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Abstract

Discrete-Event Systems control theory provides automated control solutions for sys-

tems that are characterized by asynchronous and instantaneous changes of state;

for example, a cluster of machines that each may be “idle”, “busy”, or “broken”.

Goals expressed in the language of this theory permit the automatic generation of

control solutions which guarantee that illegal behaviour will never occur (within the

assumptions of the framework). Despite intensive research on and expansion of the

theoretical aspects of this field, a limited amount of research has been reported on its

implementation and integration into existing systems.

This thesis focuses on identifying classes of systems upon which the theory may be

applied and isolates and examines the implementation issues that arise. Methodology

for the implementation of the theory is provided and supported by concrete examples.

A software suite with an emphasis on human-computer interaction was developed to

facilitate the application of the theory. The work described herein constitutes some of

the first steps in making the use of Discrete-Event Systems control theory accessible

outside of the academic realm.

i



Acknowledgments

I would like to thank my supervisor, Professor Karen Rudie, for her insight and guid-

ance. Without her, I would never have ventured down this path. To Lenko Grigorov

I would like to extend my thanks for his advice and contribution throughout my re-

search and especially in the development of the IDES software. For Miss Amanda

Eddington, I am infinitely grateful; without her, I would be lost in the void. I would

also like to respectfully acknowledge the financial support I received from NSERC,

the Department of Electrical and Computer Engineering at Queen’s University, and

Professor Karen Rudie. Finally I would like to thank the members of my defense

committee for their essential contribution: A. Afsahi, A. Bakhshai, H. Meijer, K.S.

Novakowski and K. Rudie.

ii



Contents

Abstract i

Acknowledgments ii

Contents iii

List of Tables vii

List of Figures viii

Glossary 1

1 Introduction 5
1.1 Opening Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Organization of this Document . . . . . . . . . . . . . . . . . . . . . 10
1.4 Conventions in this Document . . . . . . . . . . . . . . . . . . . . . . 11

2 Background Theory 12
2.1 An Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Formal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 An Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 A Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 A Legal Specification . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 An Implicit Supervisor . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 An Explicit Supervisor . . . . . . . . . . . . . . . . . . . . . . 21
2.2.8 Reduced State Models . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Implications of Primary Assumptions . . . . . . . . . . . . . . . . . . 26
2.4 Overview of Illustrative Systems . . . . . . . . . . . . . . . . . . . . . 30

iii



3 Related Work 33
3.1 Desco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 LEGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Prometheus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The Problem of Implementation 43
4.1 What is an Event? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 What is a Control Solution? . . . . . . . . . . . . . . . . . . . . . . . 47

5 Analysis of a LEGO Factory 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Summary of the Assembly Line . . . . . . . . . . . . . . . . . . . . . 51
5.3 A Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Attempt and Complication . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 The Plant And Its Events . . . . . . . . . . . . . . . . . . . . 54
5.4.2 The Legal Specification . . . . . . . . . . . . . . . . . . . . . . 59
5.4.3 A Control Solution . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Alternate Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Resource Management 76
6.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Plausible Implementations . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Automatic Solutions . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Implementation Options . . . . . . . . . . . . . . . . . . . . . 84

6.3 The Plant Myth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Initiated-Event Methodology 90
7.1 Vending Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.1.3 Monolithic Supervision . . . . . . . . . . . . . . . . . . . . . . 95
7.1.4 Distributed Supervision . . . . . . . . . . . . . . . . . . . . . 99
7.1.5 Integrated Supervision . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Application to Other Systems . . . . . . . . . . . . . . . . . . . . . . 106
7.2.1 Resource Management . . . . . . . . . . . . . . . . . . . . . . 106
7.2.2 LEGO Transporter . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Classifications 115
8.1 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Design Ideologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

iv



8.3.1 Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.3.2 Single Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3.3 Initiated-Event . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Software 130
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.1.1 Relevant Packages . . . . . . . . . . . . . . . . . . . . . . . . 131
9.2 IDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.1 Implementation Details and Availability . . . . . . . . . . . . 140
9.2.2 Development Processes . . . . . . . . . . . . . . . . . . . . . . 143

9.3 Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10 Conclusions and Future Work 149
10.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.1.1 IDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 154

A IDES Software User’s Guide 161
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 The Toolbars and Main Menu . . . . . . . . . . . . . . . . . . . . . . 162

A.2.1 New System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2.2 Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2.3 Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2.4 Save As... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.2.5 Export To LATEX . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.2.6 Export To GIF . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.2.7 Export To PNG . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.2.8 Undo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.2.9 Redo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.2.10 Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.2.11 Paste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.2.12 Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.2.13 Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.2.14 Start Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.2.15 Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.2.16 Grid Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2.17 Show All Edges . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2.18 Show All Labels . . . . . . . . . . . . . . . . . . . . . . . . . . 170
A.2.19 Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

v



A.2.20 Create Nodes or Edges . . . . . . . . . . . . . . . . . . . . . . 171
A.2.21 Modify Nodes, Edges or Labels . . . . . . . . . . . . . . . . . 171
A.2.22 Print Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.2.23 Move Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.2.24 The File Menu . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.2.25 The Edit Menu . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.2.26 The Graph Menu . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.2.27 The Options Menu . . . . . . . . . . . . . . . . . . . . . . . . 174
A.2.28 The Help Menu . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.3 Drawing a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.4 Modifying a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.5 Right-Click Popup Menus . . . . . . . . . . . . . . . . . . . . . . . . 183

A.5.1 Inside the Bounding Box . . . . . . . . . . . . . . . . . . . . . 183
A.5.2 Outside a Bounding Box . . . . . . . . . . . . . . . . . . . . . 184
A.5.3 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.5.4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.6 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.6.1 Node Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.6.2 Edge Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.7 Animated Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.8 IDES file Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B A Vending Machine 200
B.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
B.2 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
B.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C Abstract Vending Machine 226

vi



List of Tables

5.1 Complete definition of events in the transporter model. . . . . . . . . 57

7.1 Events in the vending machine. . . . . . . . . . . . . . . . . . . . . . 93
7.2 System variables of the vending machine. . . . . . . . . . . . . . . . . 102
7.3 Events impact on system variables. . . . . . . . . . . . . . . . . . . . 102
7.4 Events in the switches and locks resource management scenario. . . . 107
7.5 System variables of the resource management system. . . . . . . . . . 108
7.6 Events impact on system variables of the resource management system. 108
7.7 Events for a reusable transporter. . . . . . . . . . . . . . . . . . . . . 111
7.8 System Variables of the transporter component. . . . . . . . . . . . . 112
7.9 Events impact on system variables of the transporter component. . . 112

