
Does Size Matter?

The Effects of Supervisor Reduction on Minimal

Communication Between Distributed Discrete-Event

Agents

by

Sarah-Jane Whittaker

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

August 2005

Copyright c© Sarah-Jane Whittaker, 2005

Abstract

When applying control to a large and complex discrete-event system, traditional distributed super-

visors may only be able to enforce a subset of the desired behaviour. If that subset is unacceptable,

the agents must communicate with each other to achieve the required control action. However, the

potential for delayed or lost messages and negative effects on the system demands that transmis-

sions must be minimized. An algorithm that determines a minimal communication scheme which

guarantees each supervisor is always certain of its current state does exist, but any options that may

result in a further reduction in transmissions are worthy of exploration. One of these is to perform

a state-size reduction on the agents, reducing their complexity and (hypothetically) the amount of

communication they require to perform their control tasks.

This research examines several approaches to supervisor reduction and defines a new relation

between agents known as comparability that encapsulates most of the concepts found in those meth-

ods. It then explores what occurs during the execution of the minimal communication algorithm for

two pairs of agents, one pair of which is comparable to the other. The conjecture is that the original

supervisors will communicate at least what the reduced supervisors communicate and most likely

more. Unfortunately, this statement is not always correct. Both a counterexample and a “proof of

concept” example are examined to illustrate both possible outcomes. Although there is no definitive

result, performing a state-size reduction can lessen or even eliminate the need for communication.

This fact would prompt the designer of any such system to perform such a reduction, but compare

results before implementing the smaller agents.

i

Acknowledgments

I would like to thank my supervisor, Dr. Karen Rudie, for accepting me as her student and taking

her role as my mentor so seriously. She demonstrated insight, faith, understanding and patience for

two years despite numerous other demands that required her time and attention, and I am grateful

for that.

My introduction to graduate work was assisted by the members of the DES Research group:

Lenko Grigorov, Ying Huang, Michael Wood and Dr. Iakov Romanovski. Everyone in the group

has not only proven to be considerate and helpful, but a lot of fun at meetings. Lenko is deserving

of special thanks for his suggestions during a frustrating period in my work.

I would also like to recognize the contribution of Dr. Kai Salomaa, who made time in an already

busy schedule to assist me at a crucial point in my research. He took great care in examining my

work and addressing my concerns, which was very much appreciated.

My gratitude extends to Debby Robertson and Wendy Powley for enlightening me with their

experience and knowledge of graduate work and research. I could always rely on them for an attentive

ear and a sound piece of advice when I faced any sort of difficulty. Richard Linley and David Dove

were also extremely helpful, providing candy, home repairs and encouragement when required. All

of their efforts meant a great deal to me

Above all else, I would like to thank my husband, Benjamin Hall, for his limitless patience, love

and support. He never phased out when I monopolized the conversation with discrete-event system

theory and always knew how to neutralize my irritability after a poor research day. He is the best

companion I could ever wish for and without him I would never have had the courage to attempt

graduate work nor complete this thesis.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables v

List of Figures vii

1 Introduction 1

2 Discrete-Event Systems 4

2.1 Background . 4

2.1.1 Centralized Discrete-Event Systems . 4

2.1.2 Distributed Discrete-Event Systems . 12

2.2 Research . 17

2.2.1 Synthesis-Accessibility . 17

2.2.2 Synthesis-Accessibility Set . 18

3 Supervisor Reduction 20

3.1 Background . 20

3.1.1 Projection . 20

3.1.2 Cover . 21

iii

3.1.3 Control Cover/Congruence . 22

3.2 Research . 24

3.2.1 Language-Equivalence . 25

3.2.2 Comparability . 28

3.2.3 Reachable Product . 35

4 Minimal Communication 46

4.1 Background . 46

4.1.1 Issues With Communication . 46

4.1.2 The Algorithm . 47

4.2 Research . 66

4.2.1 Considering Control . 66

4.2.2 Explicit Function . 68

5 Effects of Reduction on Communication 75

5.1 Applying Supervisor Reduction . 75

5.2 Formal Statement of Primary Conjecture . 75

5.3 Problem Analysis . 77

5.4 Ĉij . 78

5.5 N̂∗
ij . 78

5.5.1 Communication Scheme . 78

5.5.2 Examination of Counterexample . 86

5.6 Proof of Concept Example . 88

5.7 Trim vs. Untrim Example . 97

6 Conclusions 112

Bibliography 115

A Supervisor Reduction: A Quick Reference Guide 117

iv

List of Tables

3.1 Running Example - State Mapping μ1 . 30

3.2 Running Example - State Mapping μ2 . 31

4.1 Running Example - Correctness Sets Ĉ12 and Ĉ21 . 56

4.2 Running Example - ε-Transitions in R̂ε
1(V̂21) for N̂12 57

4.3 Running Example - Consistency Set N̂12 . 60

4.4 Running Example - ε-Transitions in R̂ε
2(V̂12) for N̂∗

21 62

4.5 Running Example - Consistency Set N̂∗
21 . 64

4.6 Running Example - ε-Transitions in R̂ε
1(V̂21) for N̂min

12 64

4.7 Running Example - State-Based Communication Mappings φ12 and φ21 for R̂∗
1 and R̂∗

2 66

5.1 Running Example - Correctness Sets C12 and C21 . 80

5.2 Running Example - Consistency Set Nmax
12 . 82

5.3 Running Example - Consistency Set N∗
21 . 82

5.4 Running Example - Consistency Set Nmin
12 . 85

5.5 Running Example - State-Based Communication Mappings φ12 and φ21 for R∗
1 and R∗

2 87

5.6 Proof of Concept Example - State Mappings μ1 and μ2 90

5.7 Proof of Concept Example - Correctness Sets C12 and C21 91

5.8 Proof of Concept Example - Consistency Set Nmax
12 92

5.9 Proof of Concept Example - Consistency Set N∗
21 . 93

5.10 Proof of Concept Example - Consistency Set Nmin
12 95

5.11 Proof of Concept Example - State-Based Communication Mappings φ12 and φ21 . . 96

v

5.12 Trim vs. Untrim Example - State Mappings μ1 and μ2 100

5.13 Trim vs. Untrim Example - Correctness Sets Ĉ12 and Ĉ21 101

5.14 Trim vs. Untrim Example - Correctness Sets C12 and C21 101

5.15 Trim vs. Untrim Example - Consistency Sets N̂∗
12 and N̂∗

21 104

5.16 Trim vs. Untrim Example - Consistency Sets N∗
12 and N∗

21 104

5.17 Trim vs. Untrim Example - Short-Form Names for the States of R̂∗ = (R̂∗
1 ∧ R̂∗

2) . . 104

5.18 Trim vs. Untrim Example - Short-Form Names for the States of R∗ = (R∗
1 ∧ R∗

2) . . 106

5.19 Trim vs. Untrim Example - Events Communicated When R̂∗
1 and R̂∗

2 Act on G . . . 107

5.20 Trim vs. Untrim Example - Events Communicated When R∗
1 and R∗

2 Act on G . . . 111

5.21 Trim vs. Untrim Example - Communication Differences Between R̂∗ and R∗ During

Synthesis . 111

vi

List of Figures

2.1 Running Example - Plant G . 6

2.2 Running Example - Explicitly-Defined Supervisor S 9

2.3 Running Example - Implictly-Defined Supervisor Equivalent to S 9

2.4 Running Example - Supervisor S Acting on Plant G 11

2.5 Running Example - Distributed Supervisor S2 . 14

2.6 Running Example - Conjunction of S1 and S2 . 15

2.7 Running Example - Distributed Supervisors S1 and S2 Acting on Plant G 16

2.8 Synthesis Inaccesibility Example - Plant G and Supervisor S 18

3.1 Running Example - Plant G (Review of Figure 2.1) 26

3.2 Running Example - Supervisor Ŝ1 . 26

3.3 Running Example - Supervisor S1 . 27

3.4 Running Example - Supervisor Ŝ1 Acting on Plant G 27

3.5 Running Example - Supervisor S1 Acting on Plant G 28

3.6 Running Example - Supervisor Ŝ2 (Review of Figure 2.5) 30

3.7 Running Example - Supervisor S2 . 31

3.8 Running Example - Reachable Product of Ŝ1 and Ŝ2 37

3.9 Running Example - Reachable Product of S1 and S2 38

3.10 Running Example - Supervisor Ŝ = (Ŝ1 × Ŝ2) Acting on Plant G 42

3.11 Running Example - Supervisor S = (S1 × S2) Acting on Plant G 43

4.1 Running Example - Reachable product of R̂1 and R̂2 (Review of Figure 3.8) 57

vii

4.2 Running Example - R̂ε
1(V̂21) Generated by N12(Ĉ12, Ĉ21) 58

4.3 Running Example - ˜̂
R1 Generated by N12(Ĉ12, Ĉ21) 59

4.4 Running Example - R̂ε
2(V̂12) Generated by N21(Ĉ21, Ĉ12 ∪ N̂max

12) 63

4.5 Running Example - ˜̂
R2 Generated by N21(Ĉ21, Ĉ12 ∪ N̂max

12) 64

4.6 Explicit Function Example - Implicit Supervisors Ŝ and S 71

4.7 Explicit Function Example - Plant G . 71

4.8 Explicit Function Example - Explicit Supervisors Ŝ′ and S′ 72

5.1 Running Example - Reachable product of S1 and S2 (Review of Figure 3.9) 79

5.2 Running Example - R̃1 Generated by N12(C12, C21) 81

5.3 Running Example - R̃2 Generated by N21(C21, C12 ∪ Nmax
12) 83

5.4 Running Example - R̃1 Generated by N12(C12, C21 ∪ N∗
21) 84

5.5 Proof of Concept Example - Plant G . 89

5.6 Proof of Concept Example - Supervisor T1 . 89

5.7 Proof of Concept Example - Supervisor T2 . 89

5.8 Proof of Concept Example - Reduced Supervisor T̂1 89

5.9 Proof of Concept Example - Reduced Supervisor T̂2 90

5.10 Proof of Concept Example - Result of Supervisors T1 ∧ T2 acting on Plant G 90

5.11 Proof of Concept Example - Result of Reduced Supervisors T̂1 ∧ T̂2 Acting on Plant G 91

5.12 Proof of Concept Example - Supervisor R = (T1 × T2) 92

5.13 Proof of Concept Example - R̃1 Generated by N12(C12, C21) 93

5.14 Proof of Concept Example - R̃2 Generated by N21(C21, C12 ∪ Nmax
12) 94

5.15 Proof of Concept Example - R̃1 Generated by N12(C12, C21 ∪ N∗
21) 95

5.16 Proof of Concept Example - Supervisor R̂ = (T̂1 × T̂2) 97

5.17 Trim vs. Untrim Example - Plant G (Review of Figure 2.1) 98

5.18 Trim vs. Untrim Example - Supervisor Ŵ1 (Review of Figure 2.2) 99

5.19 Trim vs. Untrim Example - Supervisor Ŵ2 (Review of Figure 2.5) 99

5.20 Trim vs. Untrim Example - Supervisor W1 . 100

5.21 Trim vs. Untrim Example - Supervisor R̂ = (Ŵ1 × Ŵ2) (Review of Figure 2.6) . . 101

5.22 Trim vs. Untrim Example - Supervisor R = (W1 × W2) 102

viii

5.23 Trim vs. Untrim Example - R̂∗
1 Resulting From Ĉ21 and N̂∗

21 103

5.24 Trim vs. Untrim Example - R̂∗
2 Resulting From Ĉ12 and N̂∗

12 103

5.25 Trim vs. Untrim Example - R∗
1 Resulting From C21 and N∗

21 105

5.26 Trim vs. Untrim Example - R∗
2 Resulting From C12 and N∗

12 106

5.27 Trim vs. Untrim Example - Implicit Supervisor R̂∗ = (R̂∗
1 ∧ R̂∗

2) 107

5.28 Trim vs. Untrim Example - Implicit Supervisor R∗ = (R∗
1 ∧ R∗

2) 108

5.29 Trim vs. Untrim Example - Supervisors R̂∗
1 and R̂∗

2 Acting on Plant G 109

5.30 Trim vs. Untrim Example - Supervisors R∗
1 and R∗

2 Acting on Plant G 110

ix

Chapter 1

Introduction

Motivation

It is a rainy morning in the world of research. The umbrella of systems control can be seen through

the fog. Under the umbrella sits the field of discrete-event systems, waiting for the bus. In one hand,

it holds the muffin of minimal communication between distributed agents. Unfortunately, it’s never

considered bringing the coffee of supervisor reduction as well. And although discrete-event systems

still has breakfast, it would be much improved if it had brought coffee to go with the muffin.

Since its inception over 20 years ago, the original model for centralized control of a discrete-

event system has been subject to numerous enhancements. None of these changes were conceived in

frivolity; they were devised to expand the range of discrete-event processes to which control could

be applied. Amongst the most powerful of these new concepts is that of distributed control: several

supervisors working independently towards a common goal. This continues to be an important

advancement in that numerous systems which are structurally distributed (whether by design or

necessity) can be supervised.

It is thus rather unfortunate that the preceding sentence must use the term “supervised” instead

of the phrase “fully controlled such that the desired behaviour is always enforced”. The fact is

that standard distributed supervision assumes that none of its agents can communicate the events

they see to those that cannot. These agents must attempt to perform their function without any

1

CHAPTER 1. INTRODUCTION 2

information beyond what they can observe, which may be a limited subsection of the system as a

whole. As a result, distributed supervisors are often unable to fully enforce the desired behaviour

and those attempting to implement the agents are forced to accept a limited amount of control, or

perhaps none at all.

The need for communication is obvious, but communication itself is a wolf in sheep’s clothing.

Transmitting events between agents is intended to ensure that they always know enough to enforce

the desired behaviour. The problem is that communication is never guaranteed; delayed or lost

transmissions could confuse an agent and cause it to enable or disable events contrary to the desired

action. However, if the need to communicate is minimized, then so is the risk associated with

communication.

An algorithm that determines the minimal communication scheme between two distributed agents

was proposed and proven to be correct by Rudie, Lafortune and Lin in [10]. Given two fully-defined

automata that represent the behaviour of two distributed agents, the algorithm determines which

events must be transmitted by the agents at what points during the process’s operation. If all

communications are properly sent and received, each automaton will always know its current state

with absolute certainty. However, considering the risky nature of event transmissions, any possible

enhancements to the scheme should be investigated.

Although the procedure returns a minimal communication scheme, there are several factors that

should be considered when applying the algorithm, such as the efficiency of the given automata and

the enablement/disablement policies of the given agents. Further analysis of these issues will yield

strategies that may reduce the number of transmissions and allow the application of the algorithm

to a wider problem set.

Problem Statement

The fact is that applying control to the majority of discrete-event systems is not difficult. The

wealth of research done on the subject has resulted in a rich resource for those who must work with

such event-driven processes. There are strategies for handling nearly every difficulty imaginable.

Uncontrollable events? Unobservable events? Distributed system? Dynamic changes to the system?

Not a problem; these can all be handled.

CHAPTER 1. INTRODUCTION 3

It is thus rather unfortunate that a tradeoff exists when it comes to the distributed control of

discrete-event systems. As mentioned previously, too often only a subset of the desired behaviour

can be coaxed out of the process while maintaining proper control. However, there are times when

the desired behaviour is not up for discussion. Consider a shoe factory; all shoes must be glued and

stitched, regardless of the distributed controllability of these actions.

[10] made great strides in addressing this issue with a method to determine a minimal commu-

nication scheme between two agents. It takes two fully-defined automata as input and returns two

sets of transitions that must be communicated; one for each automaton. However, no examination

is made of the automata themselves, both with respect to their efficiency in performing their control

task and their control actions. Thus, there are two areas where the method of determining the event

transmissions could be improved:

1. The current procedure takes two fully-defined automata, not discrete-event supervisors, as

input. Thus, an agent that enforces control through implicit definition could not be used

because it is not fully defined. In addition, a supervisor’s feedback map (where defined) is not

currently considered when determining the sets of transitions that are communicated, resulting

in a scheme that may contain event occurences that will never occur.

2. The control action performed by a given agent gains new relevance when the plant that requires

control is also considered. In reality, the given agent is but one of many possible supervisors

that perform the same task, some of which are larger in state size than others. By “reducing”

the given agent within the context of the plant, transitions will be eliminated, along with the

need to have their associated events communicated by other supervisors.

The purpose of this research is thus to incorporate different types of supervisors into the algorithm

and to prove that performing a state-space reduction on a set of distributed supervisors will never

increase communication and will often result in a decrease of event transmissions. The desired goals

are to achieve greater efficiency and make the method more applicable to discrete-event supervisors

in particular and discrete-event systems in general.

Chapter 2

Discrete-Event Systems

2.1 Background

2.1.1 Centralized Discrete-Event Systems

A centralized discrete-event system (DES) is a process whose operation is defined solely in terms of

its actions. It is characterized by sequences of events where, at each stage of the process’s execution,

what may occur depends entirely on what has occured previously. This type of system is completely

time-independent; actions can neither result nor be predicted by any chronological function. Instead,

the process could be termed a reactive system, as each event is a reaction to the occurrence of a

preceeding event. A discourse on the fundamentals of DES theory can be found in [9], while a more

comprehensive examination is offered in [1].

Modelling Discrete-Event Systems

There any many tools in the world of discrete mathematics and formal logic which can be employed

to represent a discrete-event system; Petri nets, temporal logic and vectors are good examples.

However, the standard for modelling requires the use of a finite-state automaton. There are several

excellent reasons for this choice, including the following:

(i) Established language theory, algorithms and finite-state machine manipulation can be em-

ployed to assist in understanding and managing the process

4

CHAPTER 2. DISCRETE-EVENT SYSTEMS 5

(ii) The intuitive nature of automata provides a certain advantage; both in the model and in

reality, different events lead the process into different states where other events may or may

not occur

(iii) Events may be abstracted to a much higher level if the low-level actions are not relevant to

the desired management of the system, e.g., the event “grasp widget” may actually represent

the sequence “open hand”, “position hand” and “close hand” if none of these actions are of

individual importance to the process’s control policies

Thus, a discrete-event system is represented by a five-tuple

G = (Σ, Q, δ, q0, Qm)

where Σ is the set of events which may occur, Q is the set of states which the process may enter,

δ is the set of event-transitions which take the operation from one state to another when an event

occurs, q0 is the process’s starting state and Qm is the set of end (or marked) states where the

process may terminate. The function δ may be totally or partially defined where

δ : Σ × Q → Q

The function is applied in the following manner

δ(σ, x) = y where x, y ∈ Q, σ ∈ Σ

A transition is typically represented by a triple (x, σ, y) where the event σ leads from state x to

state y. Note that as δ is a partial function, not every state has a transition defined for each event.

In addition, some self-transitions (x, σ, x) may be defined where no change of state occurs. Finally,

δ(σ, x)! is a common abbreviation for “the transition δ(σ, x) is defined.”

The automaton G mimics the behaviour of the process through its associated languages. The

language L(G) is the set of all event sequences (or strings of event labels) that lead to some state in

G and Lm(G) is the set of all event sequences that lead to marked or final states in G. Note that

either or both of these sets may be infinite but both are regular languages that can be respresented

CHAPTER 2. DISCRETE-EVENT SYSTEMS 6

using finite-state automata. In terms of the process itself, L(G) represents the possible behaviour

of the system while Lm(G) represents some recognized “completed” behaviour, e.g., a widget is

produced or a machine is turned off.

It is assumed that the modelled process does not contain any unreachable or “dead” states in

which it may be unable to proceed to a marked state. Specifically, G must be trim—every state

in G must have an event sequence that leads to some final state. With respect to languages, this

means that the prefix-closure Lm(G) (which is the set of all prefixes of all words in Lm(G)) has the

following property

Lm(G) = L(G)

Example To properly illustrate the concepts discussed in this document, a running example will be

built by incorporating, or examined using, the items described in the sections of each chapter. To be-

gin, Figure 2.1 is the model of a plant G. In this instance, Σ = {a1, b1, a2, b2}, Q = {A, B, C, D, E},

A C D

B E

a2

a1, b1

b2

b2

a2

a2, b2

a1, b1

a2, b2

a1

b1

b1

a1

Figure 2.1: Running Example - Plant G

q0 = A and Qm = {D}. The initial and marked states are represented by dashed and double-lined

borders, respectively. Although there is currently no control policy applied to the plant, some states

do not have an outgoing transition for every event, i.e., δ(a1, B) and δ(b1, B) are not defined. This

does not imply that the plant is controlling its events; rather, it means that the plant’s construction

makes it impossible for those events to occur in those states.

CHAPTER 2. DISCRETE-EVENT SYSTEMS 7

Modelling Supervision

If DESs could only be employed as a modelling tool, research into this area would not have advanced

very far. Fortunately, DESs offer a far more powerful feature: the ability to enforce some manner of

control over the system. This is accomplished by enabling and disabling specific events in specific

states. However, implementing control is not as simple as it sounds; applying a malformed control

scheme will most likely affect the process negatively, resulting in unanticipated and undesirable

behaviour such as blocking.

The first consideration when modelling a supervisor is the nature of the system’s events. While

some actions may be easily enabled or disabled, others may not. This leads to a necessary classifi-

cation: events must be either controllable or uncontrollable.

Σ = Σc ∪ Σuc Σc ∩ Σuc = ∅

The difference between the two is that controllable events may be disabled at any given state while

uncontrollable events can never be cancelled. This is sensible from a real-world perspective; a

machine may be able to control the processing of a widget, but it cannot prevent a faulty widget

from crumpling and jamming the machine.

At this point, an analogy in DES terminology must be introduced. So far, the operation to be

controlled has been referred to as a process. Now think of it more as a factory or a plant, where a

single machine or multiple machines perform tasks under the supervision of human controllers. It is

the responsibility of these supervisors to monitor the plant and ensure that undesirable behaviour

is not allowed to occur. Thus, from this point onwards the process will be referred to as a plant and

any control scheme for that process will be referred to as a supervisor/agent.

A supervisor is defined as a pair

S = (S, φ)

where S is an automaton (over the same alphabet as G) describing the behaviour of the supervisor

and φ is a “feedback map” that determines when controllable events are disabled within S. Formally,

S = (Σ, X, ξ, x0, Xm)

CHAPTER 2. DISCRETE-EVENT SYSTEMS 8

where Σ is the same set of event labels present in G, X is the set of states, ξ is the set of event-

transitions, x0 is the process’s start state and Xm is the set of end states. The mapping φ is defined

as a total function where

φ : Σ × X → {0, 1}

In this case, 0 denotes that an event is disabled and 1 denotes that is enabled. The feedback

map’s responsibility is to provide “control rules” constrained as follows: for all σ ∈ Σ and x ∈ X ,

φ(σ, x) = 1 if σ ∈ Σuc and φ(σ, x) ∈ {0, 1} if σ ∈ Σc.

A supervisor may be defined in a straightforward manner if φ is determined implicitly by the

transition structure of S. Specifically,

φ(σ, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if σ ∈ Σuc

1 if σ ∈ Σc ∧ ξ(σ, x)!

0 otherwise

Example At this point in the example, it is vital to note that every event in the plant G’s alphabet

Σ is considered controllable. Formally, Σc = Σ and Σuc = ∅; this has been assumed for simplicity

as factors other than controllability are the focus of this work.

Figure 2.2 is a diagram of an explicitly-defined supervisor S. This supervisor is designed to act

on G, and thus possesses the same alphabet Σ = {a1, b1, a2, b2}. Its states are defined as follows:

X = {1, 2, 3, 4}, x0 = 1 and Xm = {4}. Nearly every event is enabled at each state in S, the

exceptions being φ(a2, 2) = 0, φ(b1, 2) = 0, φ(a1, 3) = 0 and φ(b2, 3) = 0. These are distinguished

in the diagram by dotted edges; all transitions with enabled events have solid edges. An implicitly-

defined, equivalent version of the same supervisor would appear as shown in Figure 2.3.

Applying Control

Thus far, two distinct processes have been defined: the uncontrolled actions of a plant and the event

enablement/disablement policies of a supervisor. These behaviours must be merged so the agent

may begin its supervision of the plant. With respect to automata, the supervisor must perform the

following duties:

CHAPTER 2. DISCRETE-EVENT SYSTEMS 9

1

2 3

4

b1

a1

a2, b2

b2

a1

a2, b1

a2

b1

a1, b2

a2

b2

a1, b1

Figure 2.2: Running Example - Explicitly-Defined Supervisor S

1

2 3

4

b1

a1

a2, b2

b2

a1

a2

b1
a2

b2

a1, b1

Figure 2.3: Running Example - Implictly-Defined Supervisor Equivalent to S

(i) Observe the events occurring in the plant and change state in its own automaton as the plant

changes state

CHAPTER 2. DISCRETE-EVENT SYSTEMS 10

(ii) Prevent the plant from taking a transition if that event is to be disabled by the supervisor in

its current state

To accomplish this, supervisor S is applied to plant G Cartesian-style, resulting in

S/G = (Σ, (Q × X), (δ × ξ)φ, (q0, x0), (Qm × Xm))

where Σ is the defined set of event labels, (Q×X) is the combined set of states, (q0, x0) is the joint

start state, and (Qm ×Xm) is the set of joint end states. The transition function (δ × ξ)φ is defined

as follows

∀σ ∈ Σ, (q, x) ∈ (Q × X), (δ × ξ)φ(σ, (q, x)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ(σ, q), ξ(σ, x)) if δ(σ, q)!∧
ξ(σ, x)! ∧ φ(σ, x) = 1

undefined otherwise

There is a key concept within this method of combining the behaviours of the plant and the

supervisor that should be noted. The automaton S/G only allows a sequence of events to occur

under the following circumstances:

1. The uncontrolled behaviour of the plant permits the sequence

2. The sequence does not violate the control scheme exerted by the supervisor

As a result, the language of the automaton L(S/G) must be a subset of (or equal to) L(G) and

L(S) because it is restricted to what is possible for the plant to achieve and what the supervisor

allows the plant to achieve.

Example Figure 2.4 illustrates the result of supervisor S acting on plant G. The first item of note

is that even though (Q × X) contains 20 states, only those that are reachable are considered states

in (S/G). This example also illustrates the case where S not only restricts the actions of G, but

G also prohibits some of the behaviour specified by S. For example, a1a1 ∈ L(G) but a1a1 /∈ L(S)

since the second a1 is disabled by the supervisor at state 3. On the other hand, a2a1 ∈ L(S) but

a2a1 /∈ L(G) since a1 can not be generated by the plant at state B. Thus, L(S/G) ⊂ L(G) and

L(S/G) ⊂ L(S).

CHAPTER 2. DISCRETE-EVENT SYSTEMS 11

(B, 1) (A, 1) (C, 3)

(C, 2) (D, 4) (E, 4)

b1

a1

a2

b2

b2

a2

a1

b2 b1

a2

a2

b2

a1

b1

b1

a1

Figure 2.4: Running Example - Supervisor S Acting on Plant G

Proper Supervision

At this juncture, it is important to place some focus on constructing appropriate supervisors. As

stated previously, a malformed supervisor may allow or even force the plant to generate undesirable

events. To avoid such a malfunction, the first requirement for an appropriate supervior is that it be

complete. Generally, this means that if a supervisor allows an event sequence to occur within the

plant, a subsequent event that is accepted by the plant and allowed by the feedback map should be

accepted by the supervisor. Formally,

∀ s ∈ Σ∗, ∀σ ∈ Σ, s ∈ L(S/G) ∧ sσ ∈ L(G) ∧ φ(σ, ξ(s, x0)) = 1 ⇒ sσ ∈ L(S/G)

The second requirement is that the supervisor be nonblocking. Generally speaking, this implies

that once the supervisor is applied to the plant, the supervisor will not cause the plant to enter a

dead state. Formally,

Lm(S/G) = L(S/G)

In other words, S/G is trim.

CHAPTER 2. DISCRETE-EVENT SYSTEMS 12

Example It is apparent that supervisor S is complete and nonblocking with respect to G. In

this case, S’s simplicity allows it to avoid these two issues. However, in real-world systems with

extremely large state spaces, these are significant issues which may prevent a suitable supervisor

from being found. Having said that, only a few minor alterations are required to invalidate S.

