list all possible transitions and states, which could result in a huge and intractable state-

transition space. If all possible events and states are derived by back-tracking according

to the analysis objective, the legal language defining such an objective, and the

specification of a given cryptographic protocol, then the problem can be solved

efficiently and effectively. Our proposed method is based on goal-guided back-tracking.

Though there is still need of experience to construct relevant models for the application

of the proposed approach, the principles for building those models have been discussed in

this thesis. Based on those principles, one could develop an automatic scheme to

construct a legal language using various kinds of attack scenarios, then establish

corresponding capability models, and finally build models for all participants and

channels for the communications among those participants. This would make

applications of the proposed approach easy and practical.

Protocol analysis is very important, in particular for cryptographic protocols in that they

are used to protect significant data. However, cryptographic protocols are themselves

99

subtle, which leads to the Golden Rule for designers of cryptographic systems: never

underestimate the cryptanalyst.

6.2 Contributions

In summary, the thesis contains the following contributions:

• This thesis establishes an effective systematic method to analyze cryptographic

protocols based on the Supervisory Control Framework of DESs. This method is a

goal-oriented method with back-tracking characteristics.

• By exploiting meet and parallel compositions of DFSAs, this thesis makes feasible

the Divide-and-Conquer strategy.

• The above two contributions set up a solid basis for an effective and efficient system

of analysis of cryptographic protocols. This thesis proposes an automatic scheme for

the analysis of cryptographic protocols, through discussion of the issues in analysis

methods. In addition, this thesis presents prerequisite principles for the automatic

scheme, i.e., the Principles 5.1, 5.2 and 5.3. The proposed scheme is not yet fully

automatic, since it still requires human experience, especially for updating the

knowledge base when a new type of attack is found.

• The construction of an attack on Netscape’s original SSL protocol appears to be

novel, since we did not find any material about how an intruder could perform its

attack on the SSL protocol. Abadi and Needham in their paper [56] mentioned a flaw

100

with the SSL protocol but did not give a description of how an intruder could execute

an attack.

• The attack on the Tatebayashi-Matsuzaki-Newman key distribution protocol appears

to be novel, and cannot be prevented by the countermeasure proposed by M.

Tatebayashi, N. Matsuzaki and D. B. Newman [54].

• This thesis re-builds the attack [5] on the Needham-Schroeder authentication protocol

and the attack [49] on the Meyer-Matyas key distribution protocol, which shows the

soundness of the proposed method.

6.3 Future Directions

As discussed in Chapter 5, still more work has to be done to realize an automatic system

for the analysis of cryptographic protocols. The following are some major tasks that

remain:

• The development of a mechanism for creating legal languages. First it is necessary to

summarize various kinds of existing attacks on cryptographic protocols, then set up

production rules for building a legal language.

• The development of a mechanism for creating capability models. The relevant basic

principles have been proposed.

101

• The development of a mechanism for building models for participants and channels.

Though some basic principles have been proposed, there is more work to do,

especially for reasoning about what role each participant plays in a given protocol.

• To develop a program for the Problem Solver using TCT subroutines.

• To establish a knowledge base, a system manager module, and user interface module.

In addition, advances in web browsers with processing capabilities and programming

languages allow web designers to embed real programs into an HTML document.

Downloading and executing code from anywhere on the Internet may bring security

problems along with it. A systematic and thorough analysis of security flaws in the

browsers and their related technology is desirable.

102

References

[1] C. Glasheen, G. Byrne, J. Gantz, “The global market forecast for Internet usage and

commerce,” [Online document], (1998 July), Available URL:

http://www.idc.com/

[2] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in large

networks of computer,” Communications of the ACM, vol. 21, no. 12, Dec., pp.

993-999, 1978.

[3] D. E. Denning and G. M. Sacco, “Timestamps in key distribution protocols,”

Communications of the ACM, vol. 24, no. 8, Aug., pp. 533-536, 1981.

[4] R. K. Bauer, T. A. Berson, and R. J. Feiertag, “A key distribution protocol using

event markers,” ACM Transactions on Computer Systems, vol. 1, Aug., pp. 249-

255, 1983.

[5] G. Lowe. “An attack on the Needham-Schroeder public-key authentication

protocol,” Information Processing Letters, vol. 26, pp. 131-133, 1995.

[6] CCITT, CCITT draft recommendation X.509: the directory-authentication

framework, version 7, Glucester: CCITT, Nov., 1987.

[7] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM

Transactions on Computer Systems, vol. 8, no. 1, Feb., pp. 18-36, 1990.

[8] G. E. Simons, “How to (selectively) Broadcast a Secret,” In Proceedings of the

IEEE Symposium on Security and Privacy, 1985, pp. 108-113.

103

[9] C. A. Meadows, “Formal verification of cryptographic protocols: a survey,” In

Proceedings of Advances in Cryptology-ASIACRYPT'94, LNCS 917, Springer-

Verlag, 1994, pp. 135-150.

[10] T. Hwang and Y.H. Chen, “On the security of SPLICE/AS – The authentication

system in WIDE Internet,” Information Processing Letters, vol. 53 pp. 97-101,

1995.