B.1 The event space of the plant. . . . . . . . . . . . . . . . . . . . . . . . 204

vii



List of Figures

2.1 The relationship between plant and supervisor denoted by S /G . . . . 13
2.2 Before reduction: FSM1, FSM2, and FSM1 || FSM2 . . . . . . . . . . 22
2.3 Valid Reduction: FSM1(reduced), FSM2, and FSM1(reduced) || FSM2 23
2.4 Invalid Reduction: FSM1(reduced), FSM2, and FSM1(reduced) || FSM2 24
2.5 A representation of the classical cat and mouse maze. . . . . . . . . . 31

3.1 The relationship between plant and supervisor in the Prometheus project 41

5.1 An abstract view of a transporter with a payload at point A. . . . . . 53
5.2 The plant model used to represent the transporter. . . . . . . . . . . 55
5.3 The plant model for the transporter that expresses passing beyond

points A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 The construction of the safety specification. . . . . . . . . . . . . . . 60
5.5 The safety specification for the transporter. . . . . . . . . . . . . . . 61
5.6 The progress specification for the transporter. . . . . . . . . . . . . . 63
5.7 The legal specification for the transporter. . . . . . . . . . . . . . . . 64
5.8 Maximally permissive supervisor. . . . . . . . . . . . . . . . . . . . . 65
5.9 Reduced-state supervisor. . . . . . . . . . . . . . . . . . . . . . . . . 65
5.10 Supervised plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.11 Reduced supervised plant. . . . . . . . . . . . . . . . . . . . . . . . . 67
5.12 Safety imposed by removing events from the plant. . . . . . . . . . . 71
5.13 Adding progress to the legal specification. . . . . . . . . . . . . . . . 72
5.14 The synchronous product of safety and progress. . . . . . . . . . . . . 72
5.15 The legal specification, supervisor, and supervised plant. . . . . . . . 73

6.1 Behaviour of a user and a resource. . . . . . . . . . . . . . . . . . . . 77
6.2 Behaviour of two users and a single resource. . . . . . . . . . . . . . . 78
6.3 Legal behaviour of two users with a single resource. . . . . . . . . . . 79
6.4 Reduced-state supervisor of two users with a single resource. . . . . . 80
6.5 Two human users and a resource with a human supervisor. . . . . . . 81
6.6 Two human users and a resource with a machine supervisor. . . . . . 82
6.7 Complete behaviour of a user and a resource. . . . . . . . . . . . . . . 83

viii



6.8 Complete legal behaviour of two users with a single resource. . . . . . 86
6.9 Unrestricted plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.10 Restricted plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1 A representation of a simple vending machine. . . . . . . . . . . . . . 92
7.2 Rule: pop costs two tokens. . . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Rule: the machine should not steal money. . . . . . . . . . . . . . . . 94
7.4 The complete legal specification (via synchronous product) which also

serves as an implicit supervisor. . . . . . . . . . . . . . . . . . . . . . 98
7.5 Two human users and a resource with a machine supervisor. . . . . . 107
7.6 Resource management plant model. . . . . . . . . . . . . . . . . . . . 108
7.7 Rule: mutual exclusion. . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.8 An abstract view of a transporter with a payload at point A. . . . . . 110
7.9 Plant: the payload can’t move to the position it is already at. . . . . 112

9.1 Responsiveness versus graph size in ms. . . . . . . . . . . . . . . . . . 142
9.2 Responsiveness versus graph size in frames/s. . . . . . . . . . . . . . 142

A.1 New System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.2 Open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.3 Save. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.4 Save as.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.5 Export to LaTeX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
A.6 Export to GIF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.7 Export to PNG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.8 Undo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.9 Redo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.10 Copy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.11 Paste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.12 Delete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.13 Connect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.14 Trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.15 Alpha. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.16 Grid display and selection. . . . . . . . . . . . . . . . . . . . . . . . . 169
A.17 Show all edges toggle button. . . . . . . . . . . . . . . . . . . . . . . 169
A.18 Show all labels toggle button. . . . . . . . . . . . . . . . . . . . . . . 170
A.19 Zoom canvas tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
A.20 Zoomed out by one step. . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.21 Zoomed in by one step. . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.22 Create nodes or edges canvas tool. . . . . . . . . . . . . . . . . . . . . 171
A.23 Modify nodes, edges or labels canvas tool. . . . . . . . . . . . . . . . 171

ix



A.24 Print area canvas tool – selecting, defining and doving. . . . . . . . . 172
A.25 Move graph canvas tool – selecting and moving. . . . . . . . . . . . . 173
A.26 File menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.27 Edit menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.28 Graph menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.29 Options menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
A.30 Help menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.31 Creating a new node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.32 Creating a new edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.33 An example graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.34 Disconnecting an edge. . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.35 Respositioning a node. . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.36 Customizing an edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.37 Customizing a self loop. . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.38 Selecting a group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.39 Moving a group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.40 Inside the bounding box. . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.41 Outside the bounding box. . . . . . . . . . . . . . . . . . . . . . . . . 184
A.42 Edge right-click popup menu. . . . . . . . . . . . . . . . . . . . . . . 185
A.43 Node right-click popup menu. . . . . . . . . . . . . . . . . . . . . . . 187
A.44 Adding a label to a node. . . . . . . . . . . . . . . . . . . . . . . . . 189
A.45 The resulting Glyph label. . . . . . . . . . . . . . . . . . . . . . . . . 189
A.46 The resulting LaTeX label. . . . . . . . . . . . . . . . . . . . . . . . . 190
A.47 A complex LaTeX example. . . . . . . . . . . . . . . . . . . . . . . . 190
A.48 The graph specifications tab. . . . . . . . . . . . . . . . . . . . . . . . 191
A.49 The edge label chooser in LaTeX mode. . . . . . . . . . . . . . . . . . 191
A.50 An uncontrollable transition. . . . . . . . . . . . . . . . . . . . . . . . 192
A.51 The edge label chooser in glyph mode. . . . . . . . . . . . . . . . . . 192
A.52 Graph specifications tab containing a manual trace value. . . . . . . . 193
A.53 An initiated trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.54 A trace in mid animation. . . . . . . . . . . . . . . . . . . . . . . . . 194

B.1 A photograph of the vending machine model. . . . . . . . . . . . . . . 201
B.2 The circuit diagram for the vending machine model. . . . . . . . . . . 202
B.3 The plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.4 The legal language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

x



Glossary

Alphabet — A set of symbols that act as labels for events within a plant. Page 16.

Centralized control — Classic closed-loop control with a single supervisor and a

single plant. Page 19.

Closed-loop — The standard connection between supervisor and plant. The plant

generates events from Σ which are accepted by the supervisor which, in

turn, generates disablement commands which are accepted by the plant,

thus forming a closed loop. Page 14.

Controllable — 1. When in reference to a language with respect to a plant, it

implies that there exists a supervisor that can achieve the language

when acting on the plant. 2. When in reference to an event or an

element of an alphabet, it implies that some supervisor can prevent the

event from occurring. Page 20.