To make S incomplete, simply remove the definition ξ(b2, 1) = 1. For s = ε and σ = b2,

b2 ∈ L(G) ∧ φ(b2, 1) = 1 but b2 /∈ L(S/G) due to the fact that ξ(b2, 1) is not defined. To make S

blocking, simply disable b1 at state 4. This will result in state (E, 4) losing its only transition back

to the marked state (D, 4), thus reducing (E, 4) to a dead state.

2.1.2 Distributed Discrete-Event Systems

The class of DESs discussed thus far is centralized in that a single supervisor observes, enables and

disables all of the events in the system. However, there are instances where the nature of the plant

renders it unrealistic to follow such a model. For example, a plant could have such a large state

space as to render it computationally infeasible to determine a single supervisor that satifies all of

the plant’s control requirements. Another possibility is that the plant contains components that are

physically separated by significant distances, thus disallowing a lone supervisory unit. This scenario

was first formulated in [17], while [12] offers a recent summary of related research.

Modelling Modular Supervision

Modular supervision is an obvious solution to the problems described above. It requires the as-

signment of individual agents (such as S1 and S2) to the subprocesses of a plant G. This method

has several advantages over the centralized approach in that there is not as much computation to

be done initially and alterations can be made to individual supervisors without affecting the other

agents in the system. However, there is a significant disadvantage: it is possible that a set of modu-

lar supervisors that are nonblocking with respect to their individual tasks may not be nonblocking

with respect to the system as a whole. In other words, local agents are not aware of their effect on

the larger process and cannot know that together they are producing undesirable results. For some

plants, a centralized supervisor may be able to apply more control than a series of local agents.

However, where centralized supervision is simply not an option, there is no other choice.

CHAPTER 2. DISCRETE-EVENT SYSTEMS 13

Since the agents S1 and S2 are restricted to controlling subprocesses of G, they are also restricted

to observing the events that occur in their assigned subprocess. Hence, S1 and S2 are no longer

capable of observing Σ but subsets Σ1,o and Σ2,o where Σ1,o ∪ Σ2,o = Σo. Note that some events

may not be observable to either agent, nor may the union of their observable events be disjoint; S1

and S2 may overlap in their supervision. Likewise, the set Σc must be divided into subsets Σ1,c and

Σ2,c; the set of uncontrollable events is then defined as Σuc = Σ \ (Σ1,c ∪ Σ2,c). The set of globally

unobservable events is defined similarly as Σuo = Σ \ (Σ1,o ∪ Σ2,o).

Once the observable events for each supervisor have been determined, so can the language that

each agent will see. Every sequence of events in L(G) and Lm(G) will appear differently to S1 and

S2 because they will not be able to oberve some of the events in that sequence. A projection will

be employed to determine exactly what Si will see when G generates s ∈ Σ∗ and σ ∈ Σ.

Pi : Σ∗ → Σ∗
i,o

Pi(σ) =

⎧⎪⎨
⎪⎩

σ if σ ∈ Σi,o

ε otherwise

Pi(sσ) = Pi(s)Pi(σ)

Let S1 = (S1, φ1) and S2 = (S2, φ2) where Si = (Σ, Xi, ξi, xi,0, Xi,m) and φi : Σ × Xi → {0, 1},
i ∈ {1, 2}. When both agents act on the plant G, they work in conjunction with each other in the

same manner as the following centralized supervisor

S = S1 ∧ S2

(S, φ) = ((S1 × S2), (φ1 × φ2))

S = (Σ, X, ξ, x0, Xm)

where X ⊆ (X1 × X2) is the set of reachable states, x0 = (x1,0, x2,0) is the initial state and

Xm ⊆ (X1,m × X2,m) is the set of reachable marked states. The transition function ξ and feedback

CHAPTER 2. DISCRETE-EVENT SYSTEMS 14

map φ are defined as follows for all σ ∈ Σo and x = (x1, x2) ∈ X :

ξ(σ, x) = (ξ1 × ξ2)(σ, (x1, x2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(ξ1(σ, x1), ξ2(σ, x2)) if ξ1(σ, x1)! ∧ ξ2(σ, x2)!

(ξ1(σ, x1), x2) if only ξ1(σ, x1)!

(x1, ξ2(σ, x2)) if only ξ2(σ, x2)!

undefined otherwise

φ(σ, x) = (φ1 × φ2)(σ, (x1, x2)) =

⎧⎪⎨
⎪⎩

0 if φ1(σ, x1) = 0 ∨ φ2(σ, x2) = 0

1 otherwise

The languages generated by S1 and S2 operating jointly are L((S1 ∧ S2)/G) = L(S1/G) ∩
L(S2/G) and Lm((S1 ∧ S2)/G) = Lm(S1/G)∩Lm(S2/G). In more general terms, the conjunction

of two supervisors will only permit a sequence of events to occur if both supervisors permit it.

Example The example thus far has examined a single centralized supervisor acting on a plant.

Now consider that, for some unspecified reason, additional behaviour must be enforced on G and a

centralized solution is no longer feasible. Instead, two supervisors S1 = (S1, φ1) and S2 = (S2, φ2)

are created where Si = (Σ, Xi, ξi, xi,0, Xi,m) and φi : Σ×Xi → {0, 1}, i ∈ {1, 2}. The supervisor S1

will be identical to S as given in Figure 2.2 with one exception: while the agent’s controllable events

remain the same (Σ1,c = Σ), what it can observe is now limited to Σ1,o = {a1, b1}. As for S2, it is

also an explicitly-defined supervisor as shown in Figure 2.5.

i ii

iii

b1

a2

a1

b2

b2

b1

a1, a2

a1, a2, b1, b2

Figure 2.5: Running Example - Distributed Supervisor S2

CHAPTER 2. DISCRETE-EVENT SYSTEMS 15

Supervisor S2 observes the event set Σ2,o = {a2, b2}, which is completely disjoint from that

observed by S1. Agent S2 can also control nearly as much as its counterpart: Σ2,c = {a1, a2, b2} and

Σ2,uc = {b1}. In addition, the states of S2 are defined as X = {i, ii, iii}, x0 = i and Xm = {iii}.
Like S1, S2 does not disable a great many events, the exceptions being φ2(b2, i) = 0, φ2(a1, ii) = 0

and φ2(a2, ii) = 0.

When S1 and S2 work in conjunction with each other, they simulate the single centralized

supervisor S illustrated in Figure 2.6. The resulting behaviour of the plant G when both S1 and S2

(1, i) (3, i) (1, iii) (2, iii)

(4, ii) (2, ii) (3, iii) (4, iii)

a1

b1

a2

b2

a2

b1

a1, b2 a1

b1

a2, b2

b2

a1

a2, b1

a2

b2

a1

b1

b2

a1

a2, b1

b1

a2

a2, b2

b2

a2

a1, b1

Figure 2.6: Running Example - Conjunction of S1 and S2

act in conjunction upon it is shown in Figure 2.7.

This example bears many similarities to the previous example where centralized supervisor S

acted on plant G, shown in Figure 2.4. Again, although there are 60 possible states between S1,

S2 and G, only 10 of those are actually reachable. In addition, the language L(S1 ∧ S2/G) is the

result of both enablement/disablement policies placed on G by S1 and S2 as well as the inability

of G to generate some of the behaviour sanctioned by S1 and S2.

CHAPTER 2. DISCRETE-EVENT SYSTEMS 16

(A, 1, i) (B, 1, iii) (C, 2, ii)

(C, 3, i) (A, 1, iii) (C, 2, iii)

(D, 4, ii) (C, 3, iii) (D, 4, iii)

(E, 4, iii)

a2

a1

b1

b2

a2

b2

b1

a2

b2

b1 b1

a1

a2

a1

b1

b2

b2

a2

a1

b1

b1

a2

b2

a1

Figure 2.7: Running Example - Distributed Supervisors S1 and S2 Acting on Plant G

Proper Modular Supervision

It has been proven that (S1 ∧ S2) is complete with respect to G if S1 and S2 are both complete with

respect to G. However, (S1 ∧ S2) is not necessarily nonblocking if S1 and S2 are. The supervisors

CHAPTER 2. DISCRETE-EVENT SYSTEMS 17

S1 and S2 must also be nonconflicting where

Lm(S1/G) ∩ Lm(S2/G) = Lm(S1/G) ∩ Lm(S2/G)

The two conditions above ensure that the centralized representation of S1 and S2 satisfies the

nonblocking requirement outlined earlier.

Example As shown in Figures 2.6 and 2.7, it is apparent that both (S1 ∧ S2) is nonblocking and

S1 and S2 are nonconflicting since there are no dead states in either (S1 ∧ S2) or ((S1 ∧ S2)/G).

However, only a minor change is required to make S1 and S2 conflict. Simply set φ1(a1, 2) = 0 and

φ2(b2, iii) = 0. Although these changes do not cause S1 or S2 to block with respect to G, it does

render both (B, 1, iii) and (C, 2, iii) as dead states.

2.2 Research

It was stated previously that the research documented in this dissertation is dedicated to supervisor

reduction and minimizing communication between distributed agents. Although this is certainly the

case, not all of the new concepts are specific to those topics. The following definitions and associated

results are based on the foundations of discrete-event systems with respect to supervised control and

will be employed extensively in order to meet the stated research goals.

2.2.1 Synthesis-Accessibility

Definition 1. Given a plant G = (Σ, Q, δ, q0, Qm) and a supervisor S = (S, φ) where S =

(Σ, X, ξ, x0, Xm) and φ : Σ × X → {0, 1}, a state x ∈ X is considered to be synthesis-accessible

with respect to G if ∃ s ∈ L(S/G) such that ξ(s, x0) = x.

Remarks. Synthesis-accessibility is as much a compound idea as it is a compound word: it applies

the definitions of accessibility and language synthesis to the states in S. Only states that are

synthesis-accessible with respect to G are be considered in the pursuit of the primary research goals.

An obvious question at this point would be whether it is assumed that all given supervisors are

trim with respect to synthesis-accessible states and their associated plant. The response is negative

CHAPTER 2. DISCRETE-EVENT SYSTEMS 18

and the reason is relatively simple. Although many agents are custom-built for a certain plant and

are thus trim, some supervisors could be designed for application to numerous plants. As a result,

only a subset of the agents’ potential control actions may be enforced on a given process. Hence,

the states of interest in a supervisor become those that will have an opportunity to actually enforce

control.

It should be noted that trimming a given supervisor with respect to synthesis-accessiblity is very

simple: simply remove those states that are not synthesis-accessible for a given plant and eliminate

all transitions that enter and exit these states. The result is a trim agent that enforces identical

control on the plant in question.

Example From Figure 2.7, it is apparent that every state in both S1 and S2 is synthesis-accessible,

as each state is visited while the supervisor is acting on the plant. In contrast, this is not the case in

Figure 2.8. States 3 and 4 of the supervisor are synthesis-inaccessible; 3 because its only incoming

A B
α, β

α, β, γ

(a) Plant G

1

2 3 4

α
β

γ

α β γ

(b) Supervisor S

Figure 2.8: Synthesis Inaccesibility Example - Plant G and Supervisor S

transition is disabled and 4 because γ is not permitted by the plant in its initial state.

2.2.2 Synthesis-Accessibility Set

Definition 2. Given a plant G and an associated supervisor S, a synthesis-accessibility set [x] is

defined for each state x ∈ X where [x] = {s | s ∈ L(S/G) ∧ ξ(s, x0) = x}.

CHAPTER 2. DISCRETE-EVENT SYSTEMS 19

The following facts can be ascertained from the definition of [x]:

1. ∀x ∈ X, [x] = ∅ ⇒ x is not synthesis-accessible

2. ∀x ∈ X, ∀ y ∈ X, [x] = [y] ⇔ x = y

3. ∀x ∈ X, ∀ y ∈ X, [x] ∩ [y] = ∅ ⇔ x �= y

Remarks. In addition to considering which states of S are accessible during synthesis, it is also vital

to categorize the strings that actually enter those states. These sets will be used extensively in the

investigation of supervisor reduction to relate the states of the original agent to those in the modified

agent.

It should be noted that [x] is not an equivalence class; such a class would require an equivalence

relation R over the set (X × X). Since the contents of [x] are strings and not states, there is no

such relation.

Example Many of the states in ((S1 ∧ S2)/G) have infinite synthesis-accessibility sets that are

difficult to describe. However, some states have sets that can be expressed quite simply using regular

expressions. Examples include the following:

• [(A, 1, i)] = ε

• [(C, 2, ii)] = b1

• [(D, 4, ii)] = a1b1(b1)∗

Chapter 3

Supervisor Reduction

3.1 Background

The terms “supervisor reduction” and “supervisor minimization” are somewhat ambiguous in that

they do not specify what aspect of supervision undergoes alteration. In [14], they refer to the

elimination of superfluous distributed agents whose control actions are redundant. However, in

more general terms, performing a reduction on a supervisor S will result in another agent Ŝ that has

fewer states but enforces the same control action as S, while minimization results in a reduced agent

with the smallest state size possible. There are several different approaches to supervisor reduction,

all of which (that are known to the author) will be described in appropriate detail in this section. For

a more in-depth examination of these methods, please refer to Appendix A, “Supervisor Reduction:

A Quick Reference Guide”.

3.1.1 Projection

Among the first to examine the effects of state-set reduction are Ramadge and Wonham in [8]. Their

work produced the concept of a projection. Given two supervisors S = (S, φ) and Ŝ = (Ŝ, φ̂) where

S = (X, Σ, ξ, x0, Xm) and φ : X → {0, 1}Σ (and similarly for Ŝ and φ̂)1, a total function π : X → X̂

is a projection from S to Ŝ if the following conditions are satisfied:

1The notation φ : X → {0, 1}Σ comes directly from [8]. It is equivalent to the form φ : Σ × X → {0, 1} used
previously in this dissertation.

20

CHAPTER 3. SUPERVISOR REDUCTION 21

(i) π : X → X̂ is surjective,

(ii) π(x0) = x̂0 and Xm = π−1(X̂m),

(iii) ξ̂ ◦ (idΣ × π)(σ, x) = π ◦ ξ(σ, x) for all (σ, x) where ξ(σ, x) is defined,

(iv) φ̂ ◦ π = φ.

If such a state mapping exists, then Ŝ is the quotient of S with respect to π. The concept of

a quotient is slightly more rigid than that of a cover; the surjection requirement disallows a state

in S from being mapped to multiple states in Ŝ. However, the end result is the same: given any

plant G, L(S/G) = L(Ŝ/G) and Lm(S/G) = Lm(Ŝ/G). Unfortunately, no algorithm is provided that

determines a quotient supervisor from some given agent.

3.1.2 Cover

Further inroads into this topic were made by Wonham and Vaz in [16] with the introduction of

covers. Given a supervisor S = (S, ψ) where S = (Σ, X, ξ, x0, Xm) and ψ : (Σ × X) → {0, 1, dc}
(where dc represents “don’t care”, i.e., neither enabled nor disabled), a cover C = {Xi | i ∈ I} of S

on index set I is defined as follows:

∀ i, Xi �= ∅;
For a subset Im ⊂ I, Xm = ∪{Xi | i ∈ Im},

X − Xm = ∪{Xi | i ∈ I − Im};
(∀ i, σ) : (∃ y ∈ Xi), ξ(σ, y)! ⇒ (∃ j)(∀x ∈ Xi) · ξ(σ, x)! ⇒ ξ(σ, x) ∈ Xj

(for brevity, we write this property as
(∀ i, σ)(∃ j) ξ(σ, Xi) ⊂ Xj)

(∀ i, σ)(∀x, y ∈ Xi), ψ(σ, x) �= dc �= ψ(σ, y)
⇒ ψ(σ, x) = ψ(σ, y)

Informally speaking, a cover lumps together states from S that have similar marking and control

actions such that the transition function and feedback map are both preserved. A cover triple (i, σ, j)

stands in for transitions of the form (x, σ, y) where x ∈ Xi and y ∈ Xj . Note that a state from S

can be in more than one subset in C.

From the cover and its triples, the reduced supervisor S = (S, ψ) is determined:

CHAPTER 3. SUPERVISOR REDUCTION 22

S = (Σ, I, ξ, i0, Im)
Select i0 ∈ I such that x0 ∈ Xi0 ;
Define ξ : Σ × I → I (pfn) as follows:

For σ ∈ Σ, i ∈ I select j ∈ I such that (i, σ, j)
is a cover triple and let ξ(σ, i) = j;

Define ψ : (Σ × I) → {0, 1, dc} as follows:
For σ ∈ Σ, i ∈ I if there exists x ∈ Xi such that
ψ(σ, x) �= dc then let ψi(σ) = ψ(σ, x);
otherwise let ψi(σ) = dc.

Covers are extremely powerful; not only does L(S/G) = L(S/G) and Lm(S/G) = Lm(S/G),

but a cover can produce a reduced supervisor with the smallest state size possible for that control

task. However, the algorithm to determine that supervisor is exponential in complexity and thus

not feasible for the vast majority of control tasks.

3.1.3 Control Cover/Congruence

At this juncture, research into this topic appears to have languished until Su and Wonham addressed

it again in [13]. Their approach is the first to consider reducing a supervisor using knowledge of

both its and its associated plant’s structures. As a result, their method is more complex than those

described previously. This is offset by the implementation of their procedure in CTCT, the current

standard for discrete-event software created and managed by Wonham and his Systems Control

Group [3].

Given a plant G = (Y, Σ, η, y0, Ym) and its desired behaviour, represented by the automaton

SPEC, the resulting supremal controllable sublanguage of the two is captured (using supcon from

TCTC) in SUPER = (X, Σ, ξ, x0, Xm). In contrast, an implicitly-defined agent SIMSUP =

(Z, Σ, ζ, z0, Zm) may exist that is much smaller in terms of state size than SUPER but is

control-equivalent, where

L(G) ∩ L(SIMSUP) = L(SUPER) (1a)

Lm(G) ∩ Lm(SIMSUP) = Lm(SUPER) (1b)

The goal then becomes to determine such a SIMSUP from SUPER. It would be ideal to

CHAPTER 3. SUPERVISOR REDUCTION 23

determine MINSUP, which has the smallest state size possible of all agents that enforce the best

possible control (given in SUPER) on G. This task is possible, but unfortunately proven to be

NP-hard [13].

The first task is to build relationships between the states of SUPER using its stucture and that

of G. Four sets of states are defined as follows:

Let E : X → 2Σ with

x �→ E(x) := {σ ∈ Σ | ξ(x, σ)!}

be the SUPER-enabled event set at state x ∈ X . Let D : X → 2Σ with

x �→ D(x) := {σ ∈ Σ | ¬ξ(x, σ)! ∧ (∃ s ∈ Σ∗)[ξ(x0, s) = x ∧ η(y0, sσ)!]}

be the SUPER-disabled event set at state x ∈ X . Let M : X → {true, false} with

x �→ M(x) := true if x ∈ Xm

Finally, let T : X → {true, false} with

x �→ T (x) := true if (∃ s ∈ Σ∗)ξ(x0, s) = x ∧ η(y0, s) ∈ Ym

From the above groups of states, the relation R ⊆ X ×X is defined. A state pair (x, x′) is in R
if the states x, x′ ∈ X satisfy the following conditions:

1. E(x) ∩ D(x′) = E(x′) ∩ D(x) = ∅

2. T (x) = T (x′) ⇒ M(x) = M(x′)

In essence, a pair of states in R is guaranteed not to conflict on enablement or disablement if

the events are allowed to occur in the plant, nor on marking if the states correspond with marked

state(s) in the plant.

A control cover C = {Xi | i ∈ I} on SUPER is defined in the same manner as the standard

cover discussed previously, but with two additional requirements:

1. (∀ i ∈ I)Xi �= ∅ ∧ (∀x, x′ ∈ Xi) (x, x′) ∈ R

2. (∀ i ∈ I)(∀σ ∈ Σ)(∃ j ∈ I)[(∀x ∈ Xi) ξ(x, σ)! ⇒ ξ(x, σ) ∈ Xj]

CHAPTER 3. SUPERVISOR REDUCTION 24

As with the traditional definition of a cover, a state in SUPER can be a member of more than

one subset in C. However, a control congruence is a control cover where each state in SUPER

is contained in only one subset of C. In other words, a control congruence is a partition of X in

SUPER.

An induced supervisor J = (I, Σ, κ, i0, Im) is then derived from C in a near-identical manner to

that of an induced supervisor from a standard cover. The sole difference is with respect to marked

states; while Xm = ∪{Xi | i ∈ Im} for a traditional cover, Im = {i ∈ I | Xi ∩ Xm �= ∅}. This looser

requirement reflects the properties enforced by R: marking need not be uniform unless an associated

state in the plant is marked as well. The end result is that J is control-equivalent to SUPER.

Arguably, the most important result in [13] is somewhat independent of control covers: proof

that determining a minimal-state supervisor for any control task is NP-hard. This is a somewhat

discouraging result, but there is a viable alternative. Although using control covers to determine a

minimal agent is exponential-time, the same cannot be said for control congruences. Employing a

partition of states reduces the time required for computation from exponential to polynomial and

often results in a near-minimal agent, occasionally giving the actual minimum. The algorithm to

determine a control congruence has been implemented in TCTC as simsup.

3.2 Research

As stated previously, one of the primary aims of this research is to prove that reducing the state-

space of a set of distributed supervisors while preserving their control action will not result in

an increase of communication and will often decrease the number of event transmissions. On one

hand, some relationship between the original and the reduced supervisor will have to be assumed.

Without some relationship, it would be extremely difficult (if not impossible) to properly compare

the communication results between the two agents. On the other hand, the solution should be as

inclusive as possible. There is no real purpose in proposing a solution so exclusive that it becomes

impractical and essentially useless. With all of these factors in mind, the following definitions are

made.

CHAPTER 3. SUPERVISOR REDUCTION 25

3.2.1 Language-Equivalence

Definition 3. Two supervisors S and Ŝ are language-equivalent respect to a plant G if L(S/G) =

L(Ŝ/G) and Lm(S/G) = Lm(Ŝ/G).

Remarks. This definition formally states a basic requirement that must be enforced when discussing

the reduction of supervisors in this context. A pair of agents, one original and one reduced, should

only be considered if the control action of the first is preserved in the second. Otherwise, the purpose

of the reduction is negated and the result is not relevant.

Although traditional covers and projections are certainly language-equivalent, the fact that con-

trol covers are as well is not immediately obvious. However, control-equivalence implies language-

equivalence between SUPER and SIMSUP. Since SUPER is the supremal controllable sublan-

guage of SPEC and G, L(SUPER/G) = L(SUPER). In addition, the language generated by

SIMSUP acting on G is identical to the intersection of those languages. Thus,

L(G) ∩ L(SIMSUP) = L(SUPER)

L(G) ∩ L(SIMSUP) = L(SUPER/G)

L(SIMSUP/G) = L(SUPER/G)

The proof for the synthesized marked languages from SUPER and SIMSUP is similar. Hence,

SUPER and SIMSUP are language-equivalent. Of note is the fact that SPEC and SIMSUP are

not. A fuller language is generated when SPEC acts on the plant, of which the largest controllable

subset is selected for SUPER.

Example At this juncture, some adjustments will be made to the running example to illustrate

the concepts that will be defined in both this and subsequent chapters. To review, Figure 3.1 is a

diagram of the plant G = (Σ, Q, δ, q0, Qm). Define the agent Ŝ1 = (Ŝ1, φ̂1) as shown in Figure 3.2.

Although it is nearly identical to the supervisor S1 given in the previous chapter, it has one vital

difference: synthesis-inaccessible state 5, which will demonstrate an important point in the near

future.

Now define the agent S1 = (S1, φ1) as shown in Figure 3.3 and compare it to Ŝ1 with respect to

G. The first item of note is that both S1 and Ŝ1 have synthesis-inaccessible states with respect to

CHAPTER 3. SUPERVISOR REDUCTION 26

A C D

B E

a2

a1, b1

b2

b2

a2

a2, b2

a1, b1

a2, b2

a1

b1

b1

a1

Figure 3.1: Running Example - Plant G (Review of Figure 2.1)

2

1 5 4

3

b1

a1

a2, b2

b2

a1

a2

b1

a2

b1

a1, b2

a2

b2

a1, b1b2 a1, b1, a2

Figure 3.2: Running Example - Supervisor Ŝ1

G. The second item of note is that the first item means virtually nothing. Not only are S1 and Ŝ1

language-equivalent with respect to G, but the graphs (S1/G) and (Ŝ1/G) that result from these

agents acting on the plant are actually isomorphic, as shown in Figures 3.4 and 3.5

Although S1 and Ŝ1 may not appear to be closely related when viewed individually, it is apparent

CHAPTER 3. SUPERVISOR REDUCTION 27

2

6 1 5 4 7

3

b2

a1

b1

a2

b1

a1

a2

b2 b2

a1
a2

b1

a2

b1

a1, b2

a2

b2

a1

b1

b1

a2

b2

a1

b2 a1

a2, b1

Figure 3.3: Running Example - Supervisor S1

(B, 1) (A, 1) (C, 3)

(C, 2) (D, 4) (E, 4)

b1

a1

a2

b2

b2

a2

a1

b2 b1

a2

a2

b2

a1

b1

b1

a1

Figure 3.4: Running Example - Supervisor Ŝ1 Acting on Plant G

CHAPTER 3. SUPERVISOR REDUCTION 28

(B, 6) (A, 1) (C, 3)

(C, 2) (D, 4) (E, 7)

b1

a1

a2

b2

b2

a2

a1

b2 b1

a2

a2

b2

a1

b1

b1

a1

Figure 3.5: Running Example - Supervisor S1 Acting on Plant G

that they have similar properties where G is concerned. The next step is to formally define the

relationship.

3.2.2 Comparability

Definition 4. Consider two supervisors S and Ŝ whose respective behaviours are given by

S = (Σ, X, ξ, x0, Xm) and Ŝ = (Σ, X̂, ξ̂, x̂0, X̂m). The agents S and Ŝ may be implicitly or explicitly-

defined; in the latter case, their respective feedback maps are given by φ : Σ × X → {0, 1} and

φ̂ : Σ × X̂ → {0, 1}.
Supervisor S is considered to be comparable to Ŝ with respect to G if there exists a state mapping

μ : X → X̂ that satisifies the following properties:

1. S and Ŝ are language-equivalent with respect to G

2. μ is surjective with respect to synthesis-accessible states

3. μ(x0) = x̂0

4. ∀σ ∈ Σ, x ∈ X, ξ̂(σ, μ(x)) = μ(ξ(σ, x)) where ξ(σ, x)! and x is synthesis-accessible

CHAPTER 3. SUPERVISOR REDUCTION 29

Remarks. This definition is essentially that of a relaxed projection. The third requirement is taken

verbatim from the original definition of a projection, while the second and fourth are less stringent

than in the original. Here, the transition function need only translate properly where allowed by ξ.

Comparability also differs from projections in that no relationship is established between φ and φ̂.

The result is a property that implies the following about S and Ŝ:

1. S and Ŝ act in an identical manner when either is applied to G

2. The number of synthesis-accessible states in Ŝ with respect to G is no greater than the

number of synthesis-accessible states in S with respect to G

3. The initial state in S maps to the initial state in Ŝ

4. Every transition defined in S that originates from a synthesis-accessible state is related to a

transition in Ŝ where the start and end states are correctly mapped by μ 2

Note that comparability is not a symmetric property by definition. In fact, unless μ is bijective with

respect to synthesis-accessible states, it is guaranteed that Ŝ is not comparable to S.

The purpose of defining this property is to be as inclusive as possible with respect to the different

methods of supervisor reduction. Unfortunately, neither traditional covers nor control covers will

satisfy the requirements for comparability unless the cover represents a partition of the states in the

original agent. The good news is that both projections and control congruences imply that their

associated supervisors are comparable.

Lastly, it is convenient to define an inverse mapping to μ as many of the proofs in this document

will begin with states in X̂ as well as X . Hence, μ−1 : X̂ → 2X where

∀ x̂ ∈ X̂, μ−1(x̂) = {x | x ∈ X ∧ μ(x) = x̂}

Example The mapping μ1 from the states of S1 (Figure 3.3) to the states of Ŝ1 (Figure 3.2)

is defined in Table 3.1. Under this state mapping, S1 is comparable to Ŝ1 with respect to G.