[11] T. Hwang, N.-Y. Lee, C.-M. Li, M.-Y. Ko, and Y.-H. Chen, “Two attacks on

Neuman-Stubblebine authentication protocols,” Information Processing Letters,

vol. 53, pp. 103-107, 1995.

[12] J. Clark and J. Jacob, “On the security of recent protocols,” Information Processing

Letters, vol. 56, pp.151-155, 1995.

[13] D. Gollmann, “What do we mean by entity authentication,” In Proceedings of the

1996 IEEE Symposium on Security and Privacy, IEEE Computer Society Presss,

May 6-8, 1996, pp. 46-54.

[14] H. Gilbert, D. Gupta, A. Odlyzko, and J.-J. Quisquater, “Attacks on Shamir’s ‘RSA

for paranoids’,” Information Processing Letters, vol. 68, pp. 197-199, 1998.

[15] W.-G. Tzeng, C.-M. Hu, “Inter-protocol interleaving attacks on some

authentication and key distribution protocols,” Information Processing Letters, vol.

69, pp. 297-302, 1999.

[16] B. Schneier, Applied Cryptography, 2nd Edition, Toronto: John Wiley & Sons, Inc.,

1996.

[17] A. Salomaa, Public-key Cryptography, 2nd Edition, Berlin, New York: Springer,

1996.

104

[18] C. E. Shannon. “Communication Theory of Secrecy Systems,” Bell System

Technical Journal, vol. 28, Oct., pp. 656-715, 1949.

[19] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions

on Information Theory, vol. 22, no. 6, pp. 644-654, 1976.

[20] I. F. Blake, Elliptic Curves in Cryptography, New York: Cambridge University

Press, 1999.

[21] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2 Feb.,

pp. 120-126, 1978.

[22] B. Pfitzmann, Digital Signature Schemes, Berlin: Springer, 1996.

[23] W. Ford, M. Baum, Secure Electronic Commerce: Building the Infrastructure for

Digital Signatures and Encryption, Toronto: Prentice Hall, 1997.

[24] U.S. Department of Commerce, “The Emerging Digital Economy II,” [Online

document], (1999 June), Available URL:

http://www.ecommerce.gov/ede/

[25] Asia Pacific Economic Cooperation Electronic Commerce Steering Group,

“Paperless Trading Initiative,” [Online document], (1999 June), Available URL:

http://www.ecommerce.gov/apec/docs/paperless.html

[26] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete

event processes,” SIAM Journal of Control and Optimization, vol. 25, no. 1, pp.

206-230, 1987.

105

[27] W. M. Wonham and P.J. Ramadge, “On the supremal controllable sublanguage of a

given language,” SIAM Journal of Control and Optimization, vol. 25, no. 3, pp.

637-659, 1987.

[28] K. Rudie and W. M. Wonham, “Supervisory control of communicating processes,”

in Protocol Specification, Testing and Verification, X, L. Logrippo, R. L. Probert,

and H. Ural, Eds. North-Holland: Elsevier Sci. Pub., 1990, pp.243-257.

[29] K. Rudie and W. M. Wonham, “Think globally, act locally: decentralized

supervisory control,” IEEE Transactions on Automatic Control, vol. 37, no. 11,

Nov., pp. 1143-1169, 1992.

[30] S. Lafortune and E. Wong, “Modelling and analysis of transaction execution in

database systems,” IEEE Transactions on Automatic Control, vol. 33, no. 5, May,

pp. 439-447, 1988.

[31] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi and G. F. Franklin,

“Supervisory control of a rapid multiprocessor,” IEEE Transactions on Automatic

Control, vol. 38, no. 7, July, pp.1040-1059, 1993.

[32] M. Lawford and W. M. Wonham, “Equivalence preserving transformations for

timed transition models,” IEEE Transactions on Automatic Control, vol. 40, no. 7,

July, pp. 1167-1179, 1995.

[33] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A calculus for access control

in distributed systems,” ACM Transactions on Programming Languages and

Systems, vol. 15, no. 4, September, pp. 706-734, 1993.

106

[34] W. Mao and C. Boyd, “Towards formal analysis of security protocols,” in

Proceedings of the 6th Computer Security Foundations Workshop, 1993, pp.351-

364.

[35] Paul C. Van Oorschot, “Extending cryptographic logics of belief to key agreement

protocols,” in Proceedings of the 1st ACM Conference on Communications and

Computer Security, Faixfax, Virginia, November 1993, pp. 312-316.

[36] J. Gray and J. McLean, “Using temporal logic to specify and verify cryptographic

protocols,” in Proceedings of the 8th IEEE Computer Security Foundations

Workshop, 1995, pp. 108-116.

[37] C. A. R. Hoare, Communicating Sequential Processes, New Jersey: Prentice-Hall,

1985.

[38] A. W. Roscoe, The Theory and Practice of Concurrency, New Jersey: Prentice-

Hall, 1997.

[39] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key protocol using

FDR,” in Tools and Algorithms for the Construction and Analysis of Systems,

LNCS 1055, 1996, pp. 147-166, Berlin/New York: Springer-Verlag.

[40] G. Lowe and B. Roscoe, “Using CSP to detect errors in the TMN protocol,” IEEE

Transactions on Software Engineering, vol. 23, no. 10, pp. 659-669, 1997.