Correct — The correctness of a structure depends only on the data upon which it

is founded. An automaton’s correctness is dependent on the event set Σ.

A plant is correct if all strings s ∈ Σ∗ representing “possible” behaviour

are also in L(G ). A legal specification is correct if no strings that both

1
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can occur (s ∈ L(G )) and represent “undesirable” behaviour are in L(L ).

Page 18.

Decentralized control — Closed-loop control of a single plant by multiple super-

visors. This often employs partial observation where not all supervisors

are notified of all events. The standard theory employs disablement by

disjunction (disabled if any supervisor disables), although disablement by

conjunction (disabled if all supervisors disable) has also been explored.

Page 19.

DES control theory — A generalized and unifying theoretical framework for the

control of discrete-event systems developed by P.J. Ramadge and W.M.

Wonham and later extended by many other researchers. Page 7.

Event — A spontaneous, asynchronous and instantaneous occurrence within a

plant. Page 6.

Full observation — Classic closed-loop control where the supervisor is notified of all

events (from Σ) occurring within the plant. Page 19.

Generated — The language generated by an automaton is the set of all strings that

can be created starting at the automaton’s initial state and obeying its

transition function. Page 16.

Language — A collection of words or strings. Page 16.

Legal — The subset of a system’s possible behaviour that is desirable or permit-

ted. Page 6.
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Marked — The language marked by an automation is the subset of the generated

language where each string ends at a marked state. This is commonly used

to indicate completed tasks, but could be used to arbitrarily partition the

generated language. Page 16.

Maximally permissive supervisor — A Supervisor that when acting on a plant achieves

the largest possible subset of the legal specification. Page 21.

Obedient component — A component that can be trusted to behave according to a

predefined protocol. Page 84.

Partial observation — This variant considers the situation where a supervisor is not

informed of all events (from Σ) generated by the plant. Page 19.

Plant — A model representing all behaviour of which a system is capable.

Page 6.

Shuffle — The concurrent behaviour of two automata with disjoint alphabets

Page 18.

State-based communication — Communication of a binary message where the state

of the medium of communication is parallel to the state of the message,

for example: a light that is lit for the duration of dinner time (unlit = it

is not dinner time). Page 84.

String — A sequence of elements from an alphabet Σ. This term is interchange-

able with word. Page 16.

Supervised plant — The resulting behaviour of a plant restricted by a supervisor

indicated by S /G . For an implicit supervisor S with L(S ) ⊆ L(G ),
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the supervised plant is equivalent to S , otherwise it is the synchronous

product S ||G Page 14.

Supervisor — An entity whose purpose is to restrict the behaviour of a plant such

that no behaviour outside of the legal specification occurs. Page 6.

Supremal controllable sublanguage — The largest legal specification that both gen-

erates a sublanguage of the language generated by the desired legal speci-

fication and is found to be controllable with respect to the plant. Page 21.

Synchronous product — This operation is denoted by || and expresses the result of

two automata functioning jointly, where events from the shared alphabet

are only allowed to occur when both automata execute them simultane-

ously, and events not contained in both alphabets are always allowed to

occur whenever they are defined in one of the automata. Page 18.

Transient communication — Communication of a binary message where the state of

the medium of communication is not parallel to the state of the message,

for example: a bell that is rung as the beginning of dinner time (not ringing

6= it is not dinner time). Page 84.

Word — A sequence of elements from an alphabet Σ. This term is interchange-

able with string. Page 16.



Chapter 1

Introduction

1.1 Opening Remarks

This dissertation is concerned with the application, implementation and integration

of discrete-event systems control theory. It is necessary then to have a clear under-

standing of what is meant by a discrete-event system (DES). Let us first note that

functional reality is limited to that which is observed; therefore, since we are able to

sample any system either continuously or discretely, every system can be considered

either continuous or discrete. For the purposes of this work, it is most reasonable to

define discrete-event systems as those systems which are best or at least beneficially

modeled as discrete-event. This, of course, begs the question of how to determine

how closely a given system meets this criteria, and it is one of the issues investigated

in this dissertation.

In the past century, the complexity of human-made systems has greatly increased.

In recent decades the advent and progress of the digital computer and ever-increasing

5
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communication networks have been tightly integrated with this growth. The main-

stream transition from analog to digital technologies provides strong motivation for

the discretization of systems. In the past, mathematics and modeling techniques

have been used to interface with processes governed by the laws of nature in systems

and control engineering. For many problems in the new digital environment, these

techniques are less adequate [12].

There exist many approaches to the modeling of discrete-event systems; these in-

clude Boolean models [3], Petri nets [36] and real-time temporal logic [31]. In the

1980s, Ramadge and Wonham published a generalized and unifying theory for the

control of discrete-event systems [37, 47, 38]. This abstract framework is based upon

automata [24] and has gained considerable popularity in the academic environment.

In it, a system is modeled (by a human) as an automaton and called the plant. The

plant expresses all the behaviour that is possible. Next a set of goals is generated

(by a human) as an automaton and called the legal specification. The legal speci-

fication expresses the subset of possible behaviour that should be allowed to occur.

Then, a third automaton called the supervisor can be automatically generated (us-

ing software) from the plant and legal specification. The plant is sometimes termed a

generator because (at runtime) it will spontaneously generate events (which are the

output symbols of the automaton). The supervisor automaton observes the events

generated by the plant, and these serve as its input. Hence a supervisor is sometimes

termed an acceptor. The supervisor automaton does not generate events. At any

given state, the supervisor implicitly contains disablement information (in the form

of events from the automaton’s alphabet that are not defined in that state). If the

plant observes and obeys this disablement information, its behaviour will be restricted
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such that it will never generate sequences of events that are not contained within the

legal specification. The core theory therefore allows the automatic generation of a

supervisor that may achieve arbitrary goals in an arbitrary system.

The abstract framework proposed by Ramadge and Wonham has been expanded

to included concepts such as observability [32, 16], modular construction [48], de-

centralized control [33, 16, 43, 42], communication between controllers [40], dynamic

models [15, 22, 23], and models that include the concept of time [7, 41]. Since there

has been considerable interest and advancement of this framework it provides a rea-

sonable alternative for any individual who wishes to implement a real system modeled

as a DES. Henceforth I will use the term DES control theory to refer to the frame-

work developed by Ramadge and Wonham and its various extensions. For those

unfamiliar with the framework, complete definitions for its various components are

given in Chapter 2.

Unfortunately, there exists a real gap between the academic and the industrial

application of DES control theory. The researchers of [28] state that “despite intensive

research on the theoretical aspects ... a limited amount of research has been reported

on the implementation of DES-based supervisory controllers”. That said, several

unconnected investigations into implementation have occurred. The works of [29,

4, 13, 34, 1] are all reviewed in Chapter 3, and other relevant investigations into

application of DES control theory include [6, 8, 9, 41].