Note that state 5 from Ŝ1 is mapped to state 5 in S1; this preserves ξ̂1(a2, μ1(2)) = μ1(ξ1(a2, 2)).

However, the same rule is not preserved in synthesis-inaccessible states 5 ∈ X1 and 5 ∈ X̂1 where
2The definition of this particular property was adapted from a suggestion made by Lenko Grigorov.

CHAPTER 3. SUPERVISOR REDUCTION 30

x ∈ X1 μ1(x)

1 1
2 2
3 3
4 4
5 5
6 1
7 4

Table 3.1: Running Example - State Mapping μ1

ξ̂1(a1, μ1(5)) = ξ̂1(a1, 5) = 5 but μ1(ξ1(a1, 5)) = μ1(4) = 4. This is permitted under comparability

since neither of these states are synthesis-accessible.

To complete the example, two additional supervisors Ŝ2 = (Ŝ2, φ̂2) and S2 = (S2, φ2) are defined

as illustrated in Figures 3.6 and 3.7, respectively. Agent Ŝ2 is identical to supervisor S2 from the

previous chapter; its associated diagram is included here for review.

i ii

iii

b1

a2

a1

b2

b2

b1

a1, a2

a1, a2, b1, b2

Figure 3.6: Running Example - Supervisor Ŝ2 (Review of Figure 2.5)

It will not come as a surprise that S2 and Ŝ2 are language-equivalent with respect to G. All

that is left is to define the mapping μ2 in Table 3.2. Under this state mapping, S2 is comparable to

Ŝ2 with respect to G.

At this juncture, the primary elements of the running example are fully defined. The remainder

of the example will be concerned with performing operations and analysis on these agents.

CHAPTER 3. SUPERVISOR REDUCTION 31

iv

i ii iii v
b1

a2

a1
b2

b1

a2

a1 b2

b2

b1

a1, a2

a2, b2

a1, b1

a1, b1

a2, b2

Figure 3.7: Running Example - Supervisor S2

x ∈ X2 μ2(x)

i i
ii ii
iii iii
iv i
v iii

Table 3.2: Running Example - State Mapping μ2

Projection

Proposition 1. Consider two supervisors S = (S, φ) and Ŝ = (Ŝ, φ̂) where

S = (X, Σ, ξ, x0, Xm), Ŝ = (X̂, Σ, ξ̂, x̂0, X̂m), φ : X → {0, 1}Σ and φ̂ : X̂ → {0, 1}Σ. Let π : S → Ŝ

denote a projection from S to Ŝ.

The existence of a projection between S and Ŝ implies that there exists a state mapping μ such

that S is comparable to Ŝ with respect to G.

Proof. Let μ be an identical mapping to π. It was previously established in the remarks for Defini-

tion 3 that the existence of a projection implies that S and Ŝ are language-equivalent. Proving that

μ is valid is trivial; requirements (2) and (3) for comparability are immediately satisfied due to the

fact that they are identical to or less stringent than the similar requirements for a projection.

CHAPTER 3. SUPERVISOR REDUCTION 32

The third requirement for a projection,

ξ̂(σ, π(x)) = π(ξ(σ, x)) for all (σ, x) where ξ(σ, x) is defined

is nearly identical to its counterpart in comparability. However, it enforces a stricter rule in that

all defined transitions must map correctly, versus only those that are defined on synthesis-accessible

states.

Control Congruence

Proposition 2. Consider two implicitly-defined supervisors SUPER = (X, Σ, ξ, x0, Xm) and

J = (I, Σ, κ, i0, Im) where J was induced from a control congruence C = {Xi | i ∈ I} on SUPER.

The existence of a control congruence implies that there exists a state mapping μ such that

SUPER is comparable to J with respect to G.

Proof. Note that since C is a control congruence, the following properties hold

∀ i ∈ I, Xi ⊆ X

∪{Xi | i ∈ I} = X

∀ i, j ∈ I, i �= j, Xi ∩ Xj = ∅

Define μ using C: ∀x ∈ X, μ(x) = i such that x ∈ Xi. To prove that μ is valid, each of the

requirements for comparability will be examined in turn with respect to the properties of C and the

corresponding induced supervisor.

1. SUPER and J are language-equivalent with respect to G

It was previously established in the remarks for Definition 3 that the existence of a control

congruence implies that SUPER and J are language-equivalent.

2. μ is surjective with respect to synthesis-accessible states

By definition, a control cover is a collection of subsets of of X . Since there are 2|X|−1 possible

nonempty subsets of X , this does not necessarily imply that the mapping μ is surjective.

However, a control congruence is actually a partition of states; no state from SUPER can

CHAPTER 3. SUPERVISOR REDUCTION 33

appear in more than one subset of C. Hence, at worst μ is one-to-one and otherwise it is

onto; these both satisfy the definition of a surjection for all states, including those that are

synthesis-accessible.

3. μ(x0) = x̂0

The initial state i0 of J is arbitrarily chosen; it can be any state subset Xi of which x0 is a

member. Since a control congruence is a partition of X , x0 can only be in one possible set in

C and the index of that set is the only choice for i0. Hence, this requirement is also satisfied.

4. ∀σ ∈ Σ, x ∈ X, ξ̂(σ, μ(x)) = μ(ξ(σ, x)) where ξ(σ, x)! and x is synthesis-accessible

A control cover must satisfy the following requirement from its definition

(∀ i ∈ I)(∀σ ∈ Σ)(∃ j ∈ I)[(∀x ∈ Xi) ξ(x, σ)! ⇒ ξ(x, σ) ∈ Xj] (3.2a)

Likewise, an induced supervisor defines its transition function κ from C as follows

κ(i, σ) = j provided (∃x ∈ Xi) ξ(x, σ) ∈ Xj and (3.2b)

(∀x′ ∈ Xi)[ξ(x′, σ)! ⇒ ξ(x′, σ) ∈ Xj]

Consider some x ∈ X, σ ∈ Σ such that ξ(x, σ)! in SUPER and x is synthesis-accessible. Let

y ∈ X such that y = ξ(x, σ). Assume that x ∈ Xi and y ∈ Xj for some Xi, Xj in C and

corresponding i, j in I. To prove the final requirement for comparability is satisfied, it must

be shown that κ(σ, μ(x)) = μ(ξ(σ, x)).

LHS = κ(σ, μ(x))

= κ(σ, i) (Assumption)

= j ((3.2a) and (3.2b))

RHS = μ(ξ(σ, x))

= μ(y) (Assumption)

= j (Assumption)

CHAPTER 3. SUPERVISOR REDUCTION 34

Associated Properties

Lemma 1. Consider two supervisors S = (S, φ) and Ŝ = (Ŝ, φ̂) where S = (Σ, X, ξ, x0, Xm)

and φ : Σ × X → {0, 1}; Ŝ and φ̂ are similarly defined. If S is comparable to Ŝ with respect to

G = (Σ, Q, δ, q0, Qm) via μ,

(i) ∀x ∈ X, ∀ x̂ ∈ X̂, μ(x) = x̂ ⇒ [x] ⊆ [x̂]

(ii) ∀ x̂ ∈ X̂, [x̂] =
⋃

x∈μ−1(x̂)

[x]

Proof: (i). Since S is comparable to Ŝ with respect to G, the following holds for all x ∈ X and

s ∈ [x],

ξ̂(s, μ(x0)) = μ(ξ(s, x0))

ξ̂(s, x̂0) = μ(x) (s ∈ [x])

ξ̂(s, x̂0) = x̂ (Given)

The above result proves that every string in a given [x] will also lead to x̂ where μ(x) = x̂. Hence,

[x] ⊆ [x̂].

Proof: (ii). There are two parts to this proposition: [x̂] ⊆
⋃

x∈μ−1(x̂)

[x] and
⋃

x∈μ−1(x̂)

[x] ⊆ [x̂]. The

second follows from (i), but the first requires a more in-depth examination.

Consider any s ∈ [x̂]; by definition, s ∈ L(Ŝ/G). Since S is comparable to Ŝ, s ∈ L(S/G) and

thus ξ(s, x0) is defined. Suppose ξ(s, x0) = y where μ(y) �= x̂ and thus y /∈ μ−1(x̂). This implies

that s ∈ [y]. Since S is comparable to Ŝ,

ξ̂(s, μ(x0)) = μ(ξ(s, x0))

ξ̂(s, x̂0) = μ(ξ(s, x0)) (μ(x0) = x̂0 since S is comparable to Ŝ)

ξ̂(s, x̂0) = μ(y) (Assumption that ξ(s, x0) = y)

x̂ = μ(y) (s ∈ [x̂])

The above is a clear contradiction to the assumption that μ(y) �= x̂. Thus, the reverse is true and

y ∈ μ−1(x̂). Since s ∈ [y], this means that s ∈
⋃

x∈μ−1(x̂)

[x]. Therefore, [x̂] ⊆
⋃

x∈μ−1(x̂)

[x].

CHAPTER 3. SUPERVISOR REDUCTION 35

Example To add a somewhat less formal dimension to the items proven in Lemma 1, the following

list will provide examples of each point from S1 and Ŝ1 or S2 and Ŝ2. Note that the strings used in

these examples are taken from L(S1/G) or L(S2/G).

(i) For 6, 1 ∈ X1 and 1 ∈ X̂1 where μ1(6) = μ1(1) = 1, a2 ∈ [6] and a2b2 ∈ [1] while both

a2, a2b2 ∈ [1]

(ii) For i ∈ X̂2 and i, iv ∈ X2 where μ−1
2 (i) = {i, iv}, [i] = (a1)∗ which is the union of [iv] = a1(a1)∗

and [i] = {ε}

3.2.3 Reachable Product

As discussed in the previous chapter, the operation used to combine decentralized supervisors into

a centralized counterpart is known as product. Incidentally, product is essentially the first (and

possibly the most important) operation performed in the minimal communication algorithm devised

by Rudie, Lafortune and Lin in [10]. Given two sets of supervisors (S1, S2) and (Ŝ1, Ŝ2) as input

for the algorithm where Si is comparable to Ŝi with respect to G, it is vital to establish a similar

relationship between (S1 ×S2) and (Ŝ1 × Ŝ2). Happily, it is the case that comparability “survives”

product, the proof of which is the subject of this section.

Definition 5. Consider two pairs of supervisors (S1,S2) and (Ŝ1, Ŝ2) where Si is comparable to

Ŝi via μi with respect to a plant G (i ∈ {1, 2}). The reachable product (S1 × S2) is represented by

S = (S, φ) and is defined as follows for S = (Σ, X, ξ, x0, Xm) and φ : Σ × X → {0, 1}:

Σ = Σ1 ∪ Σ2

x0 = (x1,0, x2,0)

X = {(x1, x2) | x1 ∈ X1 ∧ x2 ∈ X2 ∧
(∃ s ∈ Σ∗)(ξ1(s, x1,0) = x1 ∧ ξ2(s, x2,0) = x2))}

∀σ ∈ Σ, x ∈ X, ξ(σ, x) = (ξ1(σ, x1), ξ2(σ, x2))

Xm = {x = (x1, x2) | x ∈ X ∧ x1 ∈ X1,m ∧ x2 ∈ X2,m}

∀σ ∈ Σ, x ∈ X, φ(σ, x) =

⎧⎪⎨
⎪⎩

0 if φ1(σ, x) = 0 ∨ φ2(σ, x) = 0

1 otherwise

CHAPTER 3. SUPERVISOR REDUCTION 36

The reachable product (Ŝ1 × Ŝ2) is denoted by Ŝ = (Ŝ, φ̂). Note that the reachable product S

is equivalent to the conjunction of S1 and S2 and thus L(S/G) = L((S1 ∧ S2)/G). Although it

may seem redundant, this definition is included to match this operation to the one used in [10]: the

“accessible” part of the “product” of the two agents.

Define the state mapping μ : X → X̂ where μ = (μ1 × μ2) as follows

∀σ ∈ Σ, x ∈ X, μ(x) = (μ1(x1), μ2(x2)) where x = (x1, x2), x1 ∈ X1, x2 ∈ X2

Example The diagrams in Figures 3.8 and 3.9 represent the reachable products Ŝ = (Ŝ1 × Ŝ2) =

(Ŝ, φ̂) and S = (S1 × S2) = (S, φ), respectively.

It is somewhat impressive how quickly the benefits of supervisor reduction emerge; while Fig-

ure 3.8 is reasonable in appearance and complexity for the purposes of an example for human

visualization, Figure 3.9 very nearly is not. This is a typical case of state-space explosion, which is

difficult to avoid when performing operations such as the reachable product. It is fortunate to have

state-size reduction tools (such as those described in this document) that help alleviate the problem,

but unfortunate that a more general solution does not exist.

Associated Properties

Lemma 2. Using the parameters and properties defined in Definition 5,

(i) ∀x ∈ X, [x] = [x1] ∩ [x2] where x = (x1, x2), x1 ∈ X1, x2 ∈ X2

(ii) L(S/G) = L(Ŝ/G)

(iii) ∀ x̂ ∈ X̂, [x̂] =
⋃{[x] | x ∈ X ∧ μ(x) = x̂}

Proof: (i). Consider that for the above to be true, [x] ⊆ [x1] ∩ [x2] must also be true. Assume

CHAPTER 3. SUPERVISOR REDUCTION 37

(3, i) (1, i) (4, ii) (2, ii)

(1, iii) (5, ii)

(2, iii) (5, iii) (3, iii)

(4, iii)

a1

b1

a2

b2

a2

b1

a1, b2

a1

b1

a2, b2

b2

a1

a2b1

a2

b2

a1

b1

b2

a1

a2

b1

b1

a2

a1, b2

b2

a2

a1, b1

b2

b1 a1, a2

b2

a1, b1, a2

Figure 3.8: Running Example - Reachable Product of Ŝ1 and Ŝ2

∃ s ∈ [x] where s /∈ [x1] ∩ [x2] such that x = (x1, x2). This implies that s /∈ [x1] or s /∈ [x2] or both.

s ∈ [x] ⇒ s ∈ L(S1 ∧ S2/G) ∧ ξ(s, x0) = x (Definition 2)

⇒ s ∈ L(S1/G) ∧ s ∈ L(S2/G) (Definition of L(S1 ∧ S2/G))

∧ ξ(s, x0) = x

⇒ s ∈ L(S1/G) ∧ L(S2/G) (Definition 5)

∧ (ξ1(s, x1,0), ξ2(s, x2,0)) = (x1, x2)

⇒ s ∈ L(S1/G) ∧ ξ1(s, x1,0) = x1

∧ s ∈ L(S2/G) ∧ ξ2(s, x2,0) = x2

CHAPTER 3. SUPERVISOR REDUCTION 38

(1, i)

(3, iv) (2, ii) (5, ii)

(6, iii) (1, iii) (4, ii) (7, ii)

(2, iii) (3, iii) (7, iii)

(6, v) (1, v) (3, v) (4, iii)

(5, iii) (5, v) (2, v)

a1 b1

a2

b2

a2

b1
a1, b2

a1

b1

a2

b2

b2
a1

a2

b1

a1

b1

a2

b2

a2

b2

a1

b1

b1

a2

b2

a1

a1

b1

b2

a2

b2

a1

a2

b1

a1
b1

a2

b2

a2

b1

b2

a1

b2

a2

a1

b1

b1
a2

a1

b2

b2 a1

b1

a2

b2

a2

b1

a1

a1

b2

b1 a2

b2

a2

a1
b1

b2

b1

a1
a2

Figure 3.9: Running Example - Reachable Product of S1 and S2

CHAPTER 3. SUPERVISOR REDUCTION 39

If s ∈ L(S1/G) and ξ1(s, x1,0) = x1, then s ∈ [x1] (and similarly for [x2]). This contradicts the

assumption and thus proves [x] ⊆ [x1] ∩ [x2] to be true.

Now consider the reverse of the above: [x1] ∩ [x2] ⊆ [x]. Assume ∃ s ∈ [x1] ∩ [x2] where s /∈ [x]

such that x = (x1, x2). This implies that s ∈ [x1] and s ∈ [x2]. Since s ∈ [x1], by the definition of

[x1] the following are all true: ξ1(s, x1,0)!, φ1(s, x1,0) �= 0 and ξ1(s, x1,0) = x1. A similar statement

can be made with respect to s and [x2].

ξ(s, x0) = (ξ1(s, x1,0), ξ2(s, x2,0)) (Definition 5)

= (x1, x2) (Definitions of [x1] and [x2])

= x (Assumption)

If ξ(s, x0) = x and s ∈ L(S1∧S2/G), then s ∈ [x]. This contradicts the assumption and thus proves

[x1] ∩ [x2] ⊆ [x] to be true.

Finally, since [x] ⊆ [x1] ∩ [x2] and [x1] ∩ [x2] ⊆ [x] have both been proven to be true, then

[x] = [x1] ∩ [x2] must also be true.

Proof: (ii). Consider that for L(S/G) = L(Ŝ/G) to be true, L(S/G) ⊆ L(Ŝ/G) must also be true.

For any s ∈ L(S/G),

s ∈ L(S/G) ⇒ s ∈ [x] for some x ∈ X (Definition 2)

⇒ s ∈ [x1] ∧ s ∈ [x2] (x = (x1, x2))

⇒ s ∈ [μ1(x1)] ∧ s ∈ [μ2(x2)] (Lemma 1(i))

⇒ s ∈ [μ(x)] (Definition of μ)

⇒ s ∈ L(Ŝ/G)

The proof for L(Ŝ/G) ⊆ L(S/G) proceeds in a near-identical manner, except Lemma 1(ii) is used

at the third step.

Thus, if L(S/G) ⊆ L(Ŝ/G) and L(Ŝ/G) ⊆ L(S/G) are both true, then L(S/G) = L(Ŝ/G)

must also be true.

Proof: (iii). This proof will proceed in a near-identical manner to that in (i).

Consider that for [x̂] =
⋃{[x] | x ∈ X ∧ μ(x) = x̂} to be true, [x̂] ⊆ ⋃{[x] | x ∈ X ∧ μ(x) = x̂}

CHAPTER 3. SUPERVISOR REDUCTION 40

must also be true. Assume ∃ s ∈ [x̂] where s /∈ ⋃{[x] | x ∈ X ∧ μ(x) = x̂}; note that ξ(s, x0)! due

to (ii). This implies that s /∈ [x] for all x where μ(x) = x̂ and that ξ(s, x0) = y where μ(y) �= x̂.

Let x̂ = (x̂1, x̂2) where x̂i ∈ X̂i, let y = (y1, y2) where yi ∈ Xi, and let μ(y) = ŷ = (ŷ1, ŷ2).

s ∈ [y] ⇒ s ∈ [y1] ∩ [y2] (i)

⇒ s ∈ [y1] ∧ s ∈ [y2] (Definition of ∩)

⇒ s ∈ [ŷ1] ∧ s ∈ [ŷ2] (Lemma 1(i))

⇒ s ∈ [ŷ1] ∩ [ŷ2]

⇒ s ∈ [ŷ]

Since s ∈ [x̂], the above result implies that x̂ = ŷ (Definition 2, Fact 2) and thus x̂ = μ(y). This

contradicts the assumption and proves [x̂] ⊆ ⋃{[x] | x ∈ X ∧ μ(x) = x̂} to be true.

Now consider the reverse of the above:
⋃{[x] | x ∈ X ∧ μ(x) = x̂} ⊆ [x̂]. Take any s ∈ ⋃

[x];

there must exist a x = (x1, x2) such that μ(x) = x̂ and s ∈ [x].

s ∈ [x] ⇒ s ∈ [x1] ∩ [x2] (i)

⇒ s ∈ [x1] ∧ s ∈ [x2] (Definition of ∩)

⇒ s ∈ [x̂1] ∧ s ∈ [x̂2] (Lemma 1(i))

⇒ s ∈ [x̂1] ∩ [x̂2]

⇒ s ∈ [x̂]

Finally, since [x̂] ⊆ ⋃{[x] | x ∈ X ∧ μ(x) = x̂} and
⋃{[x] | x ∈ X ∧ μ(x) = x̂} ⊆ [x̂] have both

been proven to be true, then [x̂] =
⋃{[x] | x ∈ X ∧ μ(x) = x̂} must also be true.

Example For the items proven in Proposition 2, the following list will provide examples of all but

one from reachable products Ŝ and S as shown in Figures 3.8 and 3.9, respectively. Note that for

the strings used in these examples, s ∈ L(S/G) ⇒ s ∈ L((S1 ∧ S2)/G) and similarly for Ŝ, Ŝ1 and

Ŝ2.

(i) For 3 ∈ X1 and iv ∈ X2, sets [3] and [iv] are nearly disjoint. However, they do share one

element: a1, which is the sole element in [(3, iv)].

(iii) For (1, iii), (6, iii) ∈ X and (1, iii) ∈ X̂ where μ((1, iii)) = μ((6, iii)) = (1, iii), [(1, iii)] =

CHAPTER 3. SUPERVISOR REDUCTION 41

{a1a2, b1b2} and [(6, iii)] = {a2}, which are both subsets of [(1, iii)] in Ŝ.

Language-Equivalence

Proposition 3. Consider two sets of distributed agents (S1,S2) and (Ŝ1, Ŝ2) where Si is comparable

to Ŝi with respect to G through the state mapping μi. Let S and Ŝ represent the reachable products

(S1 × S2) and (Ŝ1 × Ŝ2).

Using the definitions of reachable product and the state mapping μ outlined in Definition 5 and

Proposition 2, respectively, S is language-equivalent to Ŝ with respect to G.

Proof. The fact that L(S/G) = L(Ŝ/G) was proven in Lemma 2(ii). Additionally, it must be proven

that Lm(S/G) = Lm(Ŝ/G).

s ∈ Lm(S/G) ⇔ s ∈ Lm((S1 ∧ S2)/G) (Definition 5)

⇔ s ∈ Lm(S1/G) ∧ s ∈ Lm(S2/G) (Definition of ∧)

⇔ s ∈ Lm(Ŝ1/G) ∧ s ∈ Lm(Ŝ2/G) (Language-Equivalence via μi)

⇔ s ∈ Lm((Ŝ1 ∧ Ŝ2)/G) (Definition of ∧)

⇔ s ∈ Lm(Ŝ/G) (Definition 5)

Example From Proposition 3, it is apparent that S is language-equivalent to Ŝ with respect to

G. Unlike (Ŝ1/G) and (S1/G) in Figures 3.4 and 3.5, respectively, the graphs (Ŝ/G) and (S/G)

are not isomorphic, as shown in Figures 3.10 and 3.11.

Comparability

Theorem 1. Using the parameters outlined in Proposition 3, S is comparable to Ŝ with respect to

G via μ.

Proof. To prove that μ satisfies the conditions for comparability, each of the requirements for com-

parability will be examined in turn with respect to the properties of Si and Ŝi.

CHAPTER 3. SUPERVISOR REDUCTION 42

(A, 1, i) (B, 1, iii) (C, 2, ii)

(C, 3, i) (A, 1, iii) (C, 2, iii)

(D, 4, ii) (C, 3, iii) (D, 4, iii)

(E, 4, iii)

a2

a1

b1

b2

a2

b2

b1

a2

b2

b1 b1

a1

a2

a1

b1

b2

b2

a2

a1

b1

b1

a2

b2

a1

Figure 3.10: Running Example - Supervisor Ŝ = (Ŝ1 × Ŝ2) Acting on Plant G

1. S and Ŝ are language-equivalent with respect to G

This was proven in Proposition 3.

2. μ is surjective with respect to synthesis-accessible states

For the above statement to be true, μ must satisfy the following property: ∀ x̂ ∈ X̂ where x̂ is

CHAPTER 3. SUPERVISOR REDUCTION 43

(A, 1, i) (B, 6, iii)

(C, 2, ii) (C, 3, iv) (B, 6, v)

(D, 4, ii) (A, 1, v) (A, 1, iii)

(C, 2, v) (C, 3, iii) (C, 2, iii)

(C, 3, v) (D, 4, iii) (E, 7, iii)

a2

a1b1

b2

a2

b2

a2

b2b1

a2

b2

b1

b1

a1

a2

a1

b1

b2

a2

a1

b1

b2

b2

a2

a1

b1

b1

a2

b2

a1

b1

a2

b2

a1

Figure 3.11: Running Example - Supervisor S = (S1 × S2) Acting on Plant G

CHAPTER 3. SUPERVISOR REDUCTION 44

synthesis-accessible, ∃x ∈ X such that μ(x) = x̂ and x is synthesis-accessible.

Assume there exists some x̂ ∈ X̂ that is synthesis-accessible, but every state in μ−1(x̂) =

{x1, x2, . . . , xn} is not. This implies that [x̂] �= ∅ but [x] = ∅ for all x ∈ μ−1(x̂). However, this

contradicts Lemma 2(iii). Thus, the assumption is false and the original statement is true.

3. μ(x0) = x̂0

This is true by definition; μ(x0) = (μ1(x1,0), μ2(x2,0)) = (x̂1,0, x̂2,0) = x̂0.

4. ∀σ ∈ Σ, x ∈ X, ξ̂(σ, μ(x)) = μ(ξ(σ, x)) where ξ(σ, x)! and x is synthesis-accessible

Consider all σ ∈ Σ and x ∈ X where x is synthesis-accessible and ξ(σ, x) is defined. The fact

that ξ(σ, x) is defined implies that ξ1(σ, x) is defined and ξ2(σ, x) is defined.

For all transitions that satisfy the above criteria, examine both sides of the equation

ξ̂(σ, μ(x)) = μ(ξ(σ, x)).

LHS = ξ̂(σ, μ(x))

= ξ̂(σ, μ(x1, x2)) (x = (x1, x2))

= ξ̂(σ, (μ1(x1), μ2(x2))) (Definition of μ)

= (ξ̂1(σ, μ1(x1)), ξ̂2(σ, μ2(x2))) (Definition of ξ̂)

RHS = μ(ξ(σ, x))

= μ(ξ(σ, (x1 , x2))) (x = (x1, x2))

= μ(ξ1(σ, x1), ξ2(σ, x2)) (Definition of ξ)

= (μ1(ξ1(σ, x1)), μ1(ξ2(σ, x2))) (Definition of μ)

Since Si is comparable to Ŝi with respect to G, ξ̂i(σ, μi(xi)) = μi(ξi(σ, xi)). This implies that

LHS = RHS and that the requirement is satisfied.

Example Using Theorem 1, it can be concluded that S is comparable to Ŝ with respect to G via

the state mapping μ = (μ1 × μ2).

CHAPTER 3. SUPERVISOR REDUCTION 45

Now that the “rules and regulations” associated with supervisor reduction have been established,

focus will be shifted to the minimal communication algorithm for which the reduction is intended.

An introduction and examination of the algorithm is the subject of the next chapter.

Chapter 4

Minimal Communication

4.1 Background

Although modular supervision has its advantages, it also has a significant disadvantage: distributed

agents may not be able to safely implement the same level of control as a centralized supervisor. The

crux of the problem is that different event sequences generated by the plant may appear identical

to a supervisor who can only see certain events. If one of those sequences is illegal, the supervisor

will disable it and all others that appear to be the same. Some synthesized languages satisfy certain

conditions that allow them to avoid this issue, as shown in [7], [2], [11] and [6]. However, if the desired

behaviour does not meet these conditions, the agents will need to know the occurrences of events

that help them distinguish legal sequences from illegal ones. If a supervisor cannot observe these

directly, but another supervisor can, it must be the responsibility of the latter agent to communicate

those events to the former.

4.1.1 Issues With Communication

Introducing communication into DESs is not necessarily a panacea; it solves the issue at hand but

introduces two classic network problems. The first is latency, where transmissions are delayed and

can arrive later than expected or required. In DESs, this could result in dire consequences. Consider

s ∈ Σ∗ and α, β ∈ Σ where sαβ is legal and sβα is not. If α is communicated to a local agent but

46

CHAPTER 4. MINIMAL COMMUNICATION 47

experiences a delay, and β is observed before α arrives, then the agent would believe sβ had occurred

and incorrectly disable α. The second concern is that of reliability; no communication network is

guaranteed to function perfectly in all circumstances. If a malfunction occurs and a transmission

between agents is lost, coordination between the distributed supervisors is essentially lost as well; the

sβ scenario given earlier applies to this situation as well. Unfortunately, the occurrence of either of

these scenarios could result in the modular agents applying a control scheme that is not appropriate

for the actions of the system.