[41] G. Lowe, “Casper: A compiler for the analysis of security protocols,” Journal of

Computer Security, vol. 6, pp. 53-84, 1998.

[42] S. Schneider, “Security properties and CSP,” in Proceedings of the IEEE

Symposium on Security and Privacy, 1996, pp. 174-187.

107

[43] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols: the spi

calculus,” Information and Computer, vol. 148, no. 1, January, pp.1-70, 1999.

[44] R. A. Kemmerer, “Analyzing encryption protocols using formal verification

techniques,” IEEE Journal of Selected Areas Communication, Vol. 7, pp. 448-457,

1989.

[45] C. Meadows, “Applying formal methods to the analysis of a key management

protocol,” Journal of Computer Security, vol. 1, no. 1, pp. 5-36, 1992.

[46] J. K. Millen, “The interrogator model,” in Proceedings of the IEEE Symposium on

Security and Privacy, 1995, pp. 251-260.

[47] L. C. Paulson, “The inductive approach to verifying cryptographic protocols,”

Journal of Computer Security, vol. 6, pp. 85-128, 1998.

[48] B. B. Nieh and S. E. Tavares, “Modeling and analyzing cryptographic protocols

using Petri Nets,” In Proceedings of Advances in Cryptology-AUSCRYPT’92,

LNCS 718, Springer-Verlag, 1992, pp. 275-295.

[49] E. Doyle, S. E. Tavares, and H. Meijer, “Analysis of cryptographic protocols using

colored Petri Nets,” in Proceedings of the 18th Biennial Symposium on

Communications, Kingston, ON., May 1996, pp. 194-200.

[50] W. Wonham, “Notes on Discrete-Event Systems,” [Online document], (1999

April), Available URL:

http://www.control.utoronto.ca/people/wonham/wonham.html

[51] G. Barrett and S. Lafortune, “Bisimulation, the supervisory control problem and

strong model matching for finite state machines,” The University of Michigan,

108

Department of Electrical Engineering and Computer Science, Ann Arbor, MI,

Technical Report No. CGR-97-05, October 1997.

[52] M. Heymann, “Concurrency and discrete event control,” IEEE Control Systems

Magazine, vol. 10, no. 4, pp. 103-112, 1990.

[53] C. H. Meyer and S. M. Matyas, Cryptography: a new dimension in computer data

security, New York: John Wiley & Sons, 1982.

[54] M. Tatebayashi, N. Matsuzaki and D. B. Newman, “Key distribution protocol for

digital mobile communication systems,” in Proceedings of Advances in

Cryptology-CRYPTO’89, LNCS 435, Springer-Verlag, 1989, pp. 325-334.

[55] K. E. B. Hickman, “The SSL protocol,” RFC, Netscape Communications Corp.,

version of Oct. 31, 1994.

[56] M. Abadi and R. Needham, “Prudent engineering practice for cryptographic

protocols,” IEEE Transactions on Software Engineering, vol. 22 no. 1, January, pp.

6-15, 1996.

[57] T. ElGamal, “A Public key cryptosystem and a signature Scheme Based on discrete

logarithms,” IEEE Transactions on Information Theory, vol. IT-31, July, pp. 469-

472, 1985.

[58] W. Mao and C. Boyd, “On the use of encryption in cryptographic protocols,” In

Cryptography and Coding IV, P. G. Farrell (ed), pp. 251-262. IMA, 1995.

[59] International Organization for Standardization, Information technology – Security

techniques – Data integrity mechanism using a cryptographic check function

employing a block cipher algorithm, ISO/IEC 9797 Second Edition, April 1994.

109

[60] ISO/IEC International Standard 9594-8, Information technology – open systems

interconnection – the directory, Part 8: Authentication framework, 1990

[61] R. Kemmerer, C. Meadows, and J. Millen, “Three Systems for Cryptographic

Protocol Analysis,” Journal of CRYPTOLOGY, vol. 7, pp. 79-130, 1994.

[62] S. Schneider, “Verifying authentication protocols with CSP,” in Proceedings of 10th

Computer Security Foundations Workshop, IEEE Computer Society Press, 1997,

pp. 3-17.

[63] F. J. T. Fabrega, J. C. Herzog, “Strand space: Why is a security protocol correct?”

in Proceedings of the 1998 IEEE Symposium on Security and Privacy, IEEE

Computer Society Press, May 3-6, 1998, pp. 160-171.

[64] A. W. Roscoe, “Model-checking CSP,” In A Classical Mind, Essays in Honour of

C. A. R. Hoare, New Jersey: Prentice-Hall, 1994.

[65] F. Nielson, ed., ML with Concurrency, Berlin and New York: Springer, 1996.

[66] R. Kailar, “Reasoning about accountability in protocols for electric commerce”, in

Proceedings of the 1995 IEEE Symposium on Security and Privacy, IEEE

Computer Society Press, May 8-10, 1995, pp. 236-250.