The investigation into application is further motivated by the fact that DES

control theory has limitations and is best suited only for a subset of systems that

one might conveniently model as discrete-event. It is therefore necessary to have a
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methodology first to determine if DES control theory is a good model for a given prob-

lem, and second to map the real world application into the model, and the model’s

solution back to the real world. Finally, in order to actually use the theory with

real systems, a software suite is required to assist in all phases of design, automatic

generation, testing and implementation. These concerns are the primary focus of this

thesis.

This work will confirm that DES control theory is most amenable to pre-existing

systems that function in a non-optimal way and admit control. It will also be con-

firmed that the best performance can be achieved when high-level control is required

and the specification does not imply the solution. Despite the disadvantages associ-

ated with systems that do not meet these criteria, it will be shown that the theory can

still be advantageously applied. Specifically, several methodologies will be provided

for systems in which a portion of the plant and the entire supervisory entity exist

within an implementation device such as a microcontroller. This work demonstrates

how DES control theory may be applied to a wide variety of systems and how these

systems should be approached.

In analysis of the currently available software tools, it will be demonstrated that a

real need exists for usable and intuitive software. As a result, the Integrated Discrete-

Event Systems (IDES) software was developed, which functions as an effective inter-

face for specifying DES components in a manner analogous to pen and paper drawing,

and demonstrates the integrated use of DES control theory with custom hardware

components for research and pedagogical purposes. To date, other academic tools

(such as CTCT [49], UMDES [27] and GIDDES [39]) have been unconcerned with

integrating hardware and software for control and testing purposes. Hence, the IDES
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software is unique in its attempt to provide an interface for all of modeling, test-

ing and control. The primary goal in the development of the IDES software was to

achieve an interface analogous to pen and paper drawing and to export the defined

components to various graphical formats. The software solidly achieves these require-

ments; however, it could be made vastly more powerful. A standardized and usable

conglomerate design tool is necessary for the application of DES control theory to be

feasible, and IDES could serve as a starting point for such a tool.

1.2 Contributions

The contributions of this work are as follows:

• We provide a means of classifying systems and determining their suitability as
candidates for DES control theory and appropriate methodologies for its appli-
cation with each class of systems. Clear application methodologies are necessary
for low-level, programmable systems because there is no straightforward means
to apply DES control theory to such systems.

• Concrete examples with a PIC16F84 microcontroller demonstrate beginning–
to–end application of the theory including automatic machine code generation.
In the majority of the related work, in the literature, insufficient information is
provided for the reproduction of the modeling exercise.

• We introduce (in Chapter 7) the Initiated-Event Methodology, which is a new
means of approaching the application of DES control theory to low-level, pro-
grammable systems. In it, three different solutions are provided: monolithic,
modular, and integrated. Suggestions for automatic code generation for all
three are also provided. The integrated variant is a very different approach to
the implementation of the theory and can realize data and runtime complexity
advantages over the other methods.

• The IDES Software was developed. It is a robust and usable software modeling
and pedagogical tool that is able to output graphs for use in research docu-
ments and interface with real systems for demonstration of DES control theory
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principles. It could serve as a starting point for a standardized and usable
conglomerate design tool for many facets of DES control theory.

1.3 Organization of this Document

This thesis is organized as follows. In Chapter 2, the background theory is laid out

in detail, and obvious implementations of the theory are discussed. In Chapter 3, a

variety of related work is examined and the relevant details are extracted. Chapter

4 introduces the problem of implementation. Following this, in Chapters 5, 6 and 7,

three disparate systems are closely examined and methodologies are proposed. The

analysis demonstrates that the theory is most amenable to existing systems with

existing high level control and non-optimal behaviour. Complications arise when

modeling systems that are themselves in the design stage. It is found that the nature

of the supervisor impacts the nature of the plant and vice versa. This is found to be

most striking in the definition of events. Integration of the plant and supervisor is

proposed as a means of improving the efficiency of some systems.

In consideration of the exposed issues, system properties, means of classification

and solution methodologies are summarized in Chapter 8. Having this established,

the focus moves to the actual act of modeling and the tools available. Chapter 9

details the development and use of Integrated Discrete-Event Systems software both

as a modeling and as a pedagogical tool. The tool is evaluated and a case study of

its use is provided. Finally, Chapter 10 summarizes and concludes the work.
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1.4 Conventions in this Document

Several layout conventions have been used in this document. Finite-state machines

are represented as directed graphs consisting of circles and arrows. In these diagrams,

a dashed line is used to represent an uncontrollable transition, while a solid line is

used to represent a controllable transition. In the case where both a controllable

event and an uncontrollable event are listed on the same arc, it is drawn as a dashed

line. Also in these diagrams, the initial state is denoted by a single, short, incoming

arrow, and marked states are denoted by a double line along the circumference of the

circle.

When discussing events they are displayed in “quoted italics”. Also, in this text

several terms are displayed in bold font, which implies that these terms are included

in the glossary at the end of this document.



Chapter 2

Background Theory

2.1 An Informal Overview

In the original paper on DES control theory [37], Ramadge and Wonham state

In this paper we study the control of a class of systems broadly known

as discrete-event processes. The principal features of such processes are

that they are discrete, asynchronous and (possibly) nondeterministic. Typ-

ical instances include computer networks, flexible manufacturing systems,

and the start-up and shut-down procedures of industrial plants.

The framework they developed employs notation and standard ideas from automata

and language theory [24]. First, they define all the possible behaviour of the system as

the plant and model this as an automaton, which can equivalently be expressed as a

directed graph. It is assumed that some part of all possible behaviour is undesirable.

It is the responsibility of the human modeler to accurately define the plant and the

12
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subset of its behaviour that is legal. The legal specification is also represented as an

automaton.

Given a plant and a legal specification, DES control theory can automatically

synthesize a supervisor which provides information on how to prevent illegal things

from occurring. This is a core benefit of DES control theory. The entire purpose

of the theory is to automatically produce a correct control solution (the supervisor)

when given a correct description of the problem (the plant and legal specification).

The alternative is to have a human generate a control solution for a given problem in

an ad hoc manner which (considering the current and increasing complexity of real

discrete-event systems) is difficult and error prone.

Once synthesized, the supervisor may also be expressed as an automaton and, in

order to impose control, must have been synthesized before runtime. (Note, several

branches of DES control theory have investigated dynamically generating or replacing

supervisors, but that work is beyond the scope of this investigation). At runtime,

SUPERVISOR

PLANT

Events
Disablement
Commands

Figure 2.1: The relationship between plant
and supervisor denoted by S /G .

both the plant and the supervisor start at

their initial states. The online relation-

ship between plant and supervisor is demon-

strated in Figure 2.1.

As events occur within the plant the

supervisor is notified (in an unspecified

manner) and synchronously changes state.