At the moment, no framework has been introduced in DESs which can detect and resolve the

delay or loss of event transmissions. Focus has been placed on first minimizing the number of

communications that must be sent between agents. This is a logical approach to take since, from

a security perspective, a reduction in the number of messages that must be sent also reduces the

probability that those messages will be intercepted. With respect to the network, the fewer trans-

missions that must be sent, the less likely it is that a loss or delay will adversely affect the system.

Until such a framework is introduced, it will be assumed that the communication network used by

the supervisors does not experience latency or transmission loss. In a real-world scenario however,

priorities would be established and a balance would be achieved where the capacity for control is

somewhat diminished but some communication is performed to ensure the most vital control policies

are preserved.

4.1.2 The Algorithm

At this juncture, focus will be placed on the method used to determine a minimal communication

scheme between two agents, introduced in [10] and hereafter known as “the algorithm”. In fact,

“the” is an appropriate article as no other function that accomplishes the same task has yet been

proposed.

Agents

The minimal communication algorithm only requires one thing to perform its job: a pair of dis-

tributed discrete-event supervisors (R1, R2) where Ri = (Ri, ψi), Ri = (Σ, Xi, ξi, xi,0) and ψi :

Σ × Xi → Ψi, i ∈ {1, 2}, where these parameters are all defined in a similar manner to those for

CHAPTER 4. MINIMAL COMMUNICATION 48

other agents discussed previously in this document. However, there remain three items of note about

this particular pair of supervisors:

1. Only two agents are considered, versus some other fixed number of supervisors. As with the

fault-free communication structure, this is assumed in the interests of simplicity. Even so, the

procedure to determine a minimal transmission scheme is extremely complex, as will be shown

shortly.

2. It is also assumed that (R1, R2) are fully defined over the entire alphabet. In other words,

every state has an outgoing transition defined for every event in Σ. Again, the assumption is

made to reduce the complexity of the problem by allowing an agent to handle any event that

may be communicated unexpectedly.

3. The feedback map ψi is defined over the set Ψi, whose contents are unspecified. This is

designed to not limit the type of supervisor that may be employed. A “standard” agent is

concerned with event enablement and disablement (where Ψi = {0, 1}), while other types of

supervisors charged with tasks such as error detection will employ a different set of values.

To inspire the need to communicate, it is a given that each agent Ri is only able to observe a

subset of all possible events. The set Σi,o ⊆ Σ, i ∈ {1, 2} is defined to specify which events supervisor

i is capable of detecting. Without communication, for any string s generated by the plant G, Ri

would observe the projected sequence Pi(s). However, the transmission of events to Ri means that

it will see more of s; defining just how much is the subject of the next section.

Mappings

The first task is to distinguish those events selected for transmission from those that are not. A

communication mapping comij is established between Ri and Rj, i, j ∈ {1, 2}, i �= j. For all

s ∈ (Σi,o ∪ Σj,o)∗, comij(s) is the set of events α ∈ Σi,o that, upon their occurrence after sequence

s, will be transmitted by Ri to Rj. Readers may wonder why s is defined over (Σi,o ∪Σj,o) and not

just Σi,o. The reasoning is that Ri will see all events in Σi,o as well as some in Σj,o that are sent to

Ri by Rj. Hence, s may be composed of more events than are observed by Ri alone.

CHAPTER 4. MINIMAL COMMUNICATION 49

The observable event sets of R1 and R2, in combination with their communication mappings

com12 and com21, can be used to define their information mappings θ1 and θ2. The purpose of these

mappings is to determine, for any given s = α1α2 . . . αn, which events αi Ri knows about (through

observation or communication) and which αj it does not know about. Thus, for all s ∈ Σ∗ and

α ∈ Σ,

θi : Σ∗ → Σ∗
o

θi(ε) = ε

θi(sα) =

⎧⎪⎨
⎪⎩

θi(sα) if α ∈ (Σi,o ∪ comji(θj(s))

θi(s) otherwise

The information mapping pair (θ1, θ2) is derived from a given communication mapping pair

(com12, com21) using the function C(com12, com21).

As always, it is far simpler to define a solution than to propose a method for finding it. A

communication mapping where all events that are not observed are transmitted may function, but it

is almost certain that needless event transmissions will occur. Conversely, a mapping where nothing

is communicated will result in bewilderment on the part of the supervisors. As a result, formal

requirements must be defined to ensure that a transmission scheme properly coordinates the agents

and does not put the operation of the system at risk.

Conditions

There are three requirements that a communication mapping (com12, com21) must satisfy for the

purposes of this algorithm. It should be noted that for any given (R1, R2), many alternate transmis-

sion schemes will exist that do not meet all of these conditions. One of them may even be satisfactory

to the implementor of the system. However, none of these requirements are totally unreasonable

or overly restrictive; they could be described as common sense. It is ultimately the implementor’s

decision whether to pursue this avenue or not, but it is difficult to imagine many scenarios where

the following requirements would be an issue.

The first condition is known as feasibility and requires that any two event sequences which appear

to be identical to an agent will be followed with identical event transmissions. This guarantees that

no agent will be expected to distinguish between event sequences that it finds indistinguishable.

CHAPTER 4. MINIMAL COMMUNICATION 50

Formally, for all s, s′ ∈ Σ∗,

θi(s) = θi(s′) ⇒ comij(P (s)) = comij(P (s′)) i, j ∈ {1, 2}, i �= j

The second requirement is known as validity. It ensures that any event sequences which are

indistinguishable to an agent lead to the same state in that agent’s automaton. Formally, for all

s, s′ ∈ Σ∗

θi(s) = θi(s′) ⇒ ξi(xi,0, s) = ξi(xi,0, s
′), i ∈ {1, 2}

This may seem redundant, and it is with respect to an agent’s projection, but it is not with respect to

a supervisor’s information mapping. For example, consider the case where α /∈ Σi,o and ξi(α, x) = y

where y �= x. If α is not communicated, then what state is agent i really in? If α has occurred, it

is in y, but if it has not, it is in x. Validity serves the important purpose of preventing this very

quandary.

The third requirement is known as implementability. It dictates that for all event sequences

leading to the same state in both agents, all event transmissions following those sequences will be

identical. This guarantees that both agents exchange information according to their current state,

which can easily distinguished, unlike event sequences. Formally, for all s, s′ ∈ Σ∗

(ξ1(s, x1,0), ξ2(s, x2,0)) = (ξ1(s′, x1,0), ξ2(s′, x2,0)) ⇒ com12(P (s)) = com12(P (s′))∧
com21(P (s)) = com21(P (s′))

The criteria outlined in this section will ensure that any solution which satisfies these conditions

is operationally appropriate, i.e., can be applied to a real-world situation without fear of system

failure. However, this only represents half the battle; the rest is concerned with finding such a

solution.

Formal Problem Declaration

As stated previously, the goal of this exercise is to determine a minimal communication system be-

tween two distributed discrete-event supervisors. This gives rise to an important question: minimal

in what sense? Fewest events flagged for communication? Least number of transmissions sent in the

CHAPTER 4. MINIMAL COMMUNICATION 51

worst case? Smallest number of transmissions made during standard operation of the system?

The following definition removes all possible ambiguity from the term “minimal”. A pair of

communication maps (com12, com21) transmits strictly less than (com12, com12) if the following

conditions are met:

∀ s ∈ Σ∗
o, com12(s) ⊆ com12(s) ∧ com21(s) ⊆ com21(s)∧

∃ t ∈ Σ∗
o, com12(t) ⊂ com12(t) ∨ com21(t) ⊂ com21(t)

The notational representation of this situation is the obvious choice: (com12, com21)

< (com12, com12). The transmission scheme (com∗
12, com

∗
12) is considered minimal if no other pair

of communication mappings exists that transmits strictly less than this scheme. Note that this

definition of minimality involves strings and event subsets, as opposed to the overall number of

events transmitted. It is far different than the possible options suggested at the beginning of this

section.

Thus, given a pair of supervisors (R1, R2) with associated observable event projection (P1, P2),

the goal is to produce a minimal communication scheme (com∗
12, com

∗
21) that is feasible, valid and

implementable with respect to (R1, R2) and (P1, P2). The reasons behind these conditions have

been fully explored; what remains is to demonstrate how such a solution is determined.

Technique

When one is tackling a large complex problem, the hardest question is usually the first: where to

start? In the case of this particular algorithm, the answer is to first examine the combined behaviour

of agents R1 and R2. This is accomplished by taking the accessible portion of the product of the

two supervisors, as described in Definition 5. Formally,

R = (R1 × R2) = (R, ψ)

R = (Σ, X, ξ, x0, Xm)

ψ : Σ × X → Ψ

where every state x = (x1, x2), xi ∈ Xi, i ∈ {1, 2}. This centralized representation of (R1, R2) is

the crux of the algorithm; it is the first operation to be performed and all subsequent operations

CHAPTER 4. MINIMAL COMMUNICATION 52

depend upon this one.

The sets V12 and V21 represent events that must be communicated from one agent to another.

Each set Vij is composed of transitions taken from R that agent i can observe but agent j cannot:

Vij = {. . . , (x, σ, ξ(s, x)), . . .} σ ∈ Σi,o − Σj,o, i, j ∈ {1, 2}, i �= j

The advantage to defining transmited events over R is that each transition not only describes where

agent i is, but where agent i believes agent j is in its execution. This is extremely advantageous

from a “finding a solution” perspective, but readers may be concerned from an “implementing the

solution” viewpoint. After all, how can agent Ri perform a control or communication action designed

for agent (R1 × R2)? Rest assured that this issue will be addressed and resolved, but until then,

some patience may be required.

Assume for a moment that some (Vij , Vji) has been derived by an unknown method. There are

two obvious questions that beg to be asked:

1. What does Ri know about the status of Rj?

2. What does Ri know about its own status?

The answers to the above can be determined through a short series of operations on R that essentially

narrow its scope to Ri’s viewpoint.

The first step is to “eliminate” any transition (x, σ, y) in R that Ri can neither directly observe

(σ /∈ Σi,o) nor receive via communication ((x, σ, y) /∈ Vji). This is accomplished by replacing the

events on these transitions with ε. The resulting automaton is defined as

Rε
i(Vji) = (Σ, X, ξε

i , x0, Xm)

After some ε-replacement has taken place, this automaton is uncertain of its current state. For any

given (x, σ, y) where σ is not observed by or communicated to Ri (represented by (x, ε, y)), it is

impossible to say whether Rε
i(Vji) should be in state x or state y. This mimics the real-life confusion

an agent may experience in a similar situation: if an event is unobservable and not communicated,

it is impossible to know whether or not it has occured.

CHAPTER 4. MINIMAL COMMUNICATION 53

The next step is to determine exactly which states in R are indistinguishable to Ri. Due to the

ε-transitions inserted in the last step, Rε
i(Vji) is a nondeterministic finite-state automaton (NFA).

It is converted into a deterministic one (DFA) in the standard manner [4], resulting in

R̃i = DA(Rε
i(Vji)) = (Σ, X̃i, ξ̃i, x̃i,0, X̃i,m)

This action creates states x̃ ∈ X̃i which are composed of a series of states x, y, z, . . . ∈ X from R.

These “composite” states essentially embody Ri’s uncertainity; for any given x̃, Ri does not know

which state x ∈ x̃ R is actually in.

The final step is not so much for agent Ri’s benefit as for that of the minimal communication

algorithm. Although Ri and R are totally defined over their alphabets, the NFA-DFA operation

will most likely eliminate some of these transitions from R̃i. Thus, it must be completed by inserting

self-loops for every event at every state where a transition on that event is not currently defined.

The resulting automaton is represented in the following manner

R̃SL
i = SL(R̃i) = (Σ, X̃i, ξ

SL
i , x̃i,0, X̃i,m)

The final product R̃SL
i of the operations given above embodies Ri’s view of the system. However,

that does not imply that Ri has sufficient knowledge for it to properly perform both supervisory

actions and event communication. That requires R̃SL
i to have certain physical properties, which are

the subject of the next section.

Correctness and Consistency

Previously, the concepts of feasibility, validity and implementability were introduced to ensure

that a communication mapping met a certain level of quality. These were expressed in terms of

(com∗
12, com

∗
21), (θ1, θ2), (R1, R2) and R. The goal of this section is to express them in terms of

(V12, V21), R and (R̃SL
1 , R̃SL

2), then finish by bridging the disconnect between these two definitions.

For agent Ri to perform its supervisory and communication responsibilities, it must always be

absolutely certain of its current state. This is essential; both the feedback map ψi and implementabil-

ity are dependent on the state of the agent. Fortunately, this is also easily expressed in terms of

CHAPTER 4. MINIMAL COMMUNICATION 54

R̃SL
i .

Every composite state x̃ = {x1, x2, . . . xn} from R̃SL
i consists of product states xk = (xk,1, xk,2),

1 ≤ k ≤ n where xk,i ∈ Xi from agent Ri. For Ri to precisely know its current state at every point

of its execution, it must be the case that x1,i = x2,i = . . . = xn,i for every x̃. Informally speaking,

this means that Ri will always know its own state, and will have an idea what state Rj is in, but

will not be sure on the latter point. If this requirement is satisfied, R̃SL
i is said to be correct.

Ensuring correctness is actually quite a simple task. Define the “correctness set” for Ri as follows:

Cij = {((x1, x2), σ, (y1, y2)) |
((x1, x2), σ, (y1, y2)) ∈ Transition(R)

∧σ ∈ Σi,o − Σj,o ∧ xj �= yj}

This set consists of every transition in R where Ri can observe the event, Rj can not and Rj needs

to change state. It is proven in [10] that if Cij ⊆ Vij , then R̃SL
j is correct and Rj will definitively

know its own state during every step of its execution. Thus, the feedback map ψ̃i : Σ × X̃i → Ψi

can be defined where for all x̃ ∈ X̃i, (x1, x2) ∈ x̃,

ψ̃i(α, x̃) = ψi(α, xi) (4.1)

The second condition, that of consistency, is conceptually as straightforward as correctness.

Informally put, it states that if agent Ri knows that it must transmit an event to Rj when Rj

is state x, but Ri does not know whether Rj is in state x or y, then Ri must err on the side of

caution and transmit the event regardless. This can be more formally stated using R̃SL
i : for all

σ ∈ (Σi,o − Σj,o) and x̃ ∈ X̃i,

∀x ∈ x̃, (x, σ, ξ(σ, x)) ∈ Vij ∨ (x, σ, ξ(σ, x)) /∈ Vij

Unlike correctness, the set of transitions Nij required to achieve consistency for Ri cannot be

easily expressed mathematically. Instead, Algorithm 1 is employed to determine this set. It performs

the operations described above to create R̃SL
i , then searches the composite states x̃ for two states

x, x′ where x′ has an event σ flagged for transmission and x does not. This search is repeated until

CHAPTER 4. MINIMAL COMMUNICATION 55

no more instances are found. The resulting set Nij contains all of those instances that are necessary

to communicate for consistency.

Algorithm 1: Consistency Function Nij(Vij , Vji)
Data: R, Vij and Vji

Result: Nij

Nij := ∅;1

Transition(Rε
i) := ∅;2

forall (x, σ, ξ(σ, x)) ∈ Transition(R) do3

if σ ∈ (Σ − Σi,o) ∧ (x, σ, ξ(σ, x)) /∈ Vji then

Transition(Rε
i) := Transition(Rε

i) ∪ {(x, ε, ξ(σ, x))};
else

Transition(Rε
i) := Transition(Rε

i) ∪ {(x, σ, ξ(σ, x))};
Rε

i := (Σ, X, Transition(Rε
i), xi,0);4

R̃i = DA(Rε
i(Vji)) = (Σ, X̃i, ξ̃i, x̃i,0, X̃i,m);5

Wij := ∅;6

forall x̃ ∈ X̃1 do7

if (∃x, x′ ∈ x̃) (x, σ, ξ(σ, x)) /∈ (Wij ∪ Vij) ∧ (x′, σ, ξ(σ, x′)) ∈ (Wij ∪ Vij) then

Nij := Nij ∪ {(x, σ, ξ(σ, x))};
if Nij �= Wij then8

Wij := Nij ;

Go to 7;
else

return;

The combination of consistency and correctness results in an agent that is always certain of its

own state (and through that its supervisory action) and is never uncertain about event transmissions.

All that remains is to connect these concepts to the three hard requirements introduced earlier.

Define the mapping φij : X̃i → 2Σi,o−Σj,o as a state-based communication set where

σ ∈ φij(x̃) ⇔ (∃x ∈ x̃) (x, σ, ξ(σ, x))) ∈ Vij (4.2)

Of note is that if Nij(Vij , Vji) = ∅ (i.e., further calls to the consistency function do not yield any

additional transitions), then

(∃x ∈ x̃) (x, σ, ξ(σ, x))) ∈ Vij ⇒ (∀x ∈ x̃) (x, σ, ξ(σ, x))) ∈ Vij

CHAPTER 4. MINIMAL COMMUNICATION 56

Using both φij and R̃SL
i , the communication mapping com∗

ij is defined as follows for all s ∈ Σ∗

com∗
ij(s) = φij(ξSL

i (x̃i,0, s)) (4.3)

It is proven in [10] that if R̃SL
1 and R̃SL

2 are both consistent, then the communication mappings

derived from φ12 and φ21 in the manner desribed above are feasible with respect to (P1, P2) and

implementable with respect to (R1, R2). Finally, if R̃SL
1 and R̃SL

2 are both correct and consistent,

then the (com∗
12, com

∗
21) derived in the above manner are also valid with respect to (R1, R2).

This concludes the definition of the mappings, conditions, requirements, statements, sets and

operations necessary to discuss the actual algorithm that determines a minimal communication

scheme between two agents (R1, R2). However, before broaching that topic, it might be prudent to

demonstrate the concepts introduced thus far in this section.

Example To begin, a slight renaming of the agents given in the example thus far is required to

“fit in” with the naming convention of the minimal communication algorithm. Where a supervisor

was known as Si previously, it will now be known as Ri and similarly for Ŝi and R̂i.

To review, the reachable product of R̂1 and R̂2 yields the supervisor R̂ given in Figure 4.1. From

this, the transitions that must be communicated to maintain correctness are listed in Table 4.1.

Ĉ12 Ĉ21

((1, i), b1, (2, ii)) ((3, i), a2, (1, iii)) ((2, ii), a2, (5, ii)) ((2, ii), b2, (1, iii))
((3, i), b1, (4, ii)) ((4, ii), a2, (2, ii)) ((4, ii), b2, (3, iii)) ((5, ii), b2, (1, iii))

((2, iii), a2, (5, iii)) ((2, iii), b2, (1, iii)) ((3, iii), a2, (1, iii))
((4, iii), a2, (2, iii)) ((4, iii), b2, (3, iii)) ((5, iii), b2, (1, iii))

Table 4.1: Running Example - Correctness Sets Ĉ12 and Ĉ21

For the purposes of determining the transitions necessary for consistency, initially set V̂ij = Ĉij .

Assume a function call to N12 has been placed with parameters V̂12, V̂21 and R̂. The first two lines

of the method are concerned with setting initial values for N̂12 and R̂. Line 3, however, is where

things start to get interesting. That loop results in the ε-transitions given in Table 4.2. From this

list, R̂ε
1(V̂21) is generated on line 4 as shown in Figure 4.2. The automaton R̂ε

1(V̂21) is then converted

CHAPTER 4. MINIMAL COMMUNICATION 57

(3, i) (1, i) (4, ii) (2, ii)

(1, iii) (5, ii)

(2, iii) (5, iii) (3, iii)

(4, iii)

a1

b1

a2

b2

a2

b1

a1, b2

a1

b1

a2, b2

b2

a1

a2b1

a2

b2

a1

b1

b2

a1

a2

b1

b1

a2

a1, b2

b2

a2

a1, b1

b2

b1 a1, a2

b2

a1, b1, a2

Figure 4.1: Running Example - Reachable product of R̂1 and R̂2 (Review of Figure 3.8)

((1, i),��a2 ε, (1, iii)) ((1, iii),��a2 ε, (1, iii)) ((1, iii),��b2 ε, (1, iii)) ((3, i),��b2 ε, (3, i))
((3, iii),��b2 ε, (3, iii)) ((5, ii),��a2 ε, (5, ii)) ((5, iii),��a2 ε, (5, iii)

Table 4.2: Running Example - ε-Transitions in R̂ε
1(V̂21) for N̂12

CHAPTER 4. MINIMAL COMMUNICATION 58

(3, i) (1, i) (4, ii) (2, ii)

(1, iii) (5, ii)

(2, iii) (5, iii) (3, iii)

(4, iii)

a1

b1

ε

ε

a2

b1

a1, ε

a1

b1

ε, ε

b2

a1

a2b1

a2

b2

a1

b1

b2

a1

a2

b1

b1

a2

a1, ε

b2

a2

a1, b1

b2

b1 a1, ε

b2

a1, b1, ε

Figure 4.2: Running Example - R̂ε
1(V̂21) Generated by N12(Ĉ12, Ĉ21)

into ˜̂
R1 on line 5, as shown in Figure 4.3.

It is important to note that ˜̂
R1’s enablement/disablement policies (represented by solid/dotted

transitions) and marking policies (represented by double-bordered states) are strictly based upon

R̂1’s decisions, instead of both R̂1’s and R̂2’s. The reason is simple: while R̂ represents the combined

efforts of both agents, ˜̂
R1 is meant to illustrate only R̂1’s point of view, and as such, should reflect

CHAPTER 4. MINIMAL COMMUNICATION 59

(1, i)

(1, iii)

(3, i)

(3, iii)

(4, ii)

(4, iii)

(2, ii)

(2, iii)

(5, ii)

(5, iii)

(3, iii) (1, iii)

(5, iii)

(4, iii) (2, iii)

b2

b1a1

b2

a1, b1

a1

b1

a2

b1

a1

a1

b1b2

a1

a2

b1

a2

b2

a1, b1

b2

a1

a2

b1

b1

a2

a1

b2

a2

a1, b1

Figure 4.3: Running Example - ˜̂
R1 Generated by N12(Ĉ12, Ĉ21)

its feedback map and marking scheme alone. This will be the case with all such diagrams in this

dissertation.

As previously stated in (4.1), the feedback map for ˜̂
R1 is created by setting ˜̂

ψ1(σ, x̃) = ψ̂1(σ, x1)

where (x1, x2) ∈ x̃, xi ∈ Xi, i ∈ {1, 2}. For example, event a1 is enabled at {(5, ii), (5, iii)} because

a1 is enabled at state 5 in R̂1; the fact that a1 is disabled at state ii in R̂2 does not affect the

control policy for this composite state. A similar statement can be made with respect to marking.

CHAPTER 4. MINIMAL COMMUNICATION 60

Since there are only five states in ˜̂
R1 that contain more than one state from R̂, it is very simple

to “eyeball” the results of line 7 from the algorithm, as given in Table 4.3. Note that each row in

the table contains the following entries: a transition that must be communicated for consistency (in

this case, a member of N̂12); the transition with which consistency is necessary, i.e., the “cause”;

and the composite state that contains the originating states for both of these transitions (in this

case, a state in ˜̂
R1). This will be the format for all future tables related to Nij and N̂ij .

N̂12

Transition Cause State in ˜̂
R1

((1, iii), b1, (2, iii)) ((1, i), b1, (2, ii)) ∈ Ĉ12 {(1, i), (1, iii)}
((3, iii), b1, (4, iii)) ((3, i), b1, (4, ii)) ∈ Ĉ12 {(3, i), (3, iii)}

Table 4.3: Running Example - Consistency Set N̂12

At line 8, N̂12 �= W12, so W12 is assigned the value of N̂12 and the algorithm returns to line 7.

However, in this round no new transitions are added to N̂12; they were all caught the first time.

Thus, at line 8, N̂12 = W12 and N12(V̂12, V̂21) terminates with the N̂12 given above.

Main Function

All the items discussed previously in this section come together in a single function known simply as

Main. It requires only two supervisors as input, but returns far more: the communications required

for correctness and consistency for both agents as well as the automata that represent each agent’s

view of the system given the communicated events.

To begin, the following is a high-level description of each step in the algorithm:

1. Combine the behaviour of R1 and R2 into R

2. Determine the transitions required for correctness (C12, C21)

3. Find the maximum set of additional transitions that R1 must communicate for consistency

given C12 and C21 (Nmax
12)

4. Decide the minimal set of transitions that R2 must communicate for consistency given C12,

C21 and Nmax
12 (N∗

21)

CHAPTER 4. MINIMAL COMMUNICATION 61

5. Determine the (potentially) insufficient minimal set of transitions that R1 must communicate

for consistency given C12, C21 and N∗
21 (Nmin

12)

6. Examine every set of transitions between the range of Nmin
12 and Nmax

12 and flag those sets that

do not violate the consistency requirement

7. Select the minimal set of transitions from those that were flagged (N∗
12)

8. Define the “point of view” automata for agents R1 and R2 using DA(Rε
i(Cji ∪ N∗

ji) (R̃1 and

R̃2)

9. Add self-loops to R̃1 and R̃2 (R∗
1 and R∗

2)

10. Determine the minimal communication maps using the state-based mapping φij and automaton

R∗
i (com∗

12 and com∗
21)

11. Return C12, C21, N∗
12, N∗

21, R∗
1 and R∗

2

With this informal description in mind, the formal definition of the Main function is given in Algo-

rithm 2. Arguably, the most interesting item of note in this algorithm is the manner in which N∗
12

and N∗
21 are determined. Not only is no iteration is required for N∗

21, but it is minimal despite the

fact that it is calculated using Nmax
12 , which likely does not contain the fewest number of transitions.

The set N∗
12 does require some iteration, but it is bounded by the range over the largest and smallest

possible sets satisfying consistency. It is somewhat surprising that more calculations are not required

over both sets. That is, it would be reasonable to expect that once a potential N∗
ij was determined,

N∗
ji would require adjustments, then so would N∗

ij to compensate for those changes, then so would

N∗
ji again, and so on. Perhaps this solution could be applied to the well-worn “I know, but you know

that I know, but I know that you know that I know . . .” act used so often in films and television.

Example It is only fitting to complete this section with the application of the Main function to

the running example. Steps 1 through 3 were described in the last appearance of the example, so

focus will be immediately shifted to line 4, which performs the function call N21(Ĉ21, Ĉ12 ∪ N̂max
12).