110

Appendix A TCT Data for the Analysis of the Meyer-Matyas
Key Distribution Protocol

LEGAL_K # states: 2 state set: 0 ... 1 initial state: 0

marker states: 0

vocal states: none

transitions: 18

transitions:

[0, 2, 1] [0, 4, 0] [0, 12, 0] [0, 14, 0]
[0, 20, 0] [0, 21, 0] [0, 23, 0] [0, 24, 0]
[0, 25, 0] [1, 4, 1] [1, 12, 1] [1, 14, 1]
[1, 20, 1] [1, 21, 1] [1, 23, 1] [1, 24, 1]
[1, 25, 1] [1, 27, 0]

CAPL_P # states: 5 state set: 0 ... 4 initial state: 0

marker states: 0

vocal states: none

transitions: 26

transitions:

[0, 2, 0] [0, 4, 0] [0, 12, 0] [0, 14, 0]
[0, 20, 1] [0, 24, 2] [1, 2, 1] [1, 4, 1]
[1, 12, 1] [1, 14, 1] [1, 21, 3] [2, 2, 2]
[2, 4, 2] [2, 12, 2] [2, 14, 2] [2, 25, 4]
[3, 2, 3] [3, 4, 3] [3, 12, 3] [3, 14, 3]
[3, 23, 0] [4, 2, 4] [4, 4, 4] [4, 12, 4]
[4, 14, 4] [4, 27, 0]

INIT_A # states: 2 state set: 0 ... 1 initial state: 0

marker states: 0

vocal states: none

transitions: 2

transitions:

[0, 2, 1] [1, 4, 0]

111

SERV_S # states: 2 state set: 0 ... 1 initial state: 0

marker states: 0

vocal states: none

transitions: 2

transitions:

[0, 12, 1] [1, 14, 0]

CHNLALL # states: 13 state set: 0 ... 12 initial state: 0

marker states: 0

vocal states: none

transitions: 24

transitions:

[0, 2, 1] [0, 14, 2] [0, 34, 3] [0, 38, 4]
[0, 42, 5] [0, 46, 6] [0, 61, 7] [0, 63, 8]
[0, 69, 9] [0, 71, 10] [0, 73, 11] [0, 75, 12]
[1, 68, 0] [2, 66, 0] [3, 70, 0] [4, 74, 0]
[5, 62, 0] [6, 64, 0] [7, 40, 0] [8, 44, 0]
[9, 32, 0] [10, 12, 0] [11, 36, 0] [12, 4, 0]

INTRD # states: 6 state set: 0 ... 5 initial state: 0

marker states: 0

vocal states: none

transitions: 6

transitions:

[0, 20, 1] [1, 21, 2] [2, 23, 3] [3, 24, 4]
[4, 25, 5] [5, 27, 0]

112

Appendix B TCT Data for the analysis of Needham-Schroeder
Authentication Protocol

LEGAL_K # states: 3 state set: 0 ... 2 initial state: 0

marker states: 0

vocal states: none

transitions: 72

transitions:

[0, 2, 0] [0, 4, 0] [0, 6, 0] [0, 8, 0]
[0, 10, 0] [0, 22, 0] [0, 24, 0] [0, 26, 0]
[0, 30, 0] [0, 42, 0] [0, 44, 0] [0, 46, 0]
[0, 48, 0] [0, 50, 0] [0, 52, 0] [0, 62, 0]
[0, 63, 0] [0, 64, 0] [0, 65, 0] [0, 67, 1]
[0, 68, 0] [0, 69, 0] [0, 72, 0] [0, 73, 0]
[1, 2, 1] [1, 4, 1] [1, 6, 1] [1, 8, 1]
[1, 10, 1] [1, 22, 1] [1, 24, 1] [1, 26, 1]
[1, 28, 2] [1, 30, 1] [1, 42, 1] [1, 44, 1]
[1, 46, 1] [1, 48, 1] [1, 50, 1] [1, 52, 1]
[1, 62, 1] [1, 63, 1] [1, 64, 1] [1, 65, 1]
[1, 68, 1] [1, 69, 1] [1, 72, 1] [1, 73, 1]
[2, 2, 2] [2, 4, 2] [2, 6, 2] [2, 8, 2]
[2, 10, 2] [2, 22, 2] [2, 24, 2] [2, 26, 2]
[2, 30, 2] [2, 42, 2] [2, 44, 2] [2, 46, 2]
[2, 48, 2] [2, 50, 2] [2, 52, 2] [2, 62, 2]
[2, 63, 2] [2, 64, 2] [2, 65, 2] [2, 68, 2]
[2, 69, 2] [2, 71, 0] [2, 72, 2] [2, 73, 2]

CAPL_P # states: 8 state set: 0 ... 7 initial state: 0

marker states: 0

vocal states: none

transitions: 138

transitions:

[0, 2, 0] [0, 4, 0] [0, 6, 0] [0, 8, 0]
[0, 10, 0] [0, 22, 0] [0, 24, 0] [0, 26, 0]
[0, 28, 0] [0, 30, 0] [0, 42, 0] [0, 44, 0]
[0, 46, 0] [0, 48, 0] [0, 50, 0] [0, 52, 0]
[0, 62, 1] [0, 68, 2] [0, 72, 3] [1, 2, 1]
[1, 4, 1] [1, 6, 1] [1, 8, 1] [1, 10, 1]
[1, 22, 1] [1, 24, 1] [1, 26, 1] [1, 28, 1]
[1, 30, 1] [1, 42, 1] [1, 44, 1] [1, 46, 1]
[1, 48, 1] [1, 50, 1] [1, 52, 1] [1, 63, 4]