For this reason, the plant and supervisor

are sometimes respectively termed genera-

tor and acceptor. At each state the supervisor communicates to the plant (in an
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unspecified manner) a list of events that are disabled (i.e., should not be generated)

thereby restricting the behaviour of the plant. The behaviour resulting from the

imposition of this control can be expressed by another automaton known as the su-

pervised plant or the closed-loop behaviour.

It is useful to present a simple example to see how this framework can map to the

real world and how control might be implemented. The following is a summary of

the example used in [30].

Consider the owner of a factory. In this example the owner is the supervisor and

the factory, its workers, its interaction with the marketplace and with product supply

and transport, etcetera are encompassed by the plant. One may view the plant as

a discrete-event system. Example events include the purchase of new equipment,

the hiring of new employees, the initiation of a new product line, the signing of a

business agreement, the unexpected failure of equipment, a union strike, etcetera.

Some of these things can be controlled by the supervisor and some cannot. The

owner also knows of certain scenarios that are undesirable and are understood as

illegal sequences of events within the plant. The problem of deciding which events

to disallow at any given state in order to prevent illegal sequences of events from

occurring is solved by DES control theory.

It is important to realize that DES control theory implicitly assumes that the

plant exists independent of any set of goals or even the existence of a supervisor;

furthermore, in this framework the supervisor has no means of initiating events. All

events are generated independently by the plant. In this example, the supervisor

cannot spontaneously decide that a new machine should be purchased. Instead, an

employee must bring the supervisor a proposal for the purchase of new equipment,
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and the supervisor must then allow or disallow the proposal.

Since the supervisor may only act by disablement, it cannot guarantee liveness.

It can prevent deadlock, but since the framework does not incorporate the concept

of time, and since the supervisor cannot generate events, it is quite possible for the

plant to remain in the same state indefinitely.

A naive implementation of DES control theory for the factory example is obvious.

The owner could hire a DES control theory professional who would model the system

as a plant G and based on the verbal goals of the owner determine a maximally per-

missive implicit supervisor S which generates the supremal controllable sublanguage.

This supervisor would be provided to the owner as a directed graph drawn on paper

with an associated list describing what each transition meant. The owner would put

a token on the start node of the graph, and whenever proposals were delivered, if

the relevant outgoing transition was defined, the owner would grant approval and

reposition the token. This implementation is unwieldy, but feasible.

Solutions produced by DES control theory are “correct by design” but depend on

the initial models generated by humans. How a plant actually corresponds to the real

system, how events map to actual occurrences in the plant, how controllable events

and their disablement actually translate to the real system are all determined by a

human and are error prone. Furthermore, the language of DES control theory does

not express when and why events occur, only the order in which they occur. This

can impede the realization of certain objectives.
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2.2 Formal Definitions

The material in this section is adapted from [12].

2.2.1 An Automaton

• An automaton A is defined as a five tuple (Q, Σ, δ, q0, Qm).

• Q is the set of states in A .

• Σ is the alphabet or set of output symbols of A and is always assumed to
be finite. In the context of DES control theory, these elements correspond to
logical events in some system.

• δ is the transition function of A and is defined from Σ × Q to Q. In general,
δ is only a partial function, meaning that δ(·, q) is only defined for some subset
of Σ for any fixed q ∈ Q.

• q0 ∈ Q is the initial state of A .

• Qm ⊆ Q is the set of marked states which serves only to denote some states as
special in some way.

• A is equivalent to a directed graph with Q as the set of nodes and with edges
defined by triplets in the form (start node, edge, end node) according to the
rule (q, σ, δ(σ, q)) providing δ(σ, q) is defined.

• Σ∗ is the set of all finite strings s of elements of Σ. Note that s may represent
a zero length string denoted by ε. Note also that strings are often called words
and groups of strings are called languages.

• The transition function δ can easily be extended to Σ∗ ×Q → Q by observing
that for s ∈ Σ∗, δ(sσ, q) can be computed via δ(σ, δ(s, q)) down to the base case
which is just the transition function from the initial state.

• The language generated by A is all possible sequences of events that can occur
and is denoted by L(A ) = {w : w ∈ Σ∗ and δ(w, q0) is defined}.

• The language marked by A is all possible sequences of events that end at a
marked state and is denoted by Lm(A ) = {w : w ∈ L(G ) and δ(w, q0) ∈ Qm}.
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2.2.2 Operations

Notation

The prefix closure of a language K is denoted by an over-bar as in K.

Equivalence

Two automata A1 and A2 are equivalent if they generate and mark the same lan-

guages. That is, L(A1) = L(A2) and Lm(A1) = Lm(A2).

Accessibility

The definition of an automaton does not prevent the existence of states and transitions

that cannot be reached from the start state. The accessible component of A , denoted

by Ac(A ) is defined to be

Ac(A ) = (Qac, Σ, δac, q0, Qac,m)

where

Qac = {q : ∃s ∈ Σ∗, δ(s, q0) = q},

Qac,m = Qac ∩Qm,

δac = δ|(Σ×Qac).

Blocking

An automaton A is blocking if it can reach a non-marked state from which no marked

state is reachable, i.e., A is blocking if L(A ) 6= Lm(A ). Conversely, A is nonblocking

if L(A ) = Lm(A ).
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Synchronous Product

This synchronous product operation is denoted by || and expresses the result of the

automata functioning jointly, where events from the shared alphabet are only allowed

to occur when both automata execute them simultaneously, and events not contained

in both alphabets are always allowed to occur whenever they are defined in one of

the automata. Formally,

if A1 = (Q1, Σ1, δ1, q01 , Qm1) and A2 = (Q2, Σ2, δ2, q02 , Qm2), then

A1||A2 = Ac((Q1 ×Q2, Σ1 ∪ Σ2, δ, (q01 , q02), Qm1 ×Qm2))

where

δ(σ, (q1, q2)) =











































(δ1(σ, q1), q2) if σ ∈ Σ1\Σ2 and δ1(σ, q1) is defined

(q1, δ2(σ, q2)) if σ ∈ Σ2\Σ1 and δ2(σ, q2) is defined

(δ1(σ, q1), δ2(σ, q2)) if σ ∈ Σ1 ∩Σ2 and δ1(σ, q1) is defined
and δ2(σ, q2) is defined

undefined otherwise

Note that if Σ1 = Σ2 then A1||A2 yields an automaton that recognizes the in-

tersection of the languages recognized by A1 and A2. If Σ1 ∩ Σ2 = ∅, we call the

synchronous product the shuffle.

2.2.3 A Plant

• A plant G is represented by an automaton (Q, Σ, δ, q0, Qm) and indicates all the
behaviour of which a system is capable.

• A plant is correct if the real system it represents never exhibits behaviour that
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could be described as a string s /∈ L(G ) were s ∈ Σ∗.