Inside the consistency function, a new set of ε-transitions is determined from the point of view

of agent R̂i. Given communicated transitions (Ĉ12 ∪ N̂max
12), the transitions in Table 4.4 are not

CHAPTER 4. MINIMAL COMMUNICATION 62

Algorithm 2: Main Function
Data: R1, R2

Result: C12, C21, N∗
12, N∗

21, R∗
1 and R∗

2

R := (R1 × R2);1

C21 := {((x1, x2), σ, (y1, y2)) ∈ Transition(R) | σ ∈ (Σ2,o − Σ1,o) ∧ x1 �= y1};2

C12 := {((x1, x2), σ, (y1, y2)) ∈ Transition(R) | σ ∈ (Σ1,o − Σ2,o) ∧ x2 �= y2};
Nmax

12 := N12(C12, C21);3

N∗
21 := N21(C21, C12 ∪ Nmax

12);4

Nmin
12 := N12(C12, C21 ∪ N∗

21);5

forall N such that Nmin
12 ⊆ N ⊆ Nmax

12 do6

if N21(C21, C12 ∪ N) = N∗
21 ∧ N12(C12 ∪ N, C21 ∪ N∗

21) = ∅ then flag(N);

Pick N∗
12 such that flag(N∗

12) = 1 and for all N ⊂ N∗
12, flag(N) �= 1;7

(i.e., N∗
12 is a minimal element in the range that satisfies the two conditions of step 6)

R̃1 := DA(Rε
1(C21 ∪ N∗

21));8

R̃2 := DA(Rε
2(C12 ∪ N∗

12));

R∗
1 := SL(R̃1);9

R∗
2 := SL(R̃2);

Apply (4.2) and (4.3) and define (φ12, φ21) and (com∗
12, com

∗
21) according to10

σ ∈ φ12(x̃) ⇔ (∃x ∈ x̃) (x, σ, ξ(σ, x)) ∈ (C12 ∪ N∗
12);

σ ∈ φ21(x̃) ⇔ (∃x ∈ x̃) (x, σ, ξ(σ, x)) ∈ (C21 ∪ N∗
21);

com∗
12(s) := φ12(ξ∗1 (x̃1,0, s));

com∗
21(s) := φ21(ξ∗2 (x̃1,0, s));

end11

((1, i),��a1 ε, (3, i)) ((3, i),��a1 ε, (3, i)) ((2, ii),��a1 ε, (4, ii)) ((2, ii),��b1 ε, (2, ii))
((4, ii),��a1 ε, (4, ii)) ((4, ii),��b1 ε, (4, ii)) ((5, ii),��a1 ε, (5, ii)) ((5, ii),��b1 ε, (5, ii)

((1, iii),��a1 ε, (3, iii)) ((3, iii),��a1 ε, (3, iii)) ((2, iii),��a1 ε, (4, iii)) ((2, iii),��b1 ε, (2, iii)
((4, iii),��a1 ε, (4, iii)) ((4, iii),��b1 ε, (4, iii)) ((5, iii),��b1 ε, (5, iii)

Table 4.4: Running Example - ε-Transitions in R̂ε
2(V̂12) for N̂∗

21

observed. From this list, R̂ε
2(V̂12) is generated as shown in Figure 4.4. The automaton R̂ε

2(V̂12) is

then converted into ˜̂
R2 as shown in Figure 4.5. In contrast to ˜̂

R1 from N̂max
12 , all of the states in ˜̂

R2

contain more than one state from R̂. However, like N̂max
12 , only one pass is needed to determine the

transitions required for consistency. The results are shown in Table 4.5.

CHAPTER 4. MINIMAL COMMUNICATION 63

(3, i) (1, i) (4, ii) (2, ii)

(1, iii) (5, ii)

(2, iii) (5, iii) (3, iii)

(4, iii)

ε

b1

a2

b2

a2

b1

ε, b2

ε

b1

a2, b2

b2

ε

a2ε

a2

b2

ε

ε

b2

a1

a2

b1

b1

a2

ε, b2

b2

a2

ε, ε

b2

ε ε, a2

b2

ε, ε, a2

Figure 4.4: Running Example - R̂ε
2(V̂12) Generated by N21(Ĉ21, Ĉ12 ∪ N̂max

12)

At line 5 of the algorithm, N̂min
12 is determined using the function call N12(Ĉ12, Ĉ21∪N̂∗

21). Inside

the method, the routine of first establishing ε-transitions is obeyed, as shown in Table 4.6. There is

a trend in this list that is worthy of note: only self-transitions are reduced to ε. This fact greatly

simplifies the consistency results in that the states of ˜̂
R1 are identical to those in R̂. As a result,

there are no composite states in ˜̂
R1 and therefore no transitions that must be added for consistency.

Thus, N̂min
12 = ∅.

CHAPTER 4. MINIMAL COMMUNICATION 64

(2, ii)

(4, ii)

(2, ii)

(4, ii)

(5, ii)

(2, iii)

(4, iii)

(1, i)

(3, i)

(1, iii)

(3, iii)

(2, iii)

(4, iii)

(5, iii)

b1

a2b2

b2

a2

b1

a2, b2

b2

a2

b2

a2

b2

a2

Figure 4.5: Running Example - ˜̂
R2 Generated by N21(Ĉ21, Ĉ12 ∪ N̂max

12)

N̂∗
21

Transition Cause State in ˜̂
R1

((1, i), a2, (1, iii)) ((3, i), a2, (1, iii)) ∈ Ĉ21 {(1, i), (3, i)}
((5, ii), a2, (5, ii)) ((2, ii), a2, (5, ii)) ∈ Ĉ21 {(2, ii), (4, ii), (5, ii)}

((1, iii), a2, (1, iii)) ((3, iii), a2, (1, iii)) ∈ Ĉ21 {(1, iii), (3, iii)}
((5, iii), a2, (5, iii)) ((2, iii), a2, (5, iii)) ∈ Ĉ21 {(2, iii), (4, iii), (5, iii)}

Table 4.5: Running Example - Consistency Set N̂∗
21

((1, i),��b2 ε, (1, i)) ((3, i),��b2 ε, (3, i)) ((1, iii),��b2 ε, (1, iii))
((1, iii),��b2 ε, (1, iii)) ((3, iii),��b2 ε, (3, iii))

Table 4.6: Running Example - ε-Transitions in R̂ε
1(V̂21) for N̂min

12

The next step in the algorithm is 7, where transition sets within the range bounded by N̂max
12

and N̂min
12 that do not violate consistency with Ĉ12, Ĉ21 and N̂∗

21 are flagged. There are four possible

CHAPTER 4. MINIMAL COMMUNICATION 65

sets:

N1 = ∅ = N̂min
12

N2 = {((1, iii), b1, (2, iii))}
N3 = {((3, iii), b1, (4, iii))}
N4 = {((1, iii), b1, (2, iii)), ((3, iii), b1, (4, iii))} = N̂max

12

In the interests of brevity, the calculations performed by consistency function calls N21(Ĉ21, Ĉ12∪
Nk) and N12(Ĉ12 ∪ Nk, Ĉ21 ∪ N̂∗

21) will not be detailed. Instead, it suffices to informally examine

what would occur if either ((1, iii), b1, (2, iii)) or ((3, iii), b1, (4, iii)) were not communicated.

Consider N21(Ĉ21, Ĉ12∪Nk) first with reference to Figure 4.5. Eliminating either or both of these

transitions would results in the amalgamation of states {(1, iii), (3, iii)} and {(2, iii), (4, iii)} as well

as the addition of {(1, iii), (3, iii)} to state {(2, iii), (4, iii), (5, iii)}. Neither of these operations

changes the outcome since all of the transitions in N̂∗
21 are added for consistency with transitions

communicated for correctness and no states in ˜̂
Ri are split. Thus, N21(Ĉ21, Ĉ12 ∪Nk) = N̂∗

21 for all

1 ≤ k ≤ 4.

Now consider N12(Ĉ12 ∪ Nk, Ĉ21 ∪ N̂∗
21) with reference to Figure 4.3. Both of these transitions

were added to be consistent with ((1, i), b1, (2, ii)) and ((3, i), b1, (4, ii)) due to composite states

{(1, i), (1, iii)} and {(3, i), (3, iii)}. Eliminating either ((1, iii), b1, (2, iii)) or ((3, iii), b1, (4, iii)) or

both does not split these composite states. As a result, any one of these transitions will be included

for consistency by N12 if it is not already present in the set Nk. Thus, N12(Ĉ12 ∪Nk, Ĉ21 ∪ N̂∗
21) �= ∅

for 1 ≤ k ≤ 3 but N12(Ĉ12 ∪ N̂max
12 , Ĉ21 ∪ N̂∗

21) = ∅. The conclusion of this step is to flag N̂max
12 while

all other possible sets remain unflagged.

Due to the simple result from the previous step, 7 through 10 are relatively simple. Again, to

be brief, a high-level description will be employed. Step 7 sets N̂∗
12 = N̂max

12 and step 8 creates

automata R̂∗
1 and R̂∗

2 that are identical to Figures 4.3 and 4.5, respectively. Step 9 completes the

states of these “viewpoint” automata with self-loops (where necessary), and step 10 calculates the

communication mappings (ĉom∗
12, ĉom

∗
21) based on the state-based mappings (φ12, φ21) as given in

Table 4.7.

CHAPTER 4. MINIMAL COMMUNICATION 66

˜̂x1 ∈ ˜̂
X1 φ12(˜̂x1) ˜̂x2 ∈ ˜̂

X2 φ21(˜̂x2)

{(1, i), (1, iii)} {b1} {(1, i), (3, i)} {a2}
{(3, i), (3, iii)} {b1} {(2, ii), (4, ii)} {a2, b2}
{(2, ii), (2, iii)} ∅ {(1, iii), (3, iii)} {a2}
{(4, ii), (4, iii)} ∅ {(2, ii), (4, ii), (5, ii)} {a2, b2}
{(5, ii), (5, iii)} ∅ {(2, iii), (4, iii)} {a2, b2}

(1, iii) {b1} {(2, iii), (4, iii), (5, iii)} {a2, b2}
(2, iii) ∅
(3, iii) {b1}
(4, iii) ∅
(5, iii) ∅

Table 4.7: Running Example - State-Based Communication Mappings φ12 and φ21 for R̂∗
1 and R̂∗

2

4.2 Research

4.2.1 Considering Control

A discrete-event agent is defined in [10] as follows:

We use the term “agent” to mean a process of interest whose behaviour is described
by sequences of events or actions. . . . What we have in mind for supervisory control is
that agents of interest are supervisors or controllers that make control decisions or that
do diagnostics.

Associated with an agent i (i = 1, 2) is a (finite-state) automaton Ri

Ri = (Σ, Xi, ξi, xi,0)

where Σ is an alphabet of event labels, Xi is a set of states, xi,0 ∈ Xi is the initial state,
and ξi : Xi × Σ → Xi is the transition function. (Note that here ξi is assumed to be
defined over its entire domain. This is in contrast to the definition of automata usually
used in the DESs literature). . . . The objective of Agent i is defined as a state feedback
mapping ψi : Xi → Ψi, where Ψi is some set, which we will not specify. In other words,
we do not commit ourselves to a specific type of objective (such as supervisory control
or diagnosis).

This definition shares much with respect to the standard definition of a discrete-event supervisor

but differs in two regards: no marked states and full definition across ξi. It was stated previously that

CHAPTER 4. MINIMAL COMMUNICATION 67

one of this project’s goals is to make the minimal communication algorithm applicable to discrete-

event supervisors, both implicitly and explicitly-defined, and not simply fully-defined automata.

Thus, each of these differences must be addressed and resolved.

To ensure the clarity of the following section, certain points must be made before examining each

of the aforementioned issues. First, it is assumed that the goal of the supervisors considered here

is control, hence the examination to follow will deal exclusively with enabled and disabled events.

However, the same principles would apply to other feedback map policies, such as fault detection.

Second, it is important to note that the solutions to both problems are based upon the principle of

correctness. To recap, the following definition appears in [10]

Formally, consider any state x̃ in R̃1. The state x̃ is a subset of states in R: x̃ =
{(x1, y1), (x2, y2), . . . , (xn, yn)}. In order for Agent 1 to achieve its objective defined by
the state feedback map ψ1, it is required that all of the pairs in x̃ have the same first
component x1 = x2 = . . . = xn. When this requirement is satisfied, we say that R̃1 is
correct. In that case, a unique feedback mapping ψ̃1 : X̃1 → Ψ1 can be defined as

ψ̃1(x̃1) = ψ(x1)

This mapping will achieve the objective defined by ψ1.

The first problem, a lack of marked states, actually has one solution that covers two schools of

thought. The discrete-event system research community is somewhat split on whether marked states

are required at all. Some would argue that a plant and its supervisors are built to know when a

process is complete and thus defining completed states is redundant. Others would argue that the

definition is important, especially in distributed control, because each supervisor may not have a

complete view of the process and may only be able to know when it itself is “done”.

Thanks to the correctness requirement, the answer lies in apathy, i.e., not changing a single

thing. For those that are anti-marking, there is not even an issue to begin with. For those that are

pro-marking, the correctness requirement will guarantee that each supervisor is always certain of its

current state. Thus, it will be able to enforce its marking strategy as usual in conjunction with the

plant and other supervisors.

The second problem, full definition across Σ, also has a simple solution whose foundation is laid

in [10]. Informally put, for any given implicit supervisor, “complete” it by adding self-loops for

CHAPTER 4. MINIMAL COMMUNICATION 68

those events that do not have a transition defined at each state. To preserve control, define (or make

additions to) an accompanying feedback map where all previously-defined transitions are enabled

and all newly-defined self-loops are disabled. Use the supervisor’s automaton (which represents its

behaviour) as input for the algorithm, then trim the resulting communication scheme of all disabled

events and apply it to the original supervisor.

Upon first reading, the above method, in which both enabled and disabled transitions are given

as input for the algorithm, may appear problematic for two reasons:

(i) Only enabled transitions should be considered when determining a minimal communication

scheme; including disabled transitions is not efficient and significantly increases the average

running time of the algorithm

(ii) The result of the algorithm may no longer be minimal; the addition of a disabled transition to

the communication set may cause the addition of one or more enabled transitions in order to

maintain consistency with an event that never takes place

On the subject of average running time, there is no argument; including the disabled transitions

only to remove them at the end is, on average, a waste of computation. However, the simplicity of the

solution offers a distinct advantage in that the algorithm does not need to be re-tooled and re-proven.

As for the possibility that the proposed method may result in a less-than-minimal communication

scheme, the following definition and proposition will formally prove that that will never be the case.

4.2.2 Explicit Function

Standard Explicit Function

Definition 6. Consider a plant G = (Σ, Q, δ, q0, Qm) and implicitly-defined supervisor

S = (Σ, X, ξ, x0, Xm). The standard explicit function υ : S �→ S′ that converts S into an explicitly-

defined supervisor S′ by adding a feedback map φ is defined as follows:

S′ = (T ′, φ)

T ′ = (Σ, X, ξ′, x0, Xm)

CHAPTER 4. MINIMAL COMMUNICATION 69

φ : Σ × X → {0, 1}

∀σ ∈ Σ, ∀x ∈ X, ξ′(σ, x) =

⎧⎪⎨
⎪⎩

ξ(σ, x) if ξ(σ, x)!

x otherwise

∀σ ∈ Σ, ∀x ∈ X, φ(σ, x) =

⎧⎪⎨
⎪⎩

1 if ξ(σ, x)!

0 otherwise

The following implications are immediate from the definitions of ξ′ and φ.

∀σ ∈ Σ, ∀x ∈ X, ξ(σ, x)! ⇒ ξ′(σ, x)! (4.4)

∀σ ∈ Σ, ∀x ∈ X, ξ(σ, x)! ⇒ φ(σ, x) = 1 (4.5)

∀σ ∈ Σ, ∀x ∈ X, ξ(σ, x)! ⇒ ξ′(σ, x) = ξ(σ, x) (4.6)

∀σ ∈ Σ, ∀x ∈ X, φ(σ, x) = 1 ⇒ ξ(σ, x)! (4.7)

Theorem 2. Given a plant G, an implicitly-defined supervisor S and an explicitly-defined supervisor

S′ = (T ′, φ) where S′ = υ(S),

(i) ∀σ ∈ Σ, ∀ q ∈ Q, ∀x ∈ X, (δ × ξ)(σ, q, x) = (δ × ξ′)φ(σ, q, x)

(ii) L(S/G) = L(S′/G)

(iii) Lm(S/G) = Lm(S′/G)

(iv) ∀σ ∈ Σ, ∀ q ∈ Q, ∀x1 ∈ X1, ∀x2 ∈ X2, (δ × (ξ1 ∧ ξ2))(σ, q, x1 , x2) =

(δ × (ξ′1 ∧ ξ′2))
φ1 ∧φ2(σ, q, x1, x2)

(v) L(S1 ∧ S2/G) = L(S′
1 ∧ S′

2/G)

(vi) Lm(S1 ∧ S2/G) = Lm(S′
1 ∧ S′

2/G)

CHAPTER 4. MINIMAL COMMUNICATION 70

Proof: (i). Consider the definition of the transition function (δ × ξ).

∀σ ∈ Σ, ∀ q ∈ Q, ∀x ∈ X,

(δ × ξ)(σ, q, x) =

⎧⎪⎨
⎪⎩

(δ(σ, q), ξ(σ, x)) if δ(σ, q)! and ξ(σ, x)!

undefined otherwise

=

⎧⎪⎨
⎪⎩

(δ(σ, q), ξ′(σ, x)) if δ(σ, q)! and ξ(σ, x)! (From (4.6))

undefined otherwise

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ(σ, q), ξ′(σ, x)) if δ(σ, q)!, ξ(σ, x)!, (From (4.5))

and φ(σ, x) = 1

undefined otherwise

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ(σ, q), ξ′(σ, x)) if δ(σ, q)!, ξ′(σ, x)!, (From (4.4))

and φ(σ, x) = 1

undefined otherwise

= (δ × ξ′)φ(σ, q, x)

Now consider the definition of the transition function (δ × ξ′)φ.

∀σ ∈ Σ, ∀ q ∈ Q, ∀x ∈ X,

(δ × ξ′)φ(σ, q, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ(σ, q), ξ′(σ, x)) if δ(σ, q)!, ξ′(σ, x)!,

and φ(σ, x) = 1

undefined otherwise

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ(σ, q), ξ′(σ, x)) if δ(σ, q)!, ξ′(σ, x)!, (From (4.7))

and ξ(σ, x)!

undefined otherwise

=

⎧⎪⎨
⎪⎩

(δ(σ, q), ξ(σ, x)) if δ(σ, q)! and ξ(σ, x)! (From (4.6))

undefined otherwise

= (δ × ξ)(σ, q, x)

Proof: (ii). This follows from (i); if (S/G) and (S′/G) have identical state spaces and equivalent

CHAPTER 4. MINIMAL COMMUNICATION 71

transition functions, then their respective languages must also be identical.

Proof: (iii). Similar argument to the one presented in (ii).

Proof: (iv). This proof is nearly identical to that for (i); the only difference is that (4.4), (4.5), (4.6)

and (4.7) must all be applied seperately with respect to ξ1, ξ2, φ1 and φ2.

Proof: (v) and (vi). These both follow from (iv) and are similar to the arguments presented in (ii)

and (iii).

Theorem 2 is appropriate and correct when applied to a standalone pair of supervisors S1 and S2

for input to the minimal communication algorithm. However, comparability adds another dimension:

if supervisor Si is comparable to supervisor Ŝi via μi, then their explicit counterparts should also

be comparable via the same mapping. Unfortunately, υ may not preserve this relationship.

Consider the two agents given in Figure 4.6. Agent S is comparable to Ŝ with respect to the

plant G shown in Figure 4.7 via the mapping μ(1) = 1 and μ(2) = μ(3) = 2. Apply the explicit

1 2
α, β

γ

(a) Reduced Supervisor Ŝ

1 2 3
α γ

γ

(b) Original Supervisor S

Figure 4.6: Explicit Function Example - Implicit Supervisors Ŝ and S

A B C
α γ

γ

Figure 4.7: Explicit Function Example - Plant G

function υ to S and Ŝ, yielding S′ = (T ′, φ) and Ŝ′ = (T̂ ′, φ̂′) given in Figure 4.8. The fourth

CHAPTER 4. MINIMAL COMMUNICATION 72

1 2
α, β

γ γ

α, β

(a) Explicit Reduced Supervisor Ŝ′ =

υ(Ŝ)

1 2 3
α

β, γ

γ

α, β γ

α, β

(b) Explicit Original Supervisor S′ = υ(S)

Figure 4.8: Explicit Function Example - Explicit Supervisors Ŝ′ and S′

requirement of comparability enforces the following rule:

∀σ ∈ Σ, x ∈ X, ξ̂(σ, μ(x)) = μ(ξ(σ, x)) where ξ(σ, x)! and x is synthesis-accessible

However, Figure 4.8 illustrates that this is not the case for S′ and Ŝ′. Specifically, for states 1 ∈ X ,

1 ∈ X̂ and event β,

ξ̂′(β, μ(1)) = ξ̂′(β, 1)

= 2

μ(ξ′(β, 1)) = μ(1)

= 1

This is a clear violation of the fourth requirement of comparability, demonstrating that Ŝ′ and S′

are no longer comparable via μ. Thus, a slight adjustment must be made to the definition of υ()to

handle just such a case by taking μ into account.

Comparable Explicit Function

Definition 7. Consider a plant G = (Σ, Q, δ, q0, Qm) and two supervisors S = (Σ, X, ξ, x0, Xm)

and Ŝ = (Σ, X̂, ξ̂, x̂0, X̂m) where S is comparable to Ŝ with respect to G via the state mapping

μ. The comparable explicit function υμ : S �→ S′ converts S into an explicitly-defined supervisor

CHAPTER 4. MINIMAL COMMUNICATION 73

S′ = (S′, φ′) in the same manner as υ with the exception of ξ′, which is defined as follows:

∀σ ∈ Σ, x ∈ X, ξ′(σ, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ(σ, x) if ξ(σ, x)!

any state in μ−1(ξ̂(σ, μ(x))) if ¬ξ(σ, x)! ∧ ξ̂(σ, μ(x))!

x otherwise

Remarks. Note that if ξ(σ, x) is not defined but ξ̂(σ, μ(x)) = ŷ is, then any y ∈ μ−1(ŷ) is sufficient

to preserve the fourth requirement of comparability; the choice does not really matter as (x, σ, y) in

S′ will be disabled regardless.

Needless to say, all of the associated properties of υ hold for υμ as well. The only change is in

the definition of ξ′ with respect to undefined transitions in S that are defined in Ŝ. Although some

disabled transitions in S′ may no longer be self-loops, the fact that they remain disabled implies that

its resulting behaviour is no different whether υ, υμ or no function whatsoever had been applied to

S.

Explicit Functions and Minimal Communication

To complete the task of proving that both “explicit” functions defined here are appropriate for use

in conjunction with the minimal communication algorithm, it is necessary to reiterate some of the

algorithm’s established properties. The following lemmas from [10] will be used in the propositions

that will finish this section.

Lemma 1 ([10]). If C21 ⊆ V21, then R̃1 = DA(Rε
1(V21)) is correct, that is, all the pairs

in a state x̃ of R̃1 have the same first component.

Lemma 2 ([10]). (x, σ, ξ(x, σ)) ∈ N12(V12, V21) if and only if

(∃n ≥ 1) (∃ x̃1, x̃2, . . . , x̃n ∈ X̃1) (∃x1, x2, . . . , xn ∈ X)

(x1, x2 ∈ x̃1) ∧ (x2, x3 ∈ x̃2) ∧ . . . ∧ (xn, x ∈ x̃n)

∧ (x1, σ, ξ(x1, σ)) ∈ V21 ∧ (x, σ, ξ(x, σ)) /∈ V21

CHAPTER 4. MINIMAL COMMUNICATION 74

Proposition 4. Let R̃1 = DA(Rε
2(V12)) where C21 ⊆ V21; by Lemma 1, R̃1 is correct. Consider

a transition (y, σ, ξ(y, σ)) ∈ V12. If it causes the inclusion of another transition (z, σ, ξ(z, σ)) ∈
N12(V12, V21) then ψ1(y1, σ) = ψ1(z1, σ).

Proof. Using Lemma 2 and the fact that (y, σ, ξ(y, σ)) ∈ V12 and (z, σ, ξ(z, σ)) ∈ N12(V12, V21),

there exist x̃1, x̃2, . . . , x̃n ∈ X̃1 and x1, x2, . . . , xn ∈ X such that (x1, x2 ∈ x̃1), (x2, x3 ∈ x̃2) . . .

(xn, x ∈ x̃n) where y = x1 and z = x. Since R̃1 is correct, y and x2 must share the same first

component, i.e., y1 = x2
1. Similarly, x2

1 = x3
1, and so on, until finally xn

1 = z1. Considering the

transitive nature of =, it is apparent that y1 = z1 and hence ψ1(y1, σ) = ψ1(z1, σ).

Proposition 5. If R̃1 is correct, then a disabled transition (y, σ, ξ(y, σ)) ∈ C12 will only cause

disabled transitions (z, σ, ξ(z, σ)) to be added for consistency. Likewise, an enabled transition in C12

will only cause enabled transitions to be added for consistency.

Proof. Follows from Proposition 4.

Chapter 5

Effects of Reduction on

Communication

5.1 Applying Supervisor Reduction

Using the concepts described in the previous chapters, a strategy for the further reduction of com-

munication between distributed agents can now take shape. Given two supervisors, modify them

through some known method (such as simsup in CTCT or through personal observation) so that

the original agents are comparable to their reduced counterparts. Then transform the smaller su-

pervisors into explicitly-defined agents using the explicit functions υ and υμ and determine their

communication scheme using the algorithm given in [10]. The expectation is that in the worst case

the number of event transmissions will not be increased, while in some situations the amount of

communication required will be reduced. The sole task that remains is to formally state and prove

the previous statement.

5.2 Formal Statement of Primary Conjecture

Conjecture. Consider a plant G = (Σ, Q, δ, q0, Qm) and two sets of explicitly-defined distributed

agents (R1, R2) and (R̂1, R̂2) where Ri = (Ri, ψi), i ∈ {1, 2}, Ri = (Σ, Xi, ξi, xi,0), and each

75

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 76

supervisor Ri is comparable to R̂i with respect to G. Thus,

L(R1 ∧R2/G) = L(R̂1 ∧ R̂2/G)

Lm(R1 ∧R2/G) = Lm(R̂1 ∧ R̂2/G)

Let com∗
ij and ĉom

∗
ij , i, j ∈ {1, 2}, i �= j, be the valid, feasible and implementable communication

mappings derived from the minimal communication algorithm given in [10] for (R1, R2) and (R̂1,

R̂2), respectively. Then ∀ s ∈ L(R̂1 ∧ R̂2/G),

ĉom
∗
ij(s) ⊆ com∗

ij(s)

In the interests of clarity and organization, a particular strategy has been applied to the proof for

this theorem. It is composed of three parts: the first examines the problem and defines additional

parameters, the second considers communications made for correctness, and the third considers

transmissions made for consistency. However, before launching immediately into these sections, a

few important points should be made:

1. The focus in previous sections on comparability and reachable product may have seemed

somewhat superfluous, but its importance will become evident here. Every transition that

must be communicated from agent to agent is determined using the product of those agents,

either directly (in the case or correctness) or indirectly (in the case of consistency, which

requires additional operations to the product). Hence, much of this proof will focus on or refer

to reachable product, especially with respect to comparability.

2. Although the theorem statement considers explicitly-defined supervisors Ri = (Ri, ψi), the

communication algorithm (in its current form) is solely concerned with the behaviour of these

supervisors, embodied in Ri = (Σ, Xi, ξi, xi,0). As a result, the proof will also focus on Ri and

temporarily discard ψi. The feedback map is employed once the algorithm has returned its

results and disabled transitions must be removed from the communication lists.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 77

5.3 Problem Analysis

With both pairs (R1, R2) and (R̂1, R̂2) as input to the minimal communication algorithm given

in [10], the resulting communication schemes will be referred to as com∗
ij and ĉom

∗
ij , respectively,

i, j ∈ {1, 2}, i �= j. For all s ∈ L(R̂1 ∧ R̂2/G) and σ ∈ Σ,

σ ∈ ĉom
∗
ij(s) ⇒ sσ ∈ L(R̂1 ∧ R̂2/G) ⇒ sσ ∈ L(R̂1 ∧ R̂2)

⇒ sσ ∈ L(R1 ∧ R2/G) ⇒ sσ ∈ L(R1 ∧ R2)

Let R = (R1×R2) = (Σ, X, ξ, x0, Xm) and R̂ = (R̂1×R̂2) = (Σ, X̂, ξ̂, x̂0, X̂m). In addition, assign the

following values to the end state of s in R and R̂: ξ(s, x0) = (x1, x2) = x and ξ̂(s, x̂0) = (x̂1, x̂2) = x̂.

For simplicity, transitions will be represented in the following form: τ = (x, σ, y) and τ̂ = (x̂, σ, ŷ)

where x, y ∈ X , x̂, ŷ ∈ X̂ and σ ∈ Σ. Thus,

sσ ∈ L(R̂) ⇒ (x̂, σ, ŷ)! ⇒ τ̂ !

sσ ∈ L(R) ⇒ (x, σ, y)! ⇒ τ !