113

[2, 2, 2] [2, 4, 2] [2, 6, 2] [2, 8, 2]
[2, 10, 2] [2, 22, 2] [2, 24, 2] [2, 26, 2]
[2, 28, 2] [2, 30, 2] [2, 42, 2] [2, 44, 2]
[2, 46, 2] [2, 48, 2] [2, 50, 2] [2, 52, 2]
[2, 69, 5] [3, 2, 3] [3, 4, 3] [3, 6, 3]
[3, 8, 3] [3, 10, 3] [3, 22, 3] [3, 24, 3]
[3, 26, 3] [3, 28, 3] [3, 30, 3] [3, 42, 3]
[3, 44, 3] [3, 46, 3] [3, 48, 3] [3, 50, 3]
[3, 52, 3] [3, 73, 0] [4, 2, 4] [4, 4, 4]
[4, 6, 4] [4, 8, 4] [4, 10, 4] [4, 22, 4]
[4, 24, 4] [4, 26, 4] [4, 28, 4] [4, 30, 4]
[4, 42, 4] [4, 44, 4] [4, 46, 4] [4, 48, 4]
[4, 50, 4] [4, 52, 4] [4, 64, 6] [5, 2, 5]
[5, 4, 5] [5, 6, 5] [5, 8, 5] [5, 10, 5]
[5, 22, 5] [5, 24, 5] [5, 26, 5] [5, 28, 5]
[5, 30, 5] [5, 42, 5] [5, 44, 5] [5, 46, 5]
[5, 48, 5] [5, 50, 5] [5, 52, 5] [5, 71, 0]
[6, 2, 6] [6, 4, 6] [6, 6, 6] [6, 8, 6]
[6, 10, 6] [6, 22, 6] [6, 24, 6] [6, 26, 6]
[6, 28, 6] [6, 30, 6] [6, 42, 6] [6, 44, 6]
[6, 46, 6] [6, 48, 6] [6, 50, 6] [6, 52, 6]
[6, 65, 7] [7, 2, 7] [7, 4, 7] [7, 6, 7]
[7, 8, 7] [7, 10, 7] [7, 22, 7] [7, 24, 7]
[7, 26, 7] [7, 28, 7] [7, 30, 7] [7, 42, 7]
[7, 44, 7] [7, 46, 7] [7, 48, 7] [7, 50, 7]
[7, 52, 7] [7, 67, 0]

INIT_A # states: 5 state set: 0 ... 4 initial state: 0

marker states: 0

vocal states: none

transitions: 5

transitions:

[0, 2, 1] [1, 4, 2] [2, 6, 3] [3, 8, 4]
[4, 10, 0]

RESP_B # states: 5 state set: 0 ... 4 initial state: 0

marker states: 0

vocal states: none

transitions: 5

transitions:

[0, 22, 1] [1, 24, 2] [2, 26, 3] [3, 28, 4]
[4, 30, 0]

114

SERV_S # states: 4 state set: 0 ... 3 initial state: 0

marker states: 0

vocal states: none

transitions: 6

transitions:

[0, 42, 1] [0, 46, 2] [0, 50, 3] [1, 44, 0]
[2, 48, 0] [3, 52, 0]

CHNLALL # states: 13 state set: 0 ... 12 initial state: 0

marker states: 0

vocal states: none

transitions: 24

transitions:

[0, 2, 1] [0, 6, 2] [0, 10, 3] [0, 24, 4]
[0, 28, 5] [0, 44, 6] [0, 48, 7] [0, 52, 8]
[0, 63, 9] [0, 67, 10] [0, 71, 11] [0, 73, 12]
[1, 42, 0] [2, 62, 0] [3, 68, 0] [4, 46, 0]
[5, 72, 0] [6, 4, 0] [7, 26, 0] [8, 64, 0]
[9, 50, 0] [10, 22, 0] [11, 30, 0] [12, 8, 0]

INTRD # states: 10 state set: 0 ... 9 initial state: 0

marker states: 0

vocal states: none

transitions: 10

transitions:

[0, 62, 1] [1, 63, 2] [2, 64, 3] [3, 65, 4]
[4, 67, 5] [5, 72, 6] [6, 73, 7] [7, 68, 8]
[8, 69, 9] [9, 71, 0]

115

Appendix C TCT Data for the Analysis of Tatebayashi-
Matsuzaki-Newman Key Distribution Protocol

LEGAL_K # states: 4 state set: 0 ... 3 initial state: 0

marker states: 0

vocal states: none

transitions: 88

transitions:

[0, 2, 0] [0, 4, 0] [0, 12, 0] [0, 14, 0]
[0, 32, 0] [0, 34, 0] [0, 36, 0] [0, 38, 0]
[0, 40, 0] [0, 42, 0] [0, 44, 0] [0, 46, 0]
[0, 61, 1] [0, 66, 0] [0, 67, 0] [0, 68, 0]
[0, 69, 0] [0, 70, 0] [0, 71, 0] [0, 73, 0]
[0, 74, 0] [0, 75, 0] [1, 2, 1] [1, 4, 1]
[1, 12, 1] [1, 14, 1] [1, 32, 1] [1, 34, 1]
[1, 36, 1] [1, 38, 1] [1, 40, 1] [1, 42, 1]
[1, 44, 1] [1, 46, 1] [1, 62, 2] [1, 66, 1]
[1, 67, 1] [1, 68, 1] [1, 69, 1] [1, 70, 1]
[1, 71, 1] [1, 73, 1] [1, 74, 1] [1, 75, 1]
[2, 2, 2] [2, 4, 2] [2, 12, 2] [2, 14, 2]
[2, 32, 2] [2, 34, 2] [2, 36, 2] [2, 38, 2]
[2, 40, 2] [2, 42, 2] [2, 44, 2] [2, 46, 2]
[2, 63, 3] [2, 66, 2] [2, 67, 2] [2, 68, 2]
[2, 69, 2] [2, 70, 2] [2, 71, 2] [2, 73, 2]
[2, 74, 2] [2, 75, 2] [3, 2, 3] [3, 4, 3]
[3, 12, 3] [3, 14, 3] [3, 32, 3] [3, 34, 3]
[3, 36, 3] [3, 38, 3] [3, 40, 3] [3, 42, 3]
[3, 44, 3] [3, 46, 3] [3, 64, 0] [3, 66, 3]
[3, 67, 3] [3, 68, 3] [3, 69, 3] [3, 70, 3]
[3, 71, 3] [3, 73, 3] [3, 74, 3] [3, 75, 3]

CAPL_P # states: 3 state set: 0 ... 2 initial state: 0

marker states: 0

vocal states: none

transitions: 69

transitions:

[0, 2, 0] [0, 4, 0] [0, 12, 0] [0, 14, 0]
[0, 32, 0] [0, 34, 0] [0, 36, 0] [0, 38, 0]
[0, 40, 0] [0, 42, 0] [0, 44, 0] [0, 46, 0]
[0, 62, 0] [0, 63, 0] [0, 64, 0] [0, 66, 1]
[0, 68, 0] [0, 69, 0] [0, 70, 0] [0, 71, 0]

116

[0, 73, 0] [0, 74, 0] [0, 75, 0] [1, 2, 1]
[1, 4, 1] [1, 12, 1] [1, 14, 1] [1, 32, 1]
[1, 34, 1] [1, 36, 1] [1, 38, 1] [1, 40, 1]
[1, 42, 1] [1, 44, 1] [1, 46, 1] [1, 62, 1]
[1, 63, 1] [1, 64, 1] [1, 67, 2] [1, 68, 1]
[1, 69, 1] [1, 70, 1] [1, 71, 1] [1, 73, 1]
[1, 74, 1] [1, 75, 1] [2, 2, 2] [2, 4, 2]
[2, 12, 2] [2, 14, 2] [2, 32, 2] [2, 34, 2]
[2, 36, 2] [2, 38, 2] [2, 40, 2] [2, 42, 2]
[2, 44, 2] [2, 46, 2] [2, 61, 0] [2, 62, 2]
[2, 63, 2] [2, 64, 2] [2, 68, 2] [2, 69, 2]
[2, 70, 2] [2, 71, 2] [2, 73, 2] [2, 74, 2]
[2, 75, 2]

INIT_A # states: 2 state set: 0 ... 1 initial state: 0

marker states: 0

vocal states: none

transitions: 2

transitions:

[0, 2, 1] [1, 4, 0]

RESP_B # states: 2 state set: 0 ... 1 initial state: 0

marker states: 0

vocal states: none

transitions: 2

transitions:

[0, 12, 1] [1, 14, 0]

SERV_S # states: 7 state set: 0 ... 6 initial state: 0

marker states: 0

vocal states: none

transitions: 8

transitions:

[0, 32, 1] [0, 40, 4] [1, 34, 2] [2, 36, 3]
[3, 38, 0] [4, 42, 5] [5, 44, 6] [6, 46, 0]

CHNLALL # states: 13 state set: 0 ... 12 initial state: 0

117

marker states: 0

vocal states: none

transitions: 24

transitions:

[0, 2, 1] [0, 14, 2] [0, 34, 3] [0, 38, 4]
[0, 42, 5] [0, 46, 6] [0, 61, 7] [0, 63, 8]
[0, 69, 9] [0, 71, 10] [0, 73, 11] [0, 75, 12]
[1, 68, 0] [2, 66, 0] [3, 70, 0] [4, 74, 0]
[5, 62, 0] [6, 64, 0] [7, 40, 0] [8, 44, 0]
[9, 32, 0] [10, 12, 0] [11, 36, 0] [12, 4, 0]

INTRD # states: 84 state set: 0 ... 83 initial state: 0

marker states: 0

vocal states: none

transitions: 256

transitions:

[0, 68, 1] [0, 69, 2] [0, 71, 3] [1, 69, 4]
[1, 71, 5] [1, 75, 0] [2, 68, 4] [2, 70, 6]
[2, 71, 7] [3, 66, 8] [3, 68, 5] [3, 69, 7]
[4, 70, 9] [4, 71, 10] [4, 75, 2] [5, 66, 11]
[5, 69, 10] [5, 75, 3] [6, 68, 9] [6, 71, 12]
[6, 73, 13] [7, 66, 14] [7, 68, 10] [7, 70, 12]
[8, 67, 15] [8, 68, 11] [8, 69, 14] [8, 71, 16]
[9, 71, 17] [9, 73, 18] [9, 75, 6] [10, 66, 19]
[10, 70, 17] [10, 75, 7] [11, 67, 20] [11, 69, 19]
[11, 71, 21] [11, 75, 8] [12, 66, 22] [12, 68, 17]
[12, 73, 23] [13, 68, 18] [13, 71, 23] [13, 74, 0]
[14, 67, 24] [14, 68, 19] [14, 70, 22] [14, 71, 25]
[15, 61, 26] [15, 68, 20] [15, 69, 24] [15, 71, 27]
[16, 67, 27] [16, 68, 21] [16, 69, 25] [17, 66, 28]
[17, 73, 29] [17, 75, 12] [18, 71, 29] [18, 74, 1]
[18, 75, 13] [19, 67, 30] [19, 70, 28] [19, 71, 31]
[19, 75, 14] [20, 61, 32] [20, 69, 30] [20, 71, 33]
[20, 75, 15] [21, 67, 33] [21, 69, 31] [21, 75, 16]
[22, 67, 34] [22, 68, 28] [22, 71, 35] [22, 73, 36]
[23, 66, 36] [23, 68, 29] [23, 74, 3] [24, 68, 30]
[24, 70, 34] [24, 71, 37] [25, 67, 37] [25, 68, 31]
[25, 70, 35] [26, 62, 38] [26, 68, 32] [26, 71, 39]
[27, 61, 39] [27, 68, 33] [27, 69, 37] [28, 67, 40]
[28, 71, 41] [28, 73, 42] [28, 75, 22] [29, 66, 42]
[29, 74, 5] [29, 75, 23] [30, 70, 40] [30, 71, 43]
[30, 75, 24] [31, 67, 43] [31, 70, 41] [31, 75, 25]
[32, 62, 44] [32, 71, 45] [32, 75, 26] [33, 61, 45]
[33, 69, 43] [33, 75, 27] [34, 68, 40] [34, 71, 46]
[34, 73, 47] [35, 67, 46] [35, 68, 41] [35, 73, 48]

118

[36, 67, 47] [36, 68, 42] [36, 71, 48] [36, 74, 8]
[37, 68, 43] [37, 70, 46] [38, 63, 49] [38, 68, 44]
[38, 71, 50] [39, 62, 50] [39, 66, 51] [39, 68, 45]
[40, 71, 52] [40, 73, 53] [40, 75, 34] [41, 67, 52]
[41, 73, 54] [41, 75, 35] [42, 67, 53] [42, 71, 54]
[42, 74, 11] [42, 75, 36] [43, 70, 52] [43, 75, 37]
[44, 63, 55] [44, 71, 56] [44, 75, 38] [45, 62, 56]
[45, 66, 57] [45, 75, 39] [46, 68, 52] [46, 73, 58]
[47, 68, 53] [47, 71, 58] [47, 74, 15] [48, 67, 58]
[48, 68, 54] [48, 74, 16] [49, 64, 0] [49, 68, 55]
[49, 71, 59] [50, 63, 59] [50, 66, 60] [50, 68, 56]
[51, 62, 60] [51, 67, 61] [51, 68, 57] [51, 71, 62]
[52, 73, 63] [52, 75, 46] [53, 71, 63] [53, 74, 20]
[53, 75, 47] [54, 67, 63] [54, 74, 21] [54, 75, 48]
[55, 64, 1] [55, 71, 64] [55, 75, 49] [56, 63, 64]
[56, 66, 65] [56, 75, 50] [57, 62, 65] [57, 67, 66]
[57, 71, 67] [57, 75, 51] [58, 68, 63] [58, 74, 27]
[59, 64, 3] [59, 66, 68] [59, 68, 64] [60, 63, 68]
[60, 67, 69] [60, 68, 65] [60, 71, 70] [61, 62, 69]
[61, 68, 66] [61, 71, 71] [62, 62, 70] [62, 67, 71]
[62, 68, 67] [63, 74, 33] [63, 75, 58] [64, 64, 5]
[64, 66, 72] [64, 75, 59] [65, 63, 72] [65, 67, 73]
[65, 71, 74] [65, 75, 60] [66, 62, 73] [66, 71, 75]
[66, 75, 61] [67, 62, 74] [67, 67, 75] [67, 75, 62]
[68, 64, 8] [68, 67, 76] [68, 68, 72] [68, 71, 77]
[69, 63, 76] [69, 68, 73] [69, 71, 78] [70, 63, 77]
[70, 67, 78] [70, 68, 74] [71, 62, 78] [71, 68, 75]
[72, 64, 11] [72, 67, 79] [72, 71, 80] [72, 75, 68]
[73, 63, 79] [73, 71, 81] [73, 75, 69] [74, 63, 80]
[74, 67, 81] [74, 75, 70] [75, 62, 81] [75, 75, 71]
[76, 64, 15] [76, 68, 79] [76, 71, 82] [77, 64, 16]
[77, 67, 82] [77, 68, 80] [78, 63, 82] [78, 68, 81]
[79, 64, 20] [79, 71, 83] [79, 75, 76] [80, 64, 21]
[80, 67, 83] [80, 75, 77] [81, 63, 83] [81, 75, 78]
[82, 64, 27] [82, 68, 83] [83, 64, 33] [83, 75, 82]