2.2.4 Events

• Σ is a set of events within a system, such as: “the mouse moves from room
one to room two”, “the bank vault door opens”, “a motor begins spinning in the
forward direction”, etcetera.

• Events are considered to occur spontaneously, asynchronously and instanta-
neously; however, they are not required to be atomic and thereby provide fur-
ther abstraction. For example, the opening of a bank vault door may in fact be
a series of smaller events.

• Σ is partitioned into disjoint sets Σc ⊆ Σ and Σuc ⊆ Σ to distinguish between
those events which are controllable (can be prevented from occurring by a par-
ticular supervisor) and those which are uncontrollable (cannot be prevented
from occurring by a particular supervisor).

• Σ may also be partitioned into disjoint sets Σo ⊆ Σ and Σuo ⊆ Σ to distin-
guish between those events which are observable (are reported to a particular
supervisor) and those which are unobservable (are not reported to a particular
supervisor).

• In a system with decentralized control, each supervisor may have a different
partitioning of Σ regarding both controllability and observability. The following
material only covers the theory necessary for centralized control (synthesis
of a single supervisor).

• In systems with partial observation (Σo 6= Σ) the requirements for synthesis
of a supervisor are more complicated. The following material only covers the
theory necessary for full observation (Σo = Σ).

2.2.5 A Legal Specification

• A legal specification L is represented by an automaton (Y, Σ, ξ, y0, Ym) and
indicates behaviour that is not forbidden.



CHAPTER 2. BACKGROUND THEORY 20

• Note that the legal specification has only Σ in common with the plant. While
it is possible for elements of Y to be logically in common with elements of Q
this is not guaranteed.

• A legal specification is correct if it satisfies the following requirement: if s ∈
L(G ) and s describes behaviour that is forbidden then s /∈ L(L ). This definition
does not preclude a legal specification from being correct even if L(L ) 6⊆ L(G ).

• Note that in general a set of arbitrary goals cannot be modeled simply by
deleting states from G .

• Not every L can be achieved via control. Specifically, if L can generate a
string s, and G can generate a string sσ where σ /∈ Σc and L cannot generate
sσ, then L is clearly not achievable via control because sσ cannot be prevented
from occurring once s (a legal sequence) has occurred.

• L is said to be controllable with respect to G if (∀s ∈ L(L ))(∀σ ∈ Σuc)sσ ∈
L(G )⇒ sσ ∈ L(L ).

2.2.6 An Implicit Supervisor

• An implicit supervisor S is represented by an automaton (X, Σ, ζ, x0, Xm) and
when functioning in conjunction with the plant guarantees safe behaviour.

• Note that the supervisor has only Σ in common with the plant. While it is
possible for elements of X to be logically in common with elements of Q this is
not guaranteed.

• Every x ∈ X is associated with an implicit control pattern that contains binary
values for every σ ∈ Σ according to the following rule. If ζ(σ, x) is defined then
it is assigned a control value of 1 indicating that the event should be enabled
(allowed to occur), otherwise it is assigned a control value of 0 indicating that
the event should be disabled (not allowed to occur). Note that for all σ ∈ Σuc

the control pattern value must be 1 and hence ζ(σ, x) must be defined.

• S /G denotes the supervised plant as described by the closed-loop behaviour of
S and G with S accepting the event sequences of G and G restricted by the
implicit control patterns of S . This relationship is depicted in Figure 2.1. The
structure S /G itself can be described as a single automaton. By definition,
S /G = S ||G when S and G share the same alphabet Σ.
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• It is well known that if L is controllable with respect to G and L(L ) ⊆ L(G )
then L(L /G ) = L(L ), which implies that L is an implicit supervisor which
achieves itself.

• In the case where L is not controllable with respect to G , it is desirable to
determine a variant of it which generates the largest sublanguage of L(L ) that
is controllable with respect to G . This is termed the supremal controllable
sublanguage (the largest legal specification that both generates a sublanguage
of the language generated by the desired legal specification and is found to
be controllable with respect to the plant) and is achieved by the maximally
permissive supervisor (a supervisor that when acting on a plant achieves the
largest possible subset of the legal specification).

• Algorithms and formulas for the computation of the maximally permissive su-
pervisor are given in [47], [10] and [12].

2.2.7 An Explicit Supervisor

• An explicit supervisor S is a pair (S, Φ)

• S is represented by an automaton (X, Σ, ζ, x0, Xm).

• Φ is a complete function that maps supervisor states to control patterns. For
any x ∈ X, Φ(x) returns a control pattern that contains binary values for each
σ ∈ Σ. A 1 indicates that the event should be enabled (allowed to occur), and
a 0 indicates that the event should be disabled (not allowed to occur). Note
that for all σ ∈ Σuc the control pattern values must be 1.

• S /G is the supervised plant as describe by the closed-loop behaviour of S and
G with S accepting the event sequences of G and G restricted by Φ as shown
in Figure 2.1.

• Explicit supervisors were used in the original theory of [37].

2.2.8 Reduced State Models

Once a supervisor has been obtained, it is reasonable to wish to reduce its complexity

if at all possible. In general it is assumed that a supervisor with a smaller state
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space that achieves the same control objective is more desirable. Since a supervisor

acts in conjunction with events generated by the plant, much of the structure of the

supervisor may be redundant. The state space can be reduced by allowing sequences

that (although illegal) can never actually occur in G . Reduction methods are detailed

in [37] and [45].
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Figure 2.2: Before reduction: FSM1, FSM2, and FSM1 || FSM2

A reduction method can be used to decrease the state size of legal models. In a

large system with several plant and legal models specified in a modular way, reduction
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to minimal-state models can greatly impact the computation time for subsequent

processes. A legal module need only communicate that certain sequences should

never occur. Often this is achieved by eliminating transitions from a plant module.

Such a legal module likely contains considerable redundant information about the

plant structure.

0

1

2

3

4

a,b

c

a,b,0

a,b,1

a,b,2

a,b,3

c,4

FSM1 FSM2 FSM1 || FSM2

αβ

δ

α , β , δ

ω

γ

αβ

βα

δ

βα

ω ω

γ γ

γ
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The synchronous product of a plant and supervisor describes the controlled plant.

Similarly, the synchronous product of a plant and a legal module describes all behav-

iour deemed permissible by the legal module. For a given plant, many legal finite-state

machines (FSMs) may achieve the same synchronous product result. Simple reduc-

tion can be achieved by merging all adjacent states in the legal FSM that can be

merged without changing the synchronous product result. For small models, this can

be achieved by inspection utilizing the following rules.
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1. Each state in the result of a synchronous product between FSM1 and FSM2

may be labeled (X,Y ) where X was the current state of FSM1 and Y was

the current state of FSM2; therefore, a given state X from FSM1 corresponds

to a set of states Xs in FSM2. For example, state a in FSM1 of Figure 2.2

corresponds to the set of states {0, 1} in FSM2 of Figure 2.2, as is visible by

inspection of FSM1||FSM2, which is provided in Figure 2.2.