Taking the above into account,

σ ∈ ĉom
∗
ij(s) ⇒ τ̂ ∈ (Ĉij ∪ N̂∗

ij) (Construction of ĉom
∗
ij(s))

⇒ τ̂ ∈ Ĉij ∨ τ̂ ∈ N̂∗
ij (Ĉij ∩ N̂∗

ij = ∅)

Thus, there are two primary cases: τ̂ ∈ Ĉij and τ̂ ∈ N̂∗
ij . In addition, each of these primary cases

will have two subcases: i = 1, j = 2 and i = 2, j = 1. The proof for the first primary case, Ĉij ,

will be based on the proof of comparability from R to R̂ with respect to G given in Theorem 1. In

contrast, the examination of N̂∗
ij will be far more discussion and example-based.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 78

5.4 Ĉij

Case 1 (τ̂ ∈ Ĉ21).

τ̂ ∈ Ĉ21 ⇒ σ ∈ (Σ2,o − Σ1,o) ∧ x̂1 �= ŷ1 (Definition of Ĉ21)

⇒ σ ∈ (Σ2,o − Σ1,o) ∧ x1 �= y1 (Contrapositive of x1 = y1 ⇒ μ1(x1) = μ1(y1))

⇒ τ ∈ C21 (Definition of C21)

Case 2 (τ̂ ∈ Ĉ12). This case is analogous to that of τ̂ ∈ Ĉ21.

5.5 N̂∗
ij

Unfortunately, at this juncture the proof of the primary conjecture is forced to come to a screeching

halt due to the following counterexample to the consistency portion of the problem.

5.5.1 Communication Scheme

Example In the previous chapter, the running example made a full examination of communication

between R̂1 and R̂2. This counterexample will focus on communication between R1 and R2,

which will now be described in similar detail. To begin, line 1 of the Main function calculates the

reachable product of the two agents as shown in Figure 5.1. From this, the transitions that must

be communicated to maintain correctness (as determined on line 2 of Main) are listed in Table 5.1.

Note that each (x, σ, y) ∈ Cij may have a “counterpart” (μ(x), σ, μ(y)) in Ĉij or N̂∗
ij that is also

communicated; these transitions are also listed in the table.

To review, the transitions communicated for correctness by reduced agents (R̂1, R̂2) can be

found in Table 4.1. Both of these sets highlight two important points:

1. As proven in the previous section, for every state x̂ ∈ X̂ in R̂ that communicates an event

for correctness, each state x ∈ μ−1(x̂) in R also communicates the same event for correctness.

Specifically, consider ((4, iii), a2, (2, iii)) ∈ Ĉ21 where μ−1((4, iii)) = {(4, iii), (7, iii)} (note

that (4, v) and (7, v) are not reachable in R). Both ((4, iii), a2, (2, v)) and ((7, iii), a2, (2, v))

are included in C21.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 79

(1, i)

(3, iv) (2, ii) (5, ii)

(6, iii) (1, iii) (4, ii) (7, ii)

(2, iii) (3, iii) (7, iii)

(6, v) (1, v) (3, v) (4, iii)

(5, iii) (5, v) (2, v)

a1 b1

a2

b2

a2

b1
a1, b2

a1

b1

a2

b2

b2
a1

a2

b1

a1

b1

a2

b2

a2

b2

a1

b1

b1

a2

b2

a1

a1

b1

b2

a2

b2

a1

a2

b1

a1
b1

a2

b2

a2

b1

b2

a1

b2

a2

a1

b1

b1
a2

a1

b2

b2 a1

b1

a2

b2

a2

b1

a1

a1

b2

b1 a2

b2

a2

a1
b1

b2

b1

a1
a2

Figure 5.1: Running Example - Reachable product of S1 and S2 (Review of Figure 3.9)

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 80

C12 Counterpart C21 Counterpart

((1, i), a1, (3, iv)) Not Communicated ((1, iii), a2, (6, v)) ((1, iii), a2, (1, iii)) ∈ N̂21

((1, i), b1, (2, ii)) ((1, i), b1, (2, ii)) ∈ Ĉ12 ((1, v), a2, (6, v)) ((1, iii), a2, (1, iii)) ∈ N̂21

((1, v), a1, (3, iii)) Not Communicated ((2, ii), a2, (5, ii)) ((2, ii), a2, (5, ii)) ∈ Ĉ21

((1, v), b1, (2, iii)) ((1, iii), b1, (2, iii)) ∈ N̂12 ((2, ii), b2, (1, iii)) ((2, ii), b2, (1, iii)) ∈ Ĉ21

((2, v), a1, (4, iii)) Not Communicated ((2, iii), a2, (5, v)) ((2, iii), a2, (5, iii)) ∈ Ĉ21

((2, v), b1, (2, iii)) Not Communicated ((2, iii), b2, (1, v)) ((2, iii), b2, (1, iii)) ∈ Ĉ21

((3, iv), b1, (4, ii)) ((3, i), b1, (4, ii)) ∈ Ĉ12 ((2, v), a2, (5, v)) ((2, iii), a2, (5, iii)) ∈ Ĉ21

((3, v), a1, (3, iii)) Not Communicated ((2, v), b2, (1, v)) ((2, iii), b2, (1, iii)) ∈ Ĉ21

((3, v), b1, (4, iii)) ((3, iii), b1, (4, iii)) ∈ N̂12 ((3, iii), a2, (1, v)) ((3, iii), a2, (1, iii)) ∈ Ĉ21

((5, v), a1, (4, iii)) Not Communicated ((3, iv), a2, (1, iii)) ((3, i), a2, (1, iii)) ∈ Ĉ21

((5, v), b1, (5, iii)) Not Communicated ((3, v), a2, (1, v)) ((3, iii), a2, (1, iii)) ∈ Ĉ21

((6, v), a1, (3, iii)) Not Communicated ((4, ii), a2, (2, ii)) ((4, ii), a2, (2, ii)) ∈ Ĉ21

((6, v), b1, (2, iii)) ((1, iii), b1, (2, iii)) ∈ N̂12 ((4, ii), b2, (3, iii)) ((4, ii), b2, (3, iii)) ∈ Ĉ21

((4, iii), a2, (2, v)) ((4, iii), a2, (2, iii)) ∈ Ĉ21

((4, iii), b2, (3, v)) ((4, iii), b2, (3, iii)) ∈ Ĉ21

((5, ii), b2, (1, iii)) ((5, ii), b2, (1, iii)) ∈ Ĉ21

((5, iii), b2, (1, v)) ((5, iii), b2, (1, iii)) ∈ Ĉ21

((5, v), b2, (1, v)) ((5, iii), b2, (1, iii)) ∈ Ĉ21

((6, iii), b2, (1, v)) Not Communicated
((6, v), b2, (1, v)) Not Communicated
((7, ii), a2, (2, ii)) ((4, ii), a2, (2, ii)) ∈ Ĉ21

((7, ii), b2, (3, iii)) ((4, ii), b2, (3, iii)) ∈ Ĉ21

((7, iii), a2, (2, v)) ((4, iii), a2, (2, iii)) ∈ Ĉ21

((7, iii), b2, (3, v)) ((4, iii), b2, (3, iii)) ∈ Ĉ21

Table 5.1: Running Example - Correctness Sets C12 and C21

2. Although most of the transmissions sent by R1 and R2 for correctness are also sent by R̂1

and R̂2 for correctness or consistency, several of them are not. Specifically, consider

((1, v), a1, (3, iii)) ∈ C12 where μ((1, v)) = (1, ii). In R̂, a2 is not communicated at (1, ii) for

either correctness or consistency.

Given the results from the first few steps of the method, line 3 calculates the “viewpoint” au-

tomaton for agent R1 as shown in Figure 5.2 and determines the associated consistency transitions.

There are three composite states in R̃1 that contain more than one state from R̂: {(1, iii), (1, v)},

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 81

(1, i)

(3, iv) (2, ii) (5, ii)

(6, iii)

(6, v)

(1, iii)

(1, v)
(4, ii) (7, ii)

(2, iii)
(3, iii)

(3, v)
(7, iii)

(6, v) (1, v) (3, v) (4, iii)

(5, iii)

(5, v)
(5, v) (2, v)

a1 b1

a2

a2

b1a1

a1

b1
b2

b2 a1

a2

b1

a1
b1

a2

a2

b2

a1

b1

b1

a2

a1

a1

b1

b2

b2
a1

a2

b1

a1
b1

a2

a2

b1

b2

a1

b2

a2

a1

b1

b1
a2

a1

b2

a1

b1

a2

b2

a2

b1

a1

a1

b2

b1

b2

a1

b1

b2

b1

a1

Figure 5.2: Running Example - R̃1 Generated by N12(C12, C21)

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 82

{(3, iii), (3, v)}, {(5, iii), (5, v)} and {(6, iii), (6, v)}. As such, the consistency results shown in Ta-

ble 5.2 are restricted to these states.

Nmax
12

Transition Cause State in R̃1

((1, iii), a1, (3, iii)) ((1, v), a1, (3, iii)) ∈ C12 {(1, iii), (1, v)}
((1, iii), b1, (2, iii)) ((1, v), b1, (2, iii)) ∈ C12 {(1, iii), (1, v)}
((3, iii), a1, (3, iii)) ((3, v), a1, (3, iii)) ∈ C12 {(3, iii), (3, v)}
((3, iii), b1, (4, iii)) ((3, v), b1, (4, iii)) ∈ C12 {(3, iii), (3, v)}
((5, iii), a1, (4, iii)) ((5, v), a1, (4, iii)) ∈ C12 {(5, iii), (5, v)}
((5, iii), b1, (5, iii)) ((5, v), b1, (5, iii)) ∈ C12 {(5, iii), (5, v)}
((6, iii), a1, (3, iii)) ((6, v), a1, (3, iii)) ∈ C12 {(6, iii), (6, v)}
((6, iii), b1, (2, iii)) ((6, v), b1, (2, iii)) ∈ C12 {(6, iii), (6, v)}

Table 5.2: Running Example - Consistency Set Nmax
12

At line 4, it is agent R2’s turn to establish its observations of the system and transmissions

required for consistency; Figure 5.3 represents the viewpoint automaton. There are a great deal

more composite states in R̃2 than in R̃1. However, this does not result in a large increase in the

number of transmissions to maintain consistency, as shown in Table 5.3.

N∗
21

Transition Cause State in R̃2

((1, v), b2, (1, v)) ((3, v), a2, (1, v)) ∈ C21 {(1, v), (3, v)}
((3, v), b2, (3, v)) ((1, v), b2, (1, v)) ∈ N∗

21 {(1, v), (3, v)}
((5, ii), a2, (5, ii)) ((2, ii), a2, (5, ii)) ∈ C21 {(2, ii), (4, ii), (5, ii), (7, ii)}
((5, iii), a2, (5, v)) ((2, iii), a2, (5, v)) ∈ C21 {(2, iii), (4, iii), (5, iii), (7, iii)}
((5, v), a2, (5, v)) ((2, v), a2, (5, v)) ∈ C21 {(2, v), (5, v)}
((6, v), a2, (6, v)) ((1, v), a2, (6, v)) ∈ C21 {(1, v), (6, v)}

Table 5.3: Running Example - Consistency Set N∗
21

Once N∗
21 has been determined, a recalculation of agent R1’s (potentially) minimal communica-

tions for consistency can take place at line 5 using the automaton given in Figure 5.4. Interestingly,

the composite states for Nmin
12 are nearly identical to those for Nmax

12 with one notable exception:

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 83

(1, i)

(2, ii)

(4, ii)

(7, ii)

(2, ii)

(4, ii)

(5, ii)

(7, ii)

(3, iv)

(4, ii)

(7, ii)

(6, iii)

(1, iii)

(3, iii)

(1, iii)

(3, iii)

(6, v)
(2, iii)

(4, iii)

(7, iii)

(3, v)

(1, v)
(1, v)

(6, v) (1, v)

(3, v)

(4, iii)

(7, iii) (2, v)

(2, v)

(5, v)

(5, iii) (5, v)

(2, iii)

(4, iii)

(5, iii)

(7, iii)

a1

b1

a2

b2

a2

b1

b2

a1

b1
a2

b2

b2

a2

a1
b1

a2

b2

a2

b2

b1

a2b2

a1

a1 b1

b2

a2

b2

a2

a1

b1

a2

b2

b2

a2

b2

a2

b1

a2

a1

b2

b2

a1

b1

a2

b2

a2

a1

b1

b2

a2

a1

b1

b2

b1

a1

a2

a1

b1
a2

b2

b2

a1
b1

a2

a1
b1

a2

b2

a1

b1

a2

b2

Figure 5.3: Running Example - R̃2 Generated by N21(C21, C12 ∪ Nmax
12)

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 84

(1, i)

(3, iv) (2, ii) (5, ii)

(6, iii)

(6, v)

(1, iii)

(1, v)
(4, ii) (7, ii)

(2, iii)
(3, iii)

(3, v)
(7, iii)

(6, v) (1, v) (3, v) (4, iii)

(5, iii) (5, v) (2, v)

a1 b1

a2

a2

b1a1

a1

b1
b2

b2 a1

a2

b1

a1
b1

a2

a2

b2

a1

b1

b1

a2

a1

a1

b1

b2

b2 a1

a2

b1

a1
b1

a2

a2

b1

b2

a1

b2

a2

a1

b1

b1
a2

a1

b2

a1

b1

a2

b2

a2

b1

a1

a1

b2
b1

a2

b2

a1

b1

b2

b1

a1a2

Figure 5.4: Running Example - R̃1 Generated by N12(C12, C21 ∪ N∗
21)

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 85

{(5, iii), (5, v)} is missing, due to ((5, iii), a2, (5, v)) ∈ N∗
21 eliminating the ε-transition between them.

This results in the exclusion of transmissions for state (5, iii) that were in Nmax
12 . The members of

Nmin
12 are listed in Table 5.4.

Nmin
12

Transition Cause State in R̃1

((1, iii), a1, (3, iii)) ((1, v), a1, (3, iii)) ∈ C12 {(1, iii), (1, v)}
((1, iii), b1, (2, iii)) ((1, v), b1, (2, iii)) ∈ C12 {(1, iii), (1, v)}
((3, iii), a1, (3, iii)) ((3, v), a1, (3, iii)) ∈ C12 {(3, iii), (3, v)}
((3, iii), b1, (4, iii)) ((3, v), b1, (4, iii)) ∈ C12 {(3, iii), (3, v)}
((6, iii), a1, (3, iii)) ((6, v), a1, (3, iii)) ∈ C12 {(6, iii), (6, v)}
((6, iii), b1, (2, iii)) ((6, v), b1, (2, iii)) ∈ C12 {(6, iii), (6, v)}

Table 5.4: Running Example - Consistency Set Nmin
12

At line 7, all possible transitions sets within the range bounded by Nmax
12 and Nmin

12 that do not

violate consistency with C12, C21 and N∗
21 are flagged. As seen previously in the example with the

reduced set of supervisors, there are four possible sets:

N1 = Nmin
12

N2 = Nmin
12 ∪ {((5, iii), a1, (4, iii))}

N3 = Nmin
12 ∪ {((5, iii), b1, (5, iii))}

N4 = Nmax
12

Unlike the reduced supervisors, however, it is not Nmax
12 that is the minimal set but Nmin

12 . Again,

in the interests of brevity, all the automata and operations associated with this decision will not be

included. Instead, the following informal discussion will highlight the most important points.

Consider N21(C21, C12 ∪ Nmin
12) first with respect to Figure 5.3. The exclusion of

((5, iii), a1, (4, iii)) and ((5, iii), b1, (5, iii)) from Nmin
12 reduces the events on transitions

((5, iii), a1, {(4, iii), (7, iii)}) and ((5, iii), b1, (5, iii)) to ε. Although the self-loop does not affect

the structure of R̃2 in the slightest, the other transition does: (5, iii) becomes composite state

{(4, iii), (5, iii), (7, iii)}. However, this is a subset of an existing state {(2, iii), (4, iii), (5, iii), (7, iii)},
no other new states are introduced and all existing states are preserved. Thus, N21(C21, C12 ∪
Nmin

12) = N∗
21.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 86

Now consider N12(C12 ∪Nmin
12 , C21 ∪N∗

21) with reference to Figure 5.2. Both ((5, iii), a1, (4, iii))

and ((5, iii), b1, (5, iii)) were included to be consistent with transmissions made by (5, v) due to com-

posite state {(5, iii), (5, v)}. This state was generated solely due to the reduction of ((5, iii), a2, (5, v))

to ε as the transition is not necessary for Ri’s correctness. However, ((5, iii), a2, (5, v)) ∈ N∗
21 which

results in the elimination of the ε transition, the composite state and the need to communicate at

(5, iii) for consistency purposes. This also does not affect any composite states in the automaton.

Thus, N12(C12 ∪ Nmin
12 , C21 ∪ N∗

21) = ∅.
As a result of the calculations made above, every set Nk, 1 ≤ k ≤ 4 is flagged. The decision at

line 7 is made simple as there is no doubt which set has the fewest elements: Nmin
12 . All that remains

for lines 8 through 10 is to create R∗
1 and R∗

2 (which are extremely similar to Figures 5.4 and 5.3)

and determine the communication scheme (com∗
12, com

∗
21) using state-based mappings (φ12, φ21) as

given in Table 5.5.

5.5.2 Examination of Counterexample

It is rather remarkable that, considering the complexity and length of this example, demonstrating

what makes it a counterexample requires only one event. Consider the string s = a2; s ∈ L(R1 ∧
R2/G) and through comparability, s ∈ L(R̂1 ∧ R̂2/G). In R̂∗

2 (similar to Figure 4.5),

˜̂
ξ2(s, ˜̂x2,0) = {(1, iii), (3, iii)}

and in R∗
2 (similar to Figure 5.3),

ξ̃2(s, x̃2,0) = (6, iii)

From the communication maps established for the running example,

ĉom
∗
21(s) = φ21({(1, iii), (3, iii)}) = {a2}

com∗
21(s) = φ21((6, iii)) = {b2}

Therefore, in this instance, ĉom
∗
ij(s) � com∗

ij(s) and the primary conjecture is proven to be false.

In this particular example, the relationship characterized by comparability did not guarantee

that (6, iii) ∈ X and μ((6, iii)) = (1, iii) ∈ X̂ shared the structural properties that would result

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 87

x̃1 ∈ X̃1 φ12(x̃1) x̃2 ∈ X̃2 φ21(x̃2)

{(1, iii), (1, v)} {a1, b1} {(2, ii), (4, ii), (7, ii)} {a2, b2}
{(3, iii), (3, v)} {a1, b1} {(2, ii), (4, ii), (5, ii), (7, ii)} {a2, b2}
{(6, iii), (6, v)} {a1, b1} {(4, ii), (7, ii)} {a2, b2}

(1, i) {a1, b1} {(1, iii), (3, iii)} {a2}
(1, v) {a1, b1} {(2, iii), (4, iii), (7, iii)} {a2, b2}
(2, ii) ∅ {(2, iii), (4, iii), (5, iii), (7, iii)} {a2, b2}
(2, iii) ∅ {(4, iii), (5, iii), (7, iii)} {a2, b2}
(2, v) {a1, b1} {(4, iii), (7, iii)} {a2, b2}
(3, iv) {b1} {(1, v), (3, v)} {a2, b2}
(3, v) {a1, b1} {(1, v), (6, v)} {a2, b2}
(4, ii) ∅ {(2, v), (5, v)} {a2, b2}
(4, iii) ∅ (1, i) {a2}
(5, ii) ∅ (1, iii) {a2}
(5, iii) ∅ (3, iii) {a2}
(5, v) {a1, b1} (6, iii) {b2}
(6, v) {a1, b1} (3, iv) {a2}
(7, ii) ∅ (1, v) {a2, b2}
(7, iii) ∅ (2, v) {a2, b2}

(3, v) {a2, b2}
(5, v) {a2, b2}
(6, v) {a2, b2}

Table 5.5: Running Example - State-Based Communication Mappings φ12 and φ21 for R∗
1 and R∗

2

in an identical or reduced communication scheme for (1, iii). The obvious question is why did this

happen in this case?

To begin, examine the operations performed for (R̂1, R̂2). When determining N̂max
12 , agent R̂1

does not communicate ((1, iii), a1, (3, iii)) to R̂2 because it is not required for correctness (since iii =

iii) or consistency (since although (1, iii) is in a composite state with (1, i), a1 is not communicated

at state (1, i)), as shown in Figure 4.3. Then during the calculations for N̂∗
21, agent R̂2 cannot

distinguish (1, iii) from (3, iii) as ((1, iii), a1, (3, iii)) is not communicated, generating composite

state {(1, iii), (3, iii)}, as illustrated in Figure 4.5. Since ((3, iii), a2, (1, iii)) is communicated for

correctness, ((1, iii), a2, (1, iii)) is now communicated for consistency.

Now consider (R1, R2). When determining Nmax
12 , agent R1 generates composite state

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 88

{(6, iii), (6, v)} because ((6, iii), a2, (6, v)) is not communicated for correctness (since 6 = 6), as given

in Figure 5.2. As a result, both ((6, iii), a1, (3, iii)) and ((6, iii), b1, (2, iii)) are communicated to be

consistent with similar transmissions made at state (6, v). Then during the calculations of N∗
21,

(6, iii) is not made part of a composite state in R̃2 because the only transitions in or out of that

state are either observed by R2 or communicated by R1, as shown in Figure 5.3. Since a2 is not

transmitted at (6, iii) for correctness and there is no reason to transmit it for consistency, the result

is that a2 is not communicated at state (6, iii) of R∗
2.

It is important to note that even though the primary conjecture is incorrect in its formal expres-

sion, it may be informally correct in some cases. In this example, (R̂1, R̂2) does communicate “no

worse or less” than (R1, R2), referring to the overall number of transmissions. Consider that for

these two pairs of agents, ((6, iii)), a2, (6, v)) and ((1, iii), a2, (1, iii)) ∈ N∗
21 is the only case where a

transmission for an event σ on a reduced state x̂ is not also made for σ on x where μ(x) = x̂. Beyond

this, numerous additional communications are made by (R1, R2) that are not made by (R̂1, R̂2).

For example, C12 contains an additional eight transitions with no counterparts in Ĉ12; this results in

eight additional transmissions that will be made by (R1, R2) for correctness that will not be made

by (R̂1, R̂2).

Given that the running example proved to be a counterexample, the obvious question is whether

it is possible for a (R1, R2) and (R̂1, R̂2) to satisfy the primary conjecture. Thankfully, it is

possible and the example which proves it is very simple in comparison to the one examined thus far.

5.6 Proof of Concept Example

Consider Figures 5.5 through 5.7 representing a plant G = (Σ, Q, δ, q0, Qm) and implicitly-defined

supervisors T1 and T2 where Ti = (Σ, Xi, ξi, xi,0), i ∈ {1, 2}. As in the running example, supervisor

Ti can control all events in Σ, but may only observe {ai, bi}.
Given the similar structure shared by the plant and the supervisors, it is not surprising that a

state reduction with respect to the plant is possible. The implicitly-defined agents T̂1 and T̂2, given

in Figures 5.8 and 5.9, respectively, are the proposed replacements where T̂i = (Σ,X̂i, ξ̂i, x̂i,0).

Supervisor Ti is language-equivalent to T̂i with respect to G, i ∈ {1, 2}. Define state mappings

μ1 and μ2 from agent Ti to T̂i as given in Table 5.6.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 89

A B C D
a1

b1, b2

a2 a1

a2, b2 a1, b1, a2, b2

Figure 5.5: Proof of Concept Example - Plant G

1 2 3
a1

b1

a2

a1, b1, a2, b2

Figure 5.6: Proof of Concept Example - Supervisor T1

i ii iii iv
a2

a1

b2 a1

a2, b2 a1, b1, a2, b2

Figure 5.7: Proof of Concept Example - Supervisor T2

1 2
a1, b1

a1, b1, a2, b2

Figure 5.8: Proof of Concept Example - Reduced Supervisor T̂1

The information given thus far, not surprisingly, culminates in the declaration that Ti is com-

parable to T̂i with respect to G via the state mapping μi. The behaviour of G when these agents

enforce their control policies is shown in Figures 5.10 and 5.11.

Before submitting these agents to the minimal communication algorithm, they must first be made

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 90

i ii iii
a2

a1

b2

a1, b1, a2, b2

Figure 5.9: Proof of Concept Example - Reduced Supervisor T̂2

x ∈ X1 μ1(x) x ∈ X2 μ2(x)

1 1 i i
2 2 ii ii
3 3 iii iii

iv iii

Table 5.6: Proof of Concept Example - State Mappings μ1 and μ2

(A, 1, i) (B, 2, i) (C, 3, ii)

(D, 3, iv) (C, 3, iii)

a1 a2

b2

a1

a2, b2a1, b1, a2, b2

Figure 5.10: Proof of Concept Example - Result of Supervisors T1 ∧ T2 acting on Plant G

into fully-defined supervisors using the explicit functions υ for Ti and υμ for T̂i, i ∈ {1, 2}. This

process yields (T1, T2) and (T̂1, T̂2) where Ti = (Ti, φi). Each of these supervisors is equivalent

to its implicitly-defined counterpart. The only difference is in appearance; structurally, they are

identical to the automata given in Figures 5.6 through 5.9, but each state now has a disabled

self-loop for every event that was implicitly disabled.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 91

(A, 1, i) (B, 2, i) (C, 2, ii)

(D, 2, iii) (C, 2, iii)

a1 a2

b2

a1

a2, b2a1, b1, a2, b2

Figure 5.11: Proof of Concept Example - Result of Reduced Supervisors T̂1 ∧ T̂2 Acting on Plant G

The first few steps of the Main function are concerned with calculating the reachable product

of the supervisors and determining the transitions that must be communicated for correctness. The

diagram given in Figure 5.12 and the sets C12 and C21 in Table 5.7 are the results of that process

for (T1, T2).

C12 C21

((1, iii), a1(2, iv)) ((2, i), a2, (3, ii))
((3, iii), a1, (3, iv)) ((2, ii), a2, (3, ii))
((2, iii), a1, (2, iv)) ((2, iii), a2, (3, iii))

((2, iv), a2, (3, iv)

Table 5.7: Proof of Concept Example - Correctness Sets C12 and C21

Using these sets, the next step is to determine R̃1 (as illustrated in Figure 5.13) and from that,

Nmax
12 (as given in Table 5.8). Since all the states in R̃1 are composite and C12 is nonempty, there

are several transitions that must be communicated for consistency.

The next task for Main is to calculate R̃2 (as shown in Figure 5.14) and N∗
21 (as given in Table 5.9).