119

Appendix D TCT Data for the Analysis of Netscape’s Original
SSL Protocol

LEGAL_K # states: 3 state set: 0 ... 2 initial state: 0

marker states: 0

vocal states: none

transitions: 36

transitions:

[0, 2, 0] [0, 4, 0] [0, 6, 0] [0, 22, 0]
[0, 26, 0] [0, 41, 1] [0, 42, 0] [0, 43, 0]
[0, 46, 0] [0, 48, 0] [0, 49, 0] [0, 51, 0]
[1, 2, 1] [1, 4, 1] [1, 6, 1] [1, 22, 1]
[1, 24, 2] [1, 26, 1] [1, 42, 1] [1, 43, 1]
[1, 46, 1] [1, 48, 1] [1, 49, 1] [1, 51, 1]
[2, 2, 2] [2, 4, 2] [2, 6, 2] [2, 22, 2]
[2, 26, 2] [2, 42, 2] [2, 43, 2] [2, 45, 0]
[2, 46, 2] [2, 48, 2] [2, 49, 2] [2, 51, 2]

CAPL_P # states: 6 state set: 0 ... 5 initial state: 0

marker states: 0

vocal states: none

transitions: 49

transitions:

[0, 2, 0] [0, 4, 0] [0, 6, 0] [0, 22, 0]
[0, 24, 0] [0, 26, 0] [0, 41, 0] [0, 42, 1]
[0, 46, 2] [1, 2, 1] [1, 4, 1] [1, 6, 1]
[1, 22, 1] [1, 24, 1] [1, 26, 1] [1, 41, 1]
[1, 43, 3] [2, 2, 2] [2, 4, 2] [2, 6, 2]
[2, 22, 2] [2, 24, 2] [2, 26, 2] [2, 41, 2]
[2, 48, 4] [3, 2, 3] [3, 4, 3] [3, 6, 3]
[3, 22, 3] [3, 24, 3] [3, 26, 3] [3, 41, 3]
[3, 45, 0] [4, 2, 4] [4, 4, 4] [4, 6, 4]
[4, 22, 4] [4, 24, 4] [4, 26, 4] [4, 41, 4]
[4, 49, 5] [5, 2, 5] [5, 4, 5] [5, 6, 5]
[5, 22, 5] [5, 24, 5] [5, 26, 5] [5, 41, 5]
[5, 51, 0]

INIT_A # states: 3 state set: 0 ... 2 initial state: 0

marker states: 0

120

vocal states: none

transitions: 3

transitions:

[0, 2, 1] [1, 4, 2] [2, 6, 0]

SERV_S # states: 3 state set: 0 ... 2 initial state: 0

marker states: 0

vocal states: none

transitions: 3

transitions:

[0, 22, 1] [1, 24, 2] [2, 26, 0]

CHNLALL # states: 7 state set: 0 ... 6 initial state: 0

marker states: 0

vocal states: none

transitions: 12

transitions:

[0, 2, 1] [0, 6, 2] [0, 24, 3] [0, 41, 4]
[0, 45, 5] [0, 51, 6] [1, 46, 0] [2, 42, 0]
[3, 48, 0] [4, 22, 0] [5, 26, 0] [6, 4, 0]

INTRD # states: 9 state set: 0 ... 8 initial state: 0

marker states: 0

vocal states: none

transitions: 10

transitions:

[0, 41, 1] [0, 46, 2] [1, 46, 3] [2, 41, 3]
[3, 48, 4] [4, 49, 5] [5, 51, 6] [6, 42, 7]
[7, 43, 8] [8, 45, 0]

121

VITA

Name: Shaowu Luo

Place and Year of birth: Hunan Province, China, 1963

Education:
1988: M. Eng. Department of Automation, Tsinghua University, Beijing, China

Work Experience:
1998-1999, Research Assistant, Department of Electrical and Computer Engineering,
Queen’s University, Kingston, Canada.
1997-1999, Teaching Assistant, Department of Electrical and Computer Engineering,
Queen’s University, Kingston, Canada.
1994-1997, Software Engineer, System Analyst, China National CIMS/ERC(Computer
Integrated Manufacturing Systems/Engineering Research Center), Beijing, China.
1993-1994, Programmer, Research Assistant, Frankfurt University, Frankfurt/Main,
Germany.
1988 – 1993, Programmer, System Analyst, China National CIMS/ERC, Beijing, China.

Awards:
1998-1999 Queen’s University Graduate Award (QGA).
1997-1998 R.S. McLaughlin Fellowship(RSMCL).
1991-1992 Research Excellence Award in Hi-Tech of China National Science and
Technology Commission.