2. The only effect of a merger of two states X and Y in FSM1 on its synchronous

product is that transitions effectively originate from states X or Y in the new

(X,Y ) from which they did not previously originate. Call the set of transitions

for which X (respectively, Y ) was not previously an originator Xt (respectively,

Yt). For example, in the merger of states a and b in FSM1 (shown in Figure

2.3), b effectively becomes an originator of δ whereas previous to the merger it

was not; consequently, in this example at = {ω} and bt = {δ}. If we consider the

merger of states b and c, bt would contain only γ and ct would equal {α, β, ω}.

3. If no events from Xt originate from any states in Xs in FSM2 and no events

from Yt originate from any states in Ys in FSM2 then the merger of X and Y

in FSM1 cannot affect the synchronous product of FSM1 and FSM2. For

example, in the merger of states a and b in FSM1 (shown in Figure 2.3),

at = {ω} and bt = {δ}. Checking against bs = {2, 3} in Figure 2.3, it is

clear that neither states 2 nor 3 in FSM2 are originators of δ (and similarly,

neither states 0 nor 1 are originators of ω) and therefore the merger is safe. In

contrast, if we consider the merger of b and c, bt = {γ} and ct = {α, β, ω}.

Since bs = {2, 3} and 2 is an originator of γ the merger is not safe. Specifically,

the merger of b and c in FSM1 (shown in Figure 2.4) would add γ in self-loop
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at state (b, 2), thereby altering the synchronous product.

4. In plain language, two states can be merged in one model, if the transitions

added by the merger cannot occur in the corresponding states in the other

model. Finally, note that a minor layer of complexity must be added to this

algorithm when considering marked states.

2.3 Implications of Primary Assumptions

The primary assumptions discussed below are more suitable for certain types of prob-

lems. An overview of the assumptions is given here and system classification and

solutions to the difficulties raised by the assumptions are given in later chapters.

Suffice it to say that integration of the plant and supervisor in the implementation,

and some modifications to the standard modeling methodology ease the difficulties

exposed below.

The Plant Exists

It is a fundamental assumption of the framework that the plant exists independent

of supervision and control objectives. This is appropriate for certain problems, such

as the classical cat and mouse maze of [47] (overviewed in Section 2.4); however, it

is less appropriate for other systems, such as a vending machine (which is probably

the most classical example of a finite-state machine). Some researchers (such as

the author of [29]) would describe these misfit systems as programmable plants, but

the term is misleading. Anything that can be achieved by programming a digital

computer can also be achieved by manufacturing a fixed electronic machine. The
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important property is that some portion of expected behaviour does not yet exist.

Events are Generated by the Plant

In the framework, the plant serves as the sole generator of events. Again this choice

is appropriate for systems such as the cat and mouse maze but is less amenable to

systems such as a vending machine. Analysis of this assumption exposes the fact

that certain systems simply don’t exist without the influence of control. A vending

machine—whether driven by a programmable microcontroller or simply realized as an

asynchronous mechanical device—does not exist without control objectives. In the cat

and mouse system, entities interact independent of control objectives. In a vending

machine system, one of the necessary entities (the machine behaviour) is inexorably

coupled to the control objectives. In problems such as these, it is sometimes difficult

to avoid the situation where the specification is the solution.

Events Occur Spontaneously

Again, in a system such as the cat and mouse maze, the concept of spontaneous event

generation is appropriate. Unfortunately, for a system such a vending machine this is

problematic. Because some events are necessarily coupled to control objectives, it is

unreasonable to ignore causality. Consider first designing a pop machine to randomly

generate “dispense pop” events and second coupling it with a supervisor in closed

loop. Not only is such a system needlessly complex, it makes certain goals (such as

“dispense the appropriate brand of pop shortly after it is requested when payment

has been received”) inexpressible due to the random generation of events.
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Events Occur Asynchronously

This assumption is not as problematic as the others but could raise timing issues.

Many implementations of DES control theory utilize synchronous machines such as

microcontrollers. It is quite possible for two events to occur between successive clock

cycles. For practical purposes, the supervisor must interpret these as simultaneous.

Furthermore, based on arbitrary implementation, the supervisor will consistently be

notified of the occurrence of one event before the other. A rigorous programmer

might implement a notification algorithm that randomizes the order of notification,

but these concerns are probably unnecessary. As long as it is acceptable to interpret

arbitrarily closely spaced consecutive events in an arbitrary order (as is often the

case), then the assumption of asynchronism is acceptable.

Events Occur Instantaneously

In fact, events do not occur instantaneously. This can often be ignored by appro-

priately defining the events. Consider the event “the bank vault door closes”. In

reality, this may entail a complex series of events over an arbitrary amount of time.

It is acceptable to model this occurrence as a single instantaneous event provided

its generation (and more importantly notification to the supervisory entity) occurs

at a time when the real system correlates to the logical conclusions implied by it in

the model. For example, if the purpose of the vault door is to prevent humans from

passing through it, the event can safely be generated at a time when humans can

no longer pass through it (which is the logical implication of the event in the plant

model). This probably correlates to a point early in the locking process of the door.

If, however, the purpose of the vault door is to contain an explosion of nerve gas, the
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event must not be generated until the door is closed to a point of gas impermeability

and sturdy resistance to explosive force.

Events Are Abstract

This assumption is closely related to the assumption of instantaneity. Events will

often represent a sequence of smaller events or the occurrence of several conditions

within the system. For example, it may be unnecessarily complex to model a timer

within a system. Instead a single alarm event may be generated at some fixed interval

after some condition has been met within the plant. This approach defers complexity

from the DES portion of the solution to the nature of the plant itself. While this

approach has many benefits, it can lead to complications as discussed in Chapter 5.

Control is Imposed by Disablement

This assumption ties in with plant existence and spontaneous event generation. As

with several of the other assumptions, it is appropriate for problems such as the cat

and mouse maze; however, when the system is tightly coupled to the control objectives

it is more difficult to apply the framework. Since it is unreasonable to imagine a pop

machine that randomly dispenses pop, it is clear that some entity must generate or

force such an event based on some control logic.
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2.4 Overview of Illustrative Systems

Cat And Mouse

This classical, theoretical system introduced in [47] is ideal for straightforward appli-

cation and implementation of DES control theory. In this system, there exist a cat

and a mouse in a maze. The doors connecting the various areas of the maze may

be uni-directional, bi-directional, usable only by the cat or mouse, and controllable

(meaning a supervisor could automatically force them shut). A representation of the

classical maze is given in Figure 2.5. It is a screen-capture from software (by this

author) for the specific purpose of using DES to automatically solve arbitrary maze

problems. The unrestricted behaviour of the cat shuffled with the unrestricted be-

haviour of the mouse represents the plant. Control objectives may include mutual

exclusion (so that the cat doesn’t eat the mouse) and non-blocking (so that each

animal can always return to its home room). To ask a human designer to achieve

these goals in a maximally permissive manner (allowing the animals as much freedom

as possible without violating the control objectives) may prove difficult, especially in

an arbitrary maze of fifty rooms.