Similar to R̃1 and Nmax
12 , there are many composite states in R̃2 and C21 is nonempty, leading to

the addition of many communications for consistency.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 92

(2, i) (3, ii) (3, iii) (3, iv)

(3, i) (1, ii) (2, ii)

(1, i) (1, iii) (2, iii) (2, iv)

a1

a2
b1

b2

a2

a1, b1, b2

a2

a1

b1, b2

a1

b1

b2

a2

b2

a1, b1, a2

a2

b2

a1, b1

a1

b1

a2, b2

a1

a2, b2 b1

a1

a2

b1, b2

a2

a1, b1, b2

a1, b1, a2, b2

Figure 5.12: Proof of Concept Example - Supervisor R = (T1 × T2)

Nmax
12

Transition Cause State in R̃1

((1, i), a1, (2, i)) ((1, iii), a1(2, iv)) ∈ C21 {(1, i), (1, ii), (1, iii)}
((1, ii), a1, (2, ii)) ((1, iii), a1(2, iv)) ∈ C21 {(1, i), (1, ii), (1, iii)}
((2, i), a1, (2, i)) ((2, iii), a1, (2, iv)) ∈ C21 {(2, i), (2, ii), (2, iii), (2, iv)}

((2, ii), a1, (2, ii)) ((2, iii), a1, (2, iv)) ∈ C21 {(2, i), (2, ii), (2, iii), (2, iv)}
((2, iv), a1, (2, iv)) ((2, iii), a1, (2, iv)) ∈ C21 {(2, i), (2, ii), (2, iii), (2, iv)}
((3, i), a1, (3, i)) ((3, iii), a1, (3, iv)) ∈ C21 {(3, i), (3, ii), (3, iii), (3, iv)}

((3, ii), a1, (3, ii)) ((3, iii), a1, (3, iv)) ∈ C21 {(3, i), (3, ii), (3, iii), (3, iv)}
((3, iv), a1, (3, iv)) ((3, iii), a1, (3, iv)) ∈ C21 {(3, i), (3, ii), (3, iii), (3, iv)}

Table 5.8: Proof of Concept Example - Consistency Set Nmax
12

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 93

(1, i)

(1, ii)

(1, iii)

(2, i)

(2, ii)

(2, iii)

(2, iv)

(3, ii)

(3, iii)

(3, iv)

(3, i)

(3, ii)

(3, iii)

(3, i)

(3, ii)

(3, iii)

(3, iv)

a1

b1

a2

a1, b1

a1

b1

a2

a1, b1

a1, b1

a1, b1

Figure 5.13: Proof of Concept Example - R̃1 Generated by N12(C12, C21)

N∗
21

Transition Cause State in R̃2

((3, i), a2, (3, ii)) ((2, i), a2, (3, ii)) ∈ C12 {(2, i), (3, i)}
((3, ii), a2, (3, ii)) ((2, ii), a2, (3, ii)) ∈ C12 {(2, ii), (3, ii)}

((3, iii), a2, (3, iii)) ((2, iii), a2, (3, iii)) ∈ C12 {(2, iii), (3, iii)}
((3, iv), a2, (3, iv)) ((2, iv), a2, (3, iv)) ∈ C12 {(2, iv), (3, iv)}
((1, i), a2, (1, ii)), ((3, i), a2, (3, ii)) ∈ N21 {(1, i), (3, i)}
((1, ii), a2, (1, ii)) ((3, ii), a2, (3, ii)) ∈ N21 {(1, ii), (3, ii)}

((1, iii), a2, (1, iii)) ((3, iii), a2, (3, iii)) ∈ N21 {(1, iii), (3, iii)}

Table 5.9: Proof of Concept Example - Consistency Set N∗
21

The next step involves recalculating R̃1 for Nmin
12 , as given in Figure 5.15 and Table 5.10, re-

spectively. Since there are fewer composite states in this version of R̃1 than that for Nmax
12 , there is

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 94

(1, i)

(3, i)

(2, i)

(3, i)
(3, ii)

(1, ii)

(3, ii)

(2, ii)

(3, ii)
(3, iii)

(1, iii)

(3, iii)

(2, iii)

(3, iii)

(2, iv)

(3, iv)
(3, iv)

a1

a2

b2

a2

a1, b2

a1

b2

a2

a2

b2

a1

b2

a1, a2

a1

a2, b2

a1

a2

b2

a1

a2, b2

a2

a1, b2

a1, a2, b2

Figure 5.14: Proof of Concept Example - R̃2 Generated by N21(C21, C12 ∪ Nmax
12)

a reduction in the number of transitions that must be communicated for consistency.

The next task is to determine N∗
12 using Nmax

12 and Nmin
12 as the boundaries. To be succinct, it

suffices to state informally that Nmin
12 is chosen because:

• N12(C12 ∪ Nmin
12 , C21 ∪ N∗

21) = ∅ since Nmin
12 is the result of N12(C12, C21 ∪ N∗

21)

• N21(C21, C12 ∪Nmin
12) = N∗

21 since the R̃2 generated by this operation has amalgamated states

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 95

(1, i)
(1, ii)

(1, iii)

(2, ii)

(2, iii)

(2, iv)

(2, i)

(3, i)
(3, ii)

(3, iii)

(3, ii)

(3, iii)

(3, iv)

a1

b1

a2

a2
a1, b1

a2

a1, b1

a1

a2, b1

a1

b1

a2

a2

a1, b1

a1, a2, b1

Figure 5.15: Proof of Concept Example - R̃1 Generated by N12(C12, C21 ∪ N∗
21)

Nmin
12

Transition Cause State in R̃1

((1, ii), a1, (2, ii)) ((1, iii), a1(2, iv)) ∈ C21 {(1, ii), (1, iii)}
((2, ii), a1, (2, ii)) ((2, iii), a1, (2, iv)) ∈ C21 {(2, ii), (2, iii), (2, iv)}
((2, iv), a1, (2, iv)) ((2, iii), a1, (2, iv)) ∈ C21 {(2, ii), (2, iii), (2, iv)}
((3, ii), a1, (3, ii)) ((3, iii), a1, (3, iv)) ∈ C21 {(3, ii), (3, iii), (3, iv)}
((3, iv), a1, (3, iv)) ((3, iii), a1, (3, iv)) ∈ C21 {(3, ii), (3, iii), (3, iv)}

Table 5.10: Proof of Concept Example - Consistency Set Nmin
12

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 96

{(1, i), (2, i)} and {(2, i), (3, i)} shown in Figure 5.14 into a single state {(1, i), (2, i), (3, i)},
which does not affect the outcome of the consistency calculations

Thus, N∗
12 = Nmin

12 .

The next to last task is to determine the state-based communication mappings given C12, C21,

N∗
12 and N∗

21. The results appear in Table 5.11. Note that the final R∗
1 and R∗

2 are nearly identical

to Figures 5.15 and 5.14, respectively.

x̃1 ∈ X̃1 φ12(x̃1) x̃2 ∈ X̃2 φ21(x̃2)

{(1, ii), (1, iii)} {a1} {(1, i), (2, i), (3, i)} {a2}
{(3, ii), (3, iii)} {a1} {(1, ii), (3, ii)} {a2}

{(2, ii), (2, iii), (2, iv)} {a1} {(2, ii), (3, ii)} {a2}
{(3, ii), (3, iii), (3, iv)} {a1} {(1, iii), (3, iii)} {a2}

(1, i) ∅ {(2, iii), (3, iii)} {a2}
(2, i) ∅ {(2, iv), (3, iv)} {a2}
(3, i) ∅ (3, ii) {a2}

(3, iii) {a2}
(3, iv) {a2}

Table 5.11: Proof of Concept Example - State-Based Communication Mappings φ12 and φ21

The string-based mappings (com∗
12, com

∗
21) are easily derived from these state-based ones. For

example, given strings s = a1 and s′ = a1a2 where s, s′ ∈ L(T1 ∧ T2/G), com∗
12(s) = φ21({(1, ii),

(3, ii)}) = {a2}. Hence, for the legal sequence s′, agent R∗
2 would transmit a2 to R∗

1.

In contrast, there is far less communication that occurs between T̂1 and T̂2. Figure 5.16 represents

the results of Main determining their reachable product. Interestingly, neither Ĉ12 nor Ĉ21 contains

any elements; Ĉ12 = Ĉ21 = ∅. This is due to the fact that state changes in T̂i are only precipitated

by events that agent i can observe.

With empty correctness sets, there is no need to explore the calculations associated with deter-

mining the transmissions for consistency; the result is that N̂∗
12 = ∅ and N̂∗

21 = ∅. This example

demonstrates that not only is it possible for a reduction in state space to result in fewer communi-

cations, it is also possible to completely remove the need for communication altogether.

Note that both (T1, T2) and (T̂1, T̂2) are trim with respect to the plant G. It is possible that

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 97

(1, i) (1, ii) (1, iii)

(2, i) (2, ii) (2, iii)

a1b1

a2

b2

a2

b1, b2
a1

a1, b1

b2

a2

b2

a1, b1, a2

a1, b1

a2, b2

a1, b1, a2, b2

Figure 5.16: Proof of Concept Example - Supervisor R̂ = (T̂1 × T̂2)

the results for either pair of agents might have been much different if they had included synthesis-

inaccessible states which “required” transmissions for correctness from the point of view of Main.

The last example of this chapter will examine just such a scenario.

5.7 Trim vs. Untrim Example

Untrim? Why would a system designer ever use an agent that contains synthesis-inaccessible states?

Does that not smack of sloppy, inefficient design? Well, the answer is both yes and no. Consider the

following quandary: a designer has a rather simple “generic” pair of supervisors (S1,S2) that enforce

a particular behaviour and a series of complex plants G1,G2, . . . ,Gn in need of control. Is it feasible

to perform potentially large calculations to trim (S1,S2) n times for each plant Gi, 1 ≤ i ≤ n, when

perhaps only a few states of (S1,S2) will never be visited?

This situation takes on added weight if (S1,S2) must communicate. The Main function is de-

signed to determine the transmissions necessary to distinguish states; all states, including those

that are synthesis-inaccessible. Intuition hints that flagging transitions on inaccessible states for

communication would result in additional transitions on accessible states being communicated for

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 98

consistency where they would not have otherwise. Is it possible that the computation time saved

by not trimming (S1,S2) will be outweighed by a potentially inefficient communication system?

Conversely, is it possible that trimming (S1,S2) may not be worth the effort if no additional com-

munication is engendered?

This example is essentially a “proof of concept” of the latter point, i.e., a synthesis-inaccessible

state may not cause superfluous transmissions. It will use a plant and supervisors identical or similar

to those seen in the running example. As such, the focus of this example will not be on the process

of determining their minimal communication schemes. Instead, greater weight will be given to a

comparison of their transmissions with respect to the synthesized legal language.

The following plant G = (Σ, Q, δ, q0, Qm) and supervisors (Ŵ1, Ŵ2) where Ŵi = (Ŵi, φ̂i),

Ŵi = (Σ,X̂i, ξ̂i, x̂i,0) and φ̂i : Σ × X̂i → Ψi for i ∈ {1, 2} appeared previously in this dissertation

and are given in Figures 5.17, 5.18 and 5.19 for review. Although these agents are defined as

A C D

B E

a2

a1, b1

b2

b2

a2

a2, b2

a1, b1

a2, b2

a1

b1

b1

a1

Figure 5.17: Trim vs. Untrim Example - Plant G (Review of Figure 2.1)

the “reduced” agents, the original supervisors do not differ greatly. In fact, W2 is not reduced;

W2 = Ŵ2 as shown in Figure 5.19. In addition, W1 = (W1, φ1) (given in Figure 5.20) is simply

an untrimmed version of its reduced counterpart; the only difference is synthesis-inaccessible state

5. It will come as no surprise that Wi is language-equivalent and comparable to Ŵi with respect

to G via the state mappings given in Table 5.12.

As must be familiar to the reader by now, the first few steps of the Main function are concerned

with taking the reachable product of the given supervisors and determining the transitions that

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 99

1

2 3

4

b1

a1

a2, b2

b2

a1

a2, b1

a2

b1

a1, b2

a2

b2

a1, b1

Figure 5.18: Trim vs. Untrim Example - Supervisor Ŵ1 (Review of Figure 2.2)

i ii

iii

b1

a2

a1

b2

b2

b1

a1, a2

a1, a2, b1, b2

Figure 5.19: Trim vs. Untrim Example - Supervisor Ŵ2 (Review of Figure 2.5)

must be communicated for correctness. The results of these operations for (Ŵ1, Ŵ2) and (W1,

W2) are shown in Figures 5.21 and 5.22, and Tables 5.13 and 5.14, respectively.

The remainder of Main is concerned with determining the transitions that must be communicated

for consistency and calculating the “point of view” automata for each agent. Figures 5.23 through

5.26 and Tables 5.15 and 5.16 represent the results of those operations.

While R∗
1 (R̂∗

1) and R∗
2 (R̂∗

2) each give the observed behaviour of the original agents W1 (Ŵ1) and

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 100

1

2 5 3

4

b1

a1

a2, b2

b2

a1

a2b1

a2

b1

a1, b2

a2

b2

a1, b1

a1, b1

a2, b2

Figure 5.20: Trim vs. Untrim Example - Supervisor W1

x ∈ X1 μ1(x) x ∈ X2 μ2(x)

1 1 i i

2 2 ii ii

3 3 iii iii

4 4
5 2

Table 5.12: Trim vs. Untrim Example - State Mappings μ1 and μ2

W2 (Ŵ2), it is the combined behaviour of these agents that will synthesize the plant’s legal language.

Thus, the conjunction of these “viewpoint” agents must be taken. Figures 5.27 and 5.28 represent the

conjunctions R̂∗ = (R̂∗
1 ∧ R̂∗

2) and R∗ = (R∗
1 ∧ R∗

2), respectively. Note that a new naming convention

is introduced; the combined state names such as ((1, iii), {(1, iii), (2, iii), (3, iii), (4, iii), (5, iii)}) are

simply too long to use in the diagram. A list mapping the short-form representations to their

long-form names is given in Tables 5.17 and 5.18.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 101

(1, i) (3, i) (1, iii) (2, iii)

(4, ii) (2, ii) (3, iii) (4, iii)

a1

b1

a2

b2

a2

b1

a1, b2 a1

b1

a2, b2

b2

a1

a2, b1

a2

b2

a1

b1

b2

a1

a2, b1

b1

a2

a1, b2

b2

a2

a1, b1

Figure 5.21: Trim vs. Untrim Example - Supervisor R̂ = (Ŵ1 × Ŵ2) (Review of Figure 2.6)

Ĉ12 Ĉ21

((1, i), b1, (2, ii)) ((3, i), a2, (1, iii)) ((2, iii), b2, (1, iii))
((3, i), b1, (4, ii)) ((2, ii), b2, (1, iii)) ((3, iii), a2, (1, iii))

((4, ii), a2, (2, ii)) ((4, iii), a2, (2, iii))
((4, ii), b2, (3, iii)) ((4, iii), b2, (3, iii))

Table 5.13: Trim vs. Untrim Example - Correctness Sets Ĉ12 and Ĉ21

C12 C21

((1, i), b1, (2, ii)) ((3, i), a2, (1, iii)) ((4, ii), b2, (3, iii)) ((4, iii), b2, (3, iii))
((3, i), b1, (4, ii)) ((2, ii), a2, (5, ii)) ((2, iii), a2, (5, iii)) ((4, iii), a2, (2, iii))

((2, ii), b2, (1, iii)) ((2, iii), b2, (1, iii))
((4, ii), a2, (2, ii)) ((3, iii), a2, (1, iii))

Table 5.14: Trim vs. Untrim Example - Correctness Sets C12 and C21

It is interesting to note that while R̂∗ = (R̂∗
1 ∧ R̂∗

2) is isomorphic to the implicitly-defined

conjunction of Ŵ1 and Ŵ2 (as seen by viewing only the solid transitions in Figure 5.21), R∗ =

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 102

(3, i) (2, ii) (4, ii)

(1, i) (1, iii) (5, ii)

(2, iii) (5, iii) (3, iii)

(4, iii)

a1

b1

a2b2

a2

b1
a1, b2

a1

b1

a2, b2

b2

a1

a2

b1

a2

b2

a1

b1b2 a2

a1

b1

b1

a2

a1, b2
b2

a2

a1, b1

a2, b1

a1, b2
a1, b1

a2, b2

Figure 5.22: Trim vs. Untrim Example - Supervisor R = (W1 × W2)

(R∗
1 ∧ R∗

2) is not isomorphic to the implicitly-defined conjunction of W1 and W2 (represented

by the states and enabled transitions in Figure 5.22). This is despite the fact that the implicitly-

defined agents corresponding to (Ŵ1 ∧ Ŵ2) and (W1 ∧ W2) are isomorphic themselves. However,

R∗ = (R∗
1 ∧ R∗

2) is identical to R̂∗ = (R̂∗
1 ∧ R̂∗

2) with respect to supervision, differing structurally

by four superfluous states: Neuf, Dix, Onze and Douze, which mirror Cinq, Six, Sept and Huit,

respectively.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 103

(1, i) (3, i) (1, iii) (2, iii)

(4, ii) (2, ii) (3, iii) (4, iii)

a1

b1

a2

a2

b1

a1 a1

b1

a2

b2

a1

a2, b1

a2

b2

a1, b1

b2

a1

a2, b1

b1

a2

a1

b2

a2

a1, b1

Figure 5.23: Trim vs. Untrim Example - R̂∗
1 Resulting From Ĉ21 and N̂∗

21

(2, ii)

(4, ii)

(1, iii)

(3, iii)

(2, iii)

(4, iii)

(1, i)

(3, i)

b1 a2

b2

b2

a2

b1

a2, b2

b2

a2

Figure 5.24: Trim vs. Untrim Example - R̂∗
2 Resulting From Ĉ12 and N̂∗

12

With the definitions of implicit agents R̂∗ and R∗ in place, it is possible to construct the automata

that represent the result of (R̂∗
1 , R̂

∗
2) and (R∗

1, R
∗
2) acting on the plant G, as shown in Figures 5.29

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 104

N̂∗
12

Transition Cause State in R̂∗
i

((1, iii), b1, (2, iii)) ((1, i), b1, (2, ii)) ∈ Ĉ12 {(1, i), (1, iii)}
((3, iii), b1, (4, iii)) ((3, i), b1, (4, ii)) ∈ Ĉ12 {(3, i), (3, iii)}

N̂∗
21

((1, i), a2, (1, iii)) ((3, i), a2, (1, iii)) ∈ Ĉ21 {(1, i), (3, i)}
((2, ii), a2, (2, ii)) ((4, ii), a2, (2, ii)) ∈ Ĉ21 {(2, ii), (4, ii)}

((1, iii), a2, (1, iii)) ((3, iii), a2, (1, iii)) ∈ Ĉ21 {(1, iii), (3, iii)}
((2, iii), a2, (2, iii)) ((4, iii), a2, (2, iii)) ∈ Ĉ21 {(2, iii), (4, iii)}

Table 5.15: Trim vs. Untrim Example - Consistency Sets N̂∗
12 and N̂∗

21

N∗
12 = ∅
N∗

21

Transition Cause State in R∗
2

((5, ii), a2, (5, ii)) ((2, ii), a2, (5, ii)) ∈ C21 {(2, ii), (4, ii), (5, ii)}
((5, ii), b2, (5, ii)) ((2, ii), b2, (1, iii)) ∈ C21 {(2, ii), (4, ii), (5, ii)}

((1, iii), a2, (1, iii)) ((3, iii), a2, (1, iii)) ∈ C21 {(1, iii), (3, iii)}
((1, iii), b2, (1, iii)) ((5, iii), b2, (5, iii)) ∈ N∗

21 {(1, iii), (3, iii), (5, iii)}
((3, iii), b2, (3, iii)) ((5, iii), b2, (5, iii)) ∈ N∗

21 {(1, iii), (3, iii), (5, iii)}
((5, iii), a2, (5, iii)) ((2, iii), a2, (5, iii)) ∈ C21 {(2, iii), (4, iii), (5, iii)}
((5, iii), b2, (5, iii)) ((2, iii), b2, (1, iii)) ∈ C21 {(2, iii), (4, iii), (5, iii)}

Table 5.16: Trim vs. Untrim Example - Consistency Sets N∗
12 and N∗

21

˜̂x ∈ ˜̂
X Short-Form ˜̂x ∈ ˜̂

X Short-Form

Un ((1, i), {(1, i), (3, i)}) Cinq ((1, iii), {(1, iii), (3, iii)})
Deux ((2, ii), {(2, ii), (4, ii)}) Six ((3, iii), {(1, iii), (3, iii)}
Trois ((3, i), {(1, i), (3, i)}) Sept ((2, iii), {(2, iii), (4, iii)}

Quatre ((4, ii), {(2, ii), (4, ii)}) Huit ((4, iii), {(2, iii), (4, iii)}

Table 5.17: Trim vs. Untrim Example - Short-Form Names for the States of R̂∗ = (R̂∗
1 ∧ R̂∗

2)

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 105

(3, i) (2, ii) (4, ii)

(1, i) (1, iii) (5, ii)

(2, iii) (5, iii) (3, iii)

(4, iii)

a1

b1

a2

a2

b1a1

a1

b1

a2, b2

b2

a1

a2

b1

a2

b2

a1

b1b2 a2

a1

b1

b1

a2

a1, b2
b2

a2

a1, b1

a2, b1

a1, b2
a1, b1

a2, b2

Figure 5.25: Trim vs. Untrim Example - R∗
1 Resulting From C21 and N∗

21

and 5.30, respectively. Then, using the sets Ĉ12, Ĉ21, N̂∗
12 and N̂∗

21 (and similarly for C12, C21, N∗
12

and N∗
21), the transmissions that will take place at each state of synthesis can be determined for

both pairs of agents and are given in Tables 5.19 and 5.20.

There are several important points that are highlighted in this result. First, it was stated

previously that states Neuf, Dix, Onze and Douze in R∗ mirror Cinq, Six, Sept and Huit, respectively.

Not surprisingly, the communications associated with each superfluous state mirror the transmissions

for its essential counterpart.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 106

(2, ii)

(4, ii)

(2, ii)

(4, ii)

(5, ii)

(1, i)

(3, i)

(1, iii)

(2, iii)

(3, iii)

(4, iii)

(1, iii)

(2, iii)

(3, iii)

(4, iii)

(5, iii)

b1

a2

b2

b2

a2

b2

a2

a2

b2

a2, b2

Figure 5.26: Trim vs. Untrim Example - R∗
2 Resulting From C12 and N∗

12

x̃ ∈ X̃ Short-Form x̃ ∈ X̃ Short-Form

Un ((1, i), {(1, i), (3, i)}) Cinq ((1, iii), {(1, iii), (2, iii), (3, iii), (4, iii)})
Deux ((2, ii), {(2, ii), (4, ii)}) Six ((3, iii), {(1, iii), (2, iii), (3, iii), (4, iii)}
Trois ((3, i), {(1, i), (3, i)}) Sept ((2, iii), {(1, iii), (2, iii), (3, iii), (4, iii)}

Quatre ((4, ii), {(2, ii), (4, ii)}) Huit ((4, iii), {(1, iii), (2, iii), (3, iii), (4, iii)}
Neuf ((1, iii), {(1, iii), (2, iii), (3, iii), (4, iii), (5, iii)})
Dix ((3, iii), {(1, iii), (2, iii), (3, iii), (4, iii), (5, iii)}
Onze ((2, iii), {(1, iii), (2, iii), (3, iii), (4, iii), (5, iii)}
Douze ((4, iii), {(1, iii), (2, iii), (3, iii), (4, iii), (5, iii)}

Table 5.18: Trim vs. Untrim Example - Short-Form Names for the States of R∗ = (R∗
1 ∧ R∗

2)

Second, the communication schemes for R̂∗ and R∗ do not satisfy the primary conjecture of this

thesis, i.e., R̂∗ does not communicate a strict subset of the events transmitted by R∗. For example,

as shown in Table 5.19 at state (A,Cinq) in R̂∗, a2 or b1 will be transmitted if either event occurs. In

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 107

Un Trois Cinq Sept

Quatre Deux Six Huit

a1

b1

a2

a2

b1

a1

b1

a2, b2

b2

a1

b2
b1

b2

b1

a2

b2

a2

a1, b1

Figure 5.27: Trim vs. Untrim Example - Implicit Supervisor R̂∗ = (R̂∗
1 ∧ R̂∗

2)

˜̂x ∈ ˜̂
X Communications ˜̂x ∈ ˜̂

X Communications

(A,Un) {a2, b1} (C,Six) {a2, b1}
(A,Cinq) {a2, b1} (C,Sept) {b2}
(B,Cinq) {a2} (D,Quatre) {b2}
(C,Deux) {b2} (D,Huit) {a2, b2}
(C,Trois) {a2, b1} (E,Huit) ∅

Table 5.19: Trim vs. Untrim Example - Events Communicated When R̂∗
1 and R̂∗

2 Act on G

contrast, as shown in Table 5.20 at state (A,Cinq) in R∗, the potential communications are {a2, b2}.
Third, the communication scheme for R∗ is equivalent to that for R̂∗ with respect to the total

number of potential event transmissions. In fact, the state-based communication mappings are

identical with the exceptions (highlighted in bold font) given in Table 5.21.

Although R̂∗ transmits an additional b1 at (C,Six) that R∗ does not, R∗ communicates b2 at

(B,Cinq) (and (B,Neuf)) where R̂∗ does not. The only other difference is that R̂∗ will communicate

b1 if it occurs at (A,Cinq) while R̂∗ will transmit b2 instead at (A,Cinq) and (A,Neuf). Overall, the

number of potential transmissions for both sets of agents is identical.

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 108

Deux Un Trois Quatre

Cinq

Sept Six

Huit

Neuf

Onze Dix

Douze

a1b1

a2 a2

b1

a1

b1

a2

b2

b2

a1

b2

b1
b2

b1

a2

b2

a2

a1, b1

a1

b1

a2, b2

b1

a2

b2

a1 b2

a2

a1, b1

Figure 5.28: Trim vs. Untrim Example - Implicit Supervisor R∗ = (R∗
1 ∧ R∗

2)

Lastly, although the synthesis-inaccessible state in R∗ resulted in communication differences

with respect to R̂∗, it did not adversely affect the number of transmissions required. Although it

is certainly reasonable to expect that compensating for synthesis-inaccessible states would result

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 109

(A, Un) (B, Cinq) (C, Deux)

(C, T rois) (A, Cinq) (C, Sept)

(D, Quatre) (C, Six) (D, Huit)

(E, Huit)

a2

a1

b1

b2

a2

b2

b1

a2

b2

b1 b1

a1

a2

a1

b1

b2

b2

a2

a1

b1

b1

a2

b2

a1

Figure 5.29: Trim vs. Untrim Example - Supervisors R̂∗
1 and R̂∗

2 Acting on Plant G

in some unnecessary communication, this example demonstrates that that may not be the case.

This implies that trimming a supervisor with respect to the plant is not as essential in terms of

communication as one might think.

This example also serves as a demonstration of how results from the minimal communication

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 110

(C, Deux) (A, Un) (C, T rois)

(D, Quatre)(A, Cinq) (B, Cinq)

(C, Sept) (C, Six)

(D, Huit) (E, Huit)

(A, Neuf) (B, Neuf)

(C, Onze) (C, Dix)

(D, Douze) (E, Douze)

a1b1

a2 a2

b1

a1

b1

a2

b2 b2

a2

b2

a1

b2

b1

b2

b1

a2

b2

a2

a1

b1

b1

a1

b1

a1

a1

b1

a2

b2

b2

a2

b1

a2

b2

a1 b2

a2

a1

b1

b1

a1

Figure 5.30: Trim vs. Untrim Example - Supervisors R∗
1 and R∗

2 Acting on Plant G

CHAPTER 5. EFFECTS OF REDUCTION ON COMMUNICATION 111

x̃ ∈ X̃ Communications x̃ ∈ X̃ Communications

(A,Un) {a2, b1} (C,Sept) {b2}
(A,Cinq) {a2, b2} (C,Dix) {a2}
(A,Neuf) {a2, b2} (C,Onze) {b2}
(B,Cinq) {a2, b2} (D,Quatre) {b2}
(B,Neuf) {a2, b2} (D,Huit) {a2, b2}
(C,Deux) {b2} (D,Douze) {a2, b2}
(C,Trois) {a2, b1} (E,Huit) ∅
(C,Six) {a2} (E,Douze) ∅

Table 5.20: Trim vs. Untrim Example - Events Communicated When R∗
1 and R∗

2 Act on G

˜̂x ∈ ˜̂
X Communications x̃ ∈ X̃ Communications x̃ ∈ X̃ Communications

(A,Cinq) {a2,b1} (A,Cinq) {a2,b2} (A,Neuf) {a2,b2}
(B,Cinq) {a2} (B,Cinq) {a2,b2} (B,Neuf) {a2,b2}
(C,Six) {a2,b1} (C,Six) {a2} (C,Dix) {a2}

Table 5.21: Trim vs. Untrim Example - Communication Differences Between R̂∗ and R∗ During
Synthesis

algorithm are applied to a pair of supervisors and utilized during synthesis. Although the process

is certainly not trivial, the results speak for themselves: agents that enforce the required behaviour

but communicate as little as possible.

Chapter 6

Conclusions

The research documented here describes an effort to combine known manipulations of distributed

discrete-event supervisors (in this case, full definition and state-size reduction) in an effort to make

the minimal communication algorithm as given in [10] more accessible and further minimize the

results. Specifically, the primary conjecture stated that a pair of reduced agents will communicate a

subset of the events transmitted by the original agents if the latter pair is comparable to the former.

Care was taken to not make the definition of the explicit function so complicated or comparability

so restrictive that it would be unrealistic for a system designer to use. However, enforcing fewer

requirements on the structure of the agents resulted in cases where the supervisors are comparable,

but their minimal communication schemes are not; that is, not in the strict manner described in the

primary conjecture. The counterexample and proof-of-concept examples illustrated both possible

outcomes.

Hindsight and discussion offer a few opinions that foresight seems to have missed. The first is

that in amalgamating states in general, an agent may find its ability to make decisions diminished.

For example, consider a reduction method (other than comparability) that combines two states that

differ on control policy. This will result in the agent erring on the side of caution and disabling

events where it would not have previously. If that disablement is unacceptable, the agent will

need some other information upon which it will base its control decision. That information may

have to be transmitted from another agent, resulting in communication where perhaps there was

112

CHAPTER 6. CONCLUSIONS 113

none before.1 If the two states are totally redundant, which is possible, then these issues are not

applicable. However, even the most inoccuous structural change may have unintended results.

The second thought is that the minimal communication algorithm only has knowledge about

the structure of the two agents which it is given as input. The function does not take into account

disabled events, inaccessible states or the system as whole. If these factors were considered in the

calculations, the algorithm might be more efficient in terms of running time and might yield different

results. However, this is not the case and as a result, the differences between two pairs of comparable

agents that are dismissed during synthesis cannot be dismissed by the algorithm. It assumes that

everything allowed by the structure of the supervisors is permitted for a reason, and thus must be

considered when calculating the communication scheme. These discrepancies between the original

and reduced agents may then result in discrepancies in their event transmissions. Perhaps if a desired

control behaviour is the goal, an algorithm should be designed with that in mind.

Despite the considerations just given, the results of this research are hardly insignificant. Con-

sidering the difficulties that present themselves when determining communication, any option that

will produce a reasonable result would be an asset. Moreover, although the counterexample did not

strictly satisfy the conjecture, it demonstrates the case where the original supervisors communicate

more than the reduced supervisors in terms of the number of events. The existence of a coun-

terexample also does not imply the non-existance of satisfactory cases, i.e., cases where the reduced

agents communicate a subset of the events transmitted by the original supervisors.

Although the work documented here made at least some inroads into this topic, there is still far

more that can be explored. Ideally, this would culminate in an algorithm that, given a system and

a desired behaviour, produces the most efficient agents possible in terms of state size, supervisory

action and communication. For the immediate future, it is more realistic to implement consideration

of control policy and system operation when designing a transmission scheme. State amalgamation

is also worth a second look, but based on different criteria such as user-specified options, e.g., a

requirement stating that x and y must be distinguishable until α occurs, after which they need not

be.

It is apparent that when it comes to minimizing communication, there is one major pitfall: when
1This particular case was suggested by Dr. Kai Salomaa during personal discussions about this research.

CHAPTER 6. CONCLUSIONS 114

attempting to reduce a given transmission scheme, any changes to one agent’s policy means that

the policies of every other agent must be checked, as their view of the system may be affected. The

potential for infinite iteration makes this problem inherently complex to solve. Even the definition

of “minimal” may be subject to the designer’s preferences, i.e., number of transmissions vs. mes-

sage size. However, until delay-free and fault-free networks become available, it is a topic whose

complexity should not detract from the need for further research and eventual resolution.

Bibliography

[1] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Academic

Publishers, Boston, MA, 1999.

[2] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control of discrete-event

processes with partial observations. IEEE Transactions on Automatic Control, 33(3):249–260,

March 1988.

[3] W. M. Wonham et al. CTCT, last updated in 2005. Discrete-event systems software

which implements the background theory included in this dissertation; can be downloaded

at http://www.control.toronto.edu/people/profs/wonham/wonham.html.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, Reading, MA, 1979.

[5] Ying Huang. Minimal communication software, 2002-2003. A Java implementation of the

algorithm given in [10] employed to determine/confirm the results for each of the examples.

[6] P. Kozák and W. M. Wonham. Fully decentralized solutions of supervisory control problems.

IEEE Transactions on Automatic Control, 40(12):2094–2097, Dec. 1995.

[7] F. Lin and W. M. Wonham. Decentralized control and coordination of discrete-event systems

with partial observation. IEEE Transactions on Automatic Control, 35(12):1330–1337, Dec.

1990.

[8] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization, 25(1):206–230, Jan. 1987.

115

BIBLIOGRAPHY 116

[9] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of

the IEEE, 77(1), Jan. 1989.

[10] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributed discrete-event

system. IEEE Transactions on Automatic Control, 48(6):957–975, June 2003. Also appears as

Control Group Report No. CGR-00-06, College of Engineering, University of Michigan, 2000.

[11] K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized supervisory control.

IEEE Transactions on Automatic Control, 37(11):1692–1708, November 1992.

[12] Karen Rudie. The current state of decentralized discrete-event control systems. In Proceedings

of the 10th Mediterranean Conference on Control and Automation, July 2002.

[13] R. Su and W. M. Wonham. Supervisor reduction for discrete-event systems. Discrete-Event

Dynamic Systems: Theory and Applications, 14:31–53, 2004.

[14] Shigemasa Takai. Minimizing the set of local supervisors in fully decentralized supervision.

IEEE Transactions on Automatic Control, 44(7):1441–1444, July 1996.

[15] J. G. Thistle. Supervisory control of discrete event systems. Mathematical Computing and

Modelling, 23(11/12):25–53, 1996.

[16] A. F. Vaz and W. M. Wonham. On supervisor reduction in discrete-event systems. International

Journal of Control, 44(2):475–491, Dec. 1986.

[17] W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete-event systems.

Mathematics of Control, Signals, and Systems, 1:13–30, 1988.

Appendix A

Supervisor Reduction: A Quick

Reference Guide

Quotients [8]

Definition: Generator/Plant [8, p. 207].

We define a generator to be a 5-tuple

G = (Q, Σ, δ, q0, Qm)

Footnote 1: The terms generator and marker state are nonstandard, but better suited
to our interpretation than, for example “automaton” and “final state” . . . it will play the
role of “plant” in the sense of control theory.

The automaton G is initially defined in the paper as a generator, with a footnote to clarify the authors’

position. It is only later when controllable and uncontrollable events are introduced that G is referred to

as a plant.

Definition: Projection [8, p. 219].

Let S = (S, φ) and Ŝ = (Ŝ, φ̂) each be supervisors for G, where as usual

S = (X, Σ, ξ, x0, Xm) φ : X → {0, 1}Σ

Ŝ = (X̂, Σ, ξ̂, x̂0, X̂m) φ̂ : X̂ → {0, 1}Σ

117

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 118

We shall say that a (total) function π : X → X̂ is a projection from S to Ŝ and write
π : S → Ŝ, provided

(i) π : X → X̂ is surjective,

(ii) π(x0) = x̂0 and Xm = π−1(X̂m),

(iii) ξ̂ ◦ (idΣ × π)(σ, x) = π ◦ ξ(σ, x) for all (σ, x) where ξ(σ, x) is defined,

(iv) φ̂ ◦ π = φ.

Under these conditions we shall refer to Ŝ as the quotient of S under π.

Loosely put, a projection is a mapping of states that preserves the transition function, the feedback map,

and the initial and final states. Of vital note is the condition in (iii) that only requires ξ̂ to be consistent

with ξ where ξ(σ, x) is defined. This means that states x and x′ may be amalgamated even if there

exists σ such that ξ(σ, x) is defined and ξ(σ, x′) is not.

A footnote defined on (iii) clarifies that idΣ×π : Σ×X → Σ× X̂ : (σ, x) �→ (σ, π(x)); in simpler terms,

(iii) translates to π ◦ ξ(σ, x) = ξ̂(σ, π(x)).

Proposition 8.1 [8, p. 219].

Let S be complete with respect to G, and let π : S → Ŝ be a projection. Then,

(i) π is unique,

(ii) (Lm, Lc, L)(S/G) = (Lm, Lc, L)(Ŝ/G),

(iii) Ŝ is complete with respect to G,

(iv) S is nonblocking (respectively, nonrejecting, nonproper) iff Ŝ is nonblocking (re-
spectively, nonrejecting, nonproper)

This is an extremely important result in that any quotient supervisor is guaranteed to have the same

desirable properties of the original with respect to completeness and nonblocking. It provides further

incentive to attempt supervisor reduction.

Definition: K-equivalence [8, p. 222].

Let ≡ (modK), K ⊂ Σ∗ denote K-equivalence on Σ∗ : s ≡ s′(modK) if for all t ∈ Σ∗,

st ∈ K iff s′t ∈ K.

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 119

It is also noted in the paper that ≡ (modK) is a right-congruence.

Definition: K-reduced and K-trim [8, p. 222, Paraphrased]. Let S = (S, φ) be an automaton such

that L(S) includes the language K. Thus, S is K-reduced if for s, s′ ∈ K and s ≡ s′(modK) then

ξ(s, x0) = ξ(s′, x0)

S is also K-trim if every state of S is visited by a word in K; that is, for every x ∈ X there is s ∈ K

such that ξ(s, x0) = x.

These two properties are used to define the efficient supervisor S in Theorem 10.1 where any other

supervisor that enforces identical control on G must have a state size as large or larger than that of S.

Theorem 10.1 [8, pp. 222-223].

Quotient structure theorem. Let S = (S, φ) be a complete supervisor for G. Write
K1 = Lm(S/G), K3 = L(S/G) and assume that S is K3-reduced and K3-trim. . . . Finally
let

Ŝ0 = (X0, Σ, ξ0, x0
0, X

0)

be a trim recognizer for K3. Subject to the forgoing hypotheses, there exists a subset
X0

m ⊂ X0 and a state feedback map φ0 : X0 → {0, 1}Σ with the following properties:

(i) The supervisor

S0 = (S0, φ0) S0 = (X0, Σ, ξ0, x0
0, X

0
m)

is a complete supervisor for G with

Lm(S0/G) = K1, L(S0/G) = K3

(ii) There is a projection π : S0 → S.

(iii) If S is proper then so is S0.

This theorem essentially proves that “any efficiently constructed supervisor is a quotient (high-level, or

lumped, model) of the desired closed-loop behaviour”. In other words, a supervisor that recognizes and

marks the same language as the efficient supervisor S must have a unique projection onto S.

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 120

Covers [16]

Definition: ≡ for strings [16, pp. 476-477].

If K ⊆ Σ∗ is a language and s, t ∈ Σ∗ are arbitrary strings, then s ≡ t mod K means

that s and t belong to the same Nerode equivalence class of K, namely for all w ∈ Σ∗,

sw ∈ K iff tw ∈ K.

This definition is identical to that for K-equivalence in [8]. The term “Nerode class” is also used numerous

times in the paper.

Definition: Standard supervisor [16, p. 477].

Write K := L(S/G), L := L(G). Following Ramadge and Wonham (1983), we say that
a supervisor S = (S, ψ) for G is complete if, for all s ∈ K, the two conditions sσ ∈ L and
ψ(σ, x) = 1 with x = ξ(s, x0) together imply ξ(σ, x)!, namely sσ ∈ K. Also, a supervisor
S = (S, ψ) will be called normal if the control law ψ is defined with as much flexibility as
possible, namely enablement (1) or disablement (0) is assigned to a pair (σ, x), σ ∈ Σc,
only when necessary. . . .

Thirdly, S will be called strongly K-accessible if for every x ∈ X there exists s ∈ K such
that ξ(s, x0) = x (i.e. S is K-accessible) and, for all σ ∈ Σ and x ∈ X , ξ(σ, x)! only if
there is s ∈ K such that ξ(s, x0) = x) and sσ ∈ K. Finally, we shall say that a supervisor
S is standard if it is complete, normal and strongly K-accessible. It is straightforward
to assume that any complete supervisor may be replaced by a standard version without
changing the control action with respect to the behaviour of G.

The term “standard” is defined here to encapsulate several requirements on S, all of which are needed

to prove the theorems to come in the paper. None of the above conditions are considered unusual or

overly stringent; in fact, they are all viewed as good practice in control theory. Loosely put, they enforce

the following with respect to all s ∈ K

1. (Complete) S accepts any σ that follows s if sσ is accepted by G and σ is not explicitly disabled

by ψ

2. (Normal) ψ(s, σ) has a value of 0 if sσ is accepted by G but not S; 1 if it is accepted by both;

and dc if it is not accepted by G

3. (Strongly K-Accessible) S only contains states that can be reached by some string and only contains

transitions that can follow some string in K

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 121

Definition: Cover [16, p. 477].

To develop the main results we define a cover of S to be a family C = {Xi | i ∈ I} of
subsets of X with the following properties (cf. Zeiger 1968):

∀ i, Xi �= ∅;
For a subset Im ⊂ I, Xm = ∪{Xi | i ∈ Im},

X − Xm = ∪{Xi | i ∈ I − Im};
(∀ i, σ) : (∃ y ∈ Xi), ξ(σ, y)! ⇒ (∃ j)(∀x ∈ Xi) · ξ(σ, x)! ⇒ ξ(σ, x) ∈ Xj

(for brevity, we write this property as (∀ i, σ)(∃ j)
ξ(σ, Xi) ⊂ Xj)

(∀ i, σ)(∀x, y ∈ Xi), ψ(σ, x) �= dc �= ψ(σ, y)
⇒ ψ(σ, x) = ψ(σ, y)

Thus a cover of S = (S, ψ) is simply a covering of the state set X of S by non-empty
subsets, such that the marked states (Xm) are covered separately from the unmarked
states (X−Xm), the cover elements behave consistently under the action of the transition
function ξ, and a cover element exhibits uniform control action at those states where
control matters.

Fix i ∈ I, σ ∈ Σ. If ξ(σ, x)! for some x ∈ Xi, select j ∈ I such that ξ(σ, x) ∈ Xj for
all such x. A triple (i, σ, j) as just described will be called a cover triple.

The definition of a cover has several interesting properties beyond those described in the preceeding

papragraph.

1. Each subset Xi ∈ Im must be composed entirely of marked states.

2. As with projections, the transition function for the cover need only be consistent where transitions

are defined in S; ∀ i ∈ I, x ∈ Xi, σ ∈ Σ, ξ(σ, x)! ⇒ (∃ j ∈ I) ξ(Xi, σ) ⊂ Xj ∧ ξ(σ, x) ∈ Xj but it

is possible that ∃x ∈ Xi,¬ξ(σ, x)!.

3. No two states in a subset Xi ∈ I have conflicting control actions for any event; the “don’t care”

action dc does not conflict with 0 or 1 since it is overridden by either of these.

Definition: S based on C [16, p. 478].

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 122

Given a supervisor S = (S, ψ) and corresponding cover C = {Xi | i ∈ I} where | C |<|
X |, we define a reduced supervisor S = (S, ψ) as follows:

S = (Σ, I, ξ, i0, Im)
Select i0 ∈ I such that x0 ∈ Xi0 ;
Define ξ : Σ × I → I (pfn) as follows:

For σ ∈ Σ, i ∈ I select j ∈ I such that (i, σ, j)
is a cover triple and let ξ(σ, i) = j;

Define ψ : (Σ × I) → {0, 1, dc} as follows:
For σ ∈ Σ, i ∈ I if there exists x ∈ Xi such that
ψ(σ, x) �= dc then let ψi(σ) = ψ(σ, x);
otherwise let ψi(σ) = dc.

We shall say that S is based on C. In general the reduced supervisor is determined by
selections that in part are arbitrary, but this fact is of no account in what follows.

What follows is a lemma, corollary and theorem, all of which ultimately prove that S is complete and

induces the same behaviour on G as S.

Definition: Weakly L(S/G)-reduced [16, p. 480].

S will be called weakly L(S/G)-reduced if, whenever s, s′ ∈ L(S/G) are equivalent mod
L(S/G), and for some σ ∈ Σ, sσ ∈ L(G) − L(S/G), then ξ(s, x0) = ξ(s′, x0). In
other words, the weakened condition is satisfied if the condition of L(S/G)-reduction is
restricted to those Nerode classes of L(S/G) with the property that some string s′ of the
class has an extension s′σ that belongs to L(G), although not to L(S/G). Strings that
belong to a Nerode class without this property are not required to lead to some state
of S. The states of S that appear in the weakened condition are precisely those where
some σ ∈ Σc must be disabled.

Theorem 2 [16, p. 481].

First generalized quotient structure theorem. Assume that S is a supervisor for
G and that (for simplicity) Xm = X . Let Ŝ be a recognizer for L(S/G). Assume finally
that S is standard and weakly L(S/G)-reduced. . . . Then there exists a control law

ψ̂ : (Σ × X̂) → {0, 1, dc}

such that Ŝ = (Ŝ, ψ̂) is a supervisor for G = (Σ, Σu, Σc, Q, δ, q0, Qm) with the property

L(Ŝ/G) = L(S/G) Lm(Ŝ/G) = Lm(S/G)

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 123

Furthermore, there is a cover Ĉ of Ŝ such that the corresponding reduced supervisior
(based on Ĉ) is isomorphic to S.

This theorem is essentially an alternate version of the quotient structure theorem in [8] from a cover

perspective. The vital difference here is that instead of a unique projection between S and Ŝ there is a

cover Ĉ that produces a supervisor isomorphic to S. It is also less restrictive in that S is only weakly

L(S/G)-reduced, versus fully L(S/G)-reduced.

Theorem 2.5 [16, p. 486].

Second generalized quotient structure theorem. For our second generalization
of the quotient structure theorem of Ramadge and Wonham (1983), we shall drop the
condition on the given supervisor S that it be weakly L(S/G)-reduced, at the expense of
increasing the complexity of the ‘canonical’ supervisor Ŝ from which S is to be obtained
by an appropriate cover.

This section of the paper contains no formal statement of the theorem; rather, it contains a somewhat

informal proof. In this instance, the recognizer Ŝ is defined for L(S/G) using a complex construction

based a recognizer for (L(G) − L(S/G)) ∪ (L(S/G) − (L(G) − L(S/G))). The end result is that S

does not have to be reduced in any of the manners outlined previously for a cover to exist between it

and Ŝ.

Control Covers [13]

Definition: G, SPEC and SIMSUP[13, p. 33].

In supervisory control theory, a discrete-event system to be controlled (or plant) is mod-
elled as a discrete transition structure

G = (Y, Σ, η, y0, Ym)

. . . A nonempty language SPEC ⊆ Σ∗ is represented by a DES SPEC if SPEC is
reachable and

L(SPEC) = SPEC Lm(SPEC) = SPEC

where SPEC is the prefix-closure of SPEC. Let K ⊆ Lm(G)∩SPEC be the supremal

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 124

controllable sublanguage of Lm(G) with respect to SPEC (see, Wonham, 2002)1:

K = sup C (Lm(G) ∩ SPEC)

In case K �= ∅, a supremal supervisor for G (with respect to SPEC) is a DES SUPER
which represents K. . . . Write | G | for the state size of G, etc. Then SUPER can
be readily computed (e.g. using the operator supcon in Wonham, 2002) in time a
polynomial function of | G |, | SPEC |

| SUPER |≤| G || SPEC |

Here the conservative bound is typically representative of the actual size of SUPER.
In applications, engineering intuition may (or may not) suggest that there might exist a
DES, say SIMSUP, such that

| SIMSUP |�| SUPER |

and the following properties hold,

L(G) ∩ L(SIMSUP) = L(SUPER) (1a)

Lm(G) ∩ Lm(SIMSUP) = Lm(SUPER) (1b)

Definition: Control Equivalent [13, p. 33].

Any DES SIMSUP that satisfies (1a,b) is control equivalent to SUPER with respect

to G.

Definition: R [13, p. 35].

Suppose SUPER = (X, Σ, ξ, x0, Xm). Let E : X → 2Σ with

x �→ E(x) := {σ ∈ Σ | ξ(x, σ)!}

be the SUPER-enabled event set at state x ∈ X . Let D : X → 2Σ with

x �→ D(x) := {σ ∈ Σ | ¬ξ(x, σ)! ∧ (∃ s ∈ Σ∗)[ξ(x0, s) = x ∧ η(y0, sσ)!]}
1The bibliographic entry given in [13] for this reference appears as follows:

Wonham, W. M. 2002. Note on Control of Discrete-Event Systems: ECE 1636F/1637S 2002-2003. Systems
Control Group, Dept. of ECE, University of Toronto. URL: www.control.utoronto.ca/people/profs/wonham/
wonham.html

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 125

be the SUPER-disabled event set at state x ∈ X . Let M : X → {true, false} with

x �→ M(x) := true if x ∈ Xm

Finally, let T : X → {true, false} with

x �→ T (x) := true if (∃ s ∈ Σ∗)ξ(x0, s) = x ∧ η(y0, s) ∈ Ym

Let R ⊆ X × X be the binary relation such that for a pair x, x′ ∈ X, (x, x′) ∈ R iff

1. E(x) ∩ D(x′) = E(x′) ∩ D(x) = ∅
2. T (x) = T (x′) ⇒ M(x) = M(x′)

Condition 1 says that for a pair of states (x, x′) in R, the associated enable/disable
control actions should be consistent, namely no event is enabled at x but disabled at x′.
Condition 2 requires that states x, x′ in R be consistently marked either true or false

in SUPER if they are reachable by some strings s, s′ in Lm(G) (in case T (x) = T (x′) =
true), or else if neither is reachable by strings in Lm(G) (i.e., T (x) = T (x′) = false).
In the latter case (1b) shows that in fact M(x) = M(x′) = false. Clearly R is reflexive
and symmetric, but it need not be transitive, and so it is generally not an equivalence
relation.

Of note here is that unlike the supervisor definition in [16], this supervisor is implicitly defined; there is no

explicit feedback map. Hence, E and D are both determined by whether or not transitions are defined,

versus map values of 0, 1 or dc.

Definition 2.1 [13, p. 35].

Recall that a cover of a set X is a family of subsets of X whose union is X . Let I be an
index set. A cover C = {Xi | i ∈ I} of X is a control cover on SUPER if

1. (∀ i ∈ I)Xi �= ∅ ∧ (∀x, x′ ∈ Xi) (x, x′) ∈ R
2. (∀ i ∈ I)(∀σ ∈ Σ)(∃ j ∈ I)[(∀x ∈ Xi) ξ(x, σ)! ⇒ ξ(x, σ) ∈ Xj]

The subsets Xi are the cells of C. A control cover C is a control congruence if C is a
partition on X , namely all Xi are pairwise disjoint.

Condition 1 requires that each cell of C be nonempty and each pair of states in the
same cell should belong to R, namely their associated control action and marked status
should be consistent. Condition 2 states that for each Xi ∈ C and each event σ ∈ Σ,
the set of states that can be reached from any states in Xi by a one-step transition σ is
covered by some Xj ∈ C. Note that the cells of a control cover may overlap: x ∈ X may
belong to more than one cell Xi.

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 126

This definition is nearly identical to that of [16] with two significant exceptions:

1. The explicit requirement for marked states in [16] is handled here by R, which is actually more

rigourous: not only must all states x ∈ Xi where i ∈ Im be marked in the supervisor, but there

must also be a string that leads to x and a marked state in G.

2. Since SUPER is implicitly defined, the enablement/disablement policy outlined in feedback map

for [16] is again handled here by R.

Definition: Induced supervisor [13, p. 36].

Given a control cover C = {Xi | i ∈ I} on SUPER, we construct an induced supervisor

J = (I, Σ, κ, i0, Im)

as follows. Let
i0 = some i ∈ I with x0 ∈ Xi

Im = {i ∈ I | Xi ∩ Xm �= ∅}
κ : I × Σ → I (pfn)

with κ(i, σ) = j provided, for some choice of j ∈ I,

(∃x ∈ Xi) ξ(x, σ) ∈ Xj ∧ (∀x′ ∈ X) [ξ(x′, σ)! ⇒ ξ(x′, σ) ∈ Xj]

Because of overlapping, i0 and κ may not be uniquely determined; here a fixed but
arbitrary instance of J is intended. If C is a control congruence then J is uniquely
determined by C.

The supervisor induced by a control cover is nearly identical to that induced by a standard cover in [16].

Of particular note is the fact that the selection of i0 is arbitrary in both cases, yet the induced agents

remain control-equivalent to the original supervisors. Although it may appear that the induced supervisor

here is not as rigorous in its requirement for marked states (Xi ∩ Xm �= ∅) as in [16], remember that

all states x, x′ ∈ Xi must also exist as pairs in R. Hence, all subsets in Im are only composed of those

states in SUPER that have identical marking actions.

Proposition 2.1 [13, p. 36].

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 127

J is control equivalent to SUPER with respect to G.

Definition: Normal supervisors [13, p. 36].

A DES SIMSUP = (Z, Σ, ζ, z0, Zm) is normal with respect to SUPER if

1. (∀ z ∈ Z)(∃ s ∈ L(SUPER)) ζ(z0, s) = z

2. (∀ z, z′ ∈ Z)(∀σ ∈ Σ) [ζ(z, σ) = z′ ⇒ (∃ s ∈ Σ∗) [sσ ∈ L(SUPER) ∧ ζ(z0, s) = z]]

3. (∀ z ∈ Zm)(∃ s ∈ Lm(SUPER)) ζ(z0, s) = z

Thus, SIMSUP is normal if (1) its states are all reachable and (2) its transitions [sic]
all taken, under strings in L(SUPER), namely no state or transition in SIMSUP is
superfluous; (3) each marked state in SIMSUP is reachable by at least one string that is
marked by SUPER, namely no state in SIMSUP is marked unnecessarily. If SIMSUP
is control equivalent to SUPER with respect to G but not normal, then simply deleting
all superfluous states and transitions, and converting all unnecessarily marked states into
unmarked states in SIMSUP, will render SIMSUP normal, while preserving the control
equivalence between SIMSUP and SUPER. Normalizing SIMSUP cannot increase
its state size, so a minimal normal supervisor must also be a minimal supervisor. From
now on we therefore consider only reduction to normal supervisors.

Requirements (1) and (3) are simply applications of K-accessibility from [16] to SIMSUP using

L(SUPER) and Lm(SUPER). Requirement (2) is a more formal statement and application of strong

K-accessibility from the same paper; namely that every state and transition in SIMSUP must be visited

or taken by some string in L(SUPER). While (2) may seem somewhat redundant in the face of (1)

and (3), consider that a state may have self-transitions defined or that two states may have multiple

transitions for different events between them.

In general, the definitions of “normal” here and in [16] differ greatly in that

1. SIMSUP and SUPER are implicitly defined, and thus have no feedback map.

2. A normal supervisor in [16] is defined relative to the plant, whereas a normal supervisor here is

defined relative to a control equivalent supervisor.

Definition 2.3 [13, p. 37].

Let
GA = (XA, Σ, ξA, Ax,0, AX,m)

APPENDIX A. SUPERVISOR REDUCTION: A QUICK REFERENCE GUIDE 128

GB = (XB , Σ, ξB, Bx,0, BX,m)

GB is a DES-epimorphic image of GA under DES-epimorphism θ : XA → XB if

1. θ : XA → XB is surjective

2. θ(Ax,0) = Bx,0 and θ(AX,m) = BX,m

3. (∀x ∈ XA)(∀σ ∈ Σ) ξA(x, σ)! ⇒ [ξB(θ(x), σ)! ∧ ξB(θ(x), σ) = θ(ξA(x, σ))]

4. (∀x ∈ XB)(∀σ ∈ Σ) ξB(x, σ)! ⇒ [(∃x′ ∈ XA) ξA(x′, σ)! ∧ θ(x′) = x]

In particular, GB is DES-isomorphic to GA if θ : XA → XB is bijective.

Of interest here is the striking similarity between the definitions of DES-epimorphism and projections in

[8]. In fact, the first two requirements are identical. However, the manner in which θ is preserved across

the transition functions is different from π; while [8] simply requires that ξ̂(σ, π(x)) = π ◦ ξ(σ, x) where

ξ(σ, x)!, the definition here looks at it from both directions. Specifically, (3) states that any transition

(x, σ, x′) in GA must be defined in GB as (θ(x), σ, θ(x′)). In the other direction, (4) requires that any

transition (y, σ, y′) in GB must be defined at least once in GA as (x, σ, x′) where θ(x) = y, but not

necessarily for all such x that map to y.

Theorem 2.1 [13, p. 37].

Generalized quotient theorem. Let SUPER be a supremal supervisor for G and let

SIMSUP be any normal supervisor with respect to SUPER that is control-equivalent

to SUPER with respect to G. Then there exists a control cover C on SUPER for

which some induced supervisor J is DES-isomorphic to SIMSUP.