Discrete-event systems control theory can automatically solve this problem. The

modeling of the plant and legal specification is very straightforward for this system.

A software toolkit can automatically generate the maximally permissive supervisor.

Aside from the problem of non-instantaneous events (for example if the mouse de-

cides to sleep in a door way) the implementation of the solution is straightforward.

One could simply monitor the supervisor and in each state, open all the doors that

correspond to enabled transitions and close all the doors that correspond to disabled

transitions.
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Figure 2.5: A representation of the classical cat and mouse maze.

The cat and mouse maze is a good problem because it requires high level control.

It is characterized by an existing system containing independent entities that can

function independent of each other’s existence and independent of control objectives.

Similar systems include unordered processing systems such as lines at bank tellers.

Each teller may have varying abilities to serve various customers’ needs. By adding

a higher level of control where client needs are observed and they are assigned to

respective lines, efficiency can be increased. These systems represent uncoordinated,

correct, non-optimal behaviour. In these systems some of the behaviour of the var-

ious entities can be restricted (controllable events) and some cannot (uncontrollable

events).

Vending Machine

This classical example of a finite-state machine is less amenable to DES control theory

and is analyzed in detail in Chapter 7. Consider a vending machine that accepts only
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one type of token and dispenses only one type of pop when a request button has been

pressed and the sufficient number of tokens have been inserted into the machine.

The straightforward application of DES control theory would be to first build the

vending machine modeled as the plant, and second attach it in closed loop to a

supervisory entity. Because a vending machine is closely coupled to control objectives,

this approach doesn’t work. It would be bizarre to design a vending machine that

generated output such as dispensed product and indicator light values at random.

There is a clear need to integrate the plant and supervisor.

A vending machine system has three components, the machine itself, the humans

that use the machine and the humans that administer, refill and repair the machine.

From a control solution perspective the machine can be seen as a set of uncontrollable

inputs (such as “button pressed” or “token inserted”) and controllable outputs (such

as “pop dispensed” or “insufficient funds message displayed”). This separation is not

found in good problems such as the cat and mouse maze.

The vending machine is a bad problem because it requires low-level control. It is

characterized by entities (such as sensors and actuators) that have no purpose and do

not function without control objectives. This coupling requires integration of plant

and supervisor in order to produce a reasonable control solution.
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Related Work

3.1 Desco

The researchers of [21] described Desco (a Discrete-Event Systems Controller) as a

software suite developed at the Control and Automation Laboratory at Chalmers

University of Technology. It provides a mathematical manipulation engine and a

graphical user interface. With this software, one is able to model various discrete-

event systems as both state automata and Petri nets. The tool supports several

functions in standard DES control theory, and it can be used to generate a maximally

permissive supervisor for a given system. It is further able to execute the supervisor

on a system that supports its methods of communication.

Methodology

Desco has been used to control a number of industrial systems as described in [1] and

[34]. It communicates with a given plant through the Manufacturing Message Specifi-

cation [26] which is an internationally standardized messaging system for exchanging

33



CHAPTER 3. RELATED WORK 34

real-time data and supervisory control information between entities in a manner that

is independent of the application function being performed and the developer of the

device or application. In the case of [1], a commercial batch control system notified

Desco of system events and periodically requested a list of available resources. This

provides a perfect analogue to enabled events in standard DES control theory. In

the case of [34], the programmable logic controller (PLC) of a group of spot-welding

robots notified Desco of system events and periodically requested a single resource

to which Desco replied with “yes” or “no”. While this doesn’t exactly parallel the

structure of DES control theory, the translation is obvious.

Application Issues

The examples just described are “good problems”. As in the cat and mouse maze,

there exist discrete entities which permit control by disablement. Considering their

existence without control, it is easy to see that the single-state supervisor that always

returns all resources as available or always responds “yes” permits the systems to

function independent of control objectives. While the resultant behaviour may be

disastrous, it is a different situation than a pop machine that randomly dispenses

pop. The difference is causality versus the lack of it. In [1] and [34] the plants are

goal-based entities that request permission to take actions. In a vending machine,

when a human requests a pop (by pushing a button) and the supervisor (perhaps

realized in a microcontroller) enables the event, what entity ejects the pop from

the machine? This entity must be defined (and will likely be realized in the same

microcontroller). Desco requires that the plant exists and conforms to the standard

notification/disablement protocol.
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3.2 LEGO

The researchers of [13] expressed concern that “the design of logic controllers for

event-driven systems continues to rely largely on intuitive methods rather than on

formal techniques”. Consequently, they built an educational test-bed that simulates

an automated car assembly line using LEGO and Dacta products for the purpose of

demonstrating the usefulness of DES control theory in manufacturing systems.

The physical system they created transports a roof and a chassis component to a

press where they are combined to represent a completed automobile. The completed

component is then transported to an exit location. The system utilizes eight motors

and eight sensors and is controlled by LOGO code running on a personal computer

to which the system is connected.

Methodology

In modeling the system the authors of [13] took a modular approach, partitioning the

system into five plant modules, although they gave no justification or methodology

for their particular choice of partitions. To create their legal specification they first

designed sixteen safety specifications, some of which pertained to only one plant

module, while others pertained to multiple modules. Finally they defined a progress

specification which expressed a necessary ordering of events to produce an automobile.

The safety and progress specifications combined represent the legal specification.

In order to avoid the computational problem of state-space explosion, they em-

ployed the modular approach of [48] and were able to synthesize a maximally per-

missive supervisor without computing the monolithic plant and legal specification.

Having computed a supervisor, it remained to generate a control solution for their
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real system (a LOGO program used to control the Dacta interface box). To achieve

this, they examined their supervised plant and chose a single path from the start

state to a marked state. This was accomplished by selecting at most one controllable

event when possible while traversing the graph of the supervised plant. They then

translated the reduced supervised plant by hand into LOGO code.

Application Issues

Note the necessity of the progress specification. Since all states in their plant modules

were marked, with only the safety specifications, the supervised result would be largely

chaotic, and it would be very difficult and error prone for a human to make the ad

hoc conversion to a control solution.

This application of DES control theory illustrates the problem of a non-existent

plant. In this case, the physical model and the DES model were necessarily created

simultaneously. Even if one had first snapped together the LEGO blocks and hooked

up the motors and sensors to the Dacta interface box, without a LOGO program, the

plant would remain an empty set. The connected blocks, motors and sensors (without

control) generate nothing.

It also illustrates the problem of event granularity. At the lowest level one might

model every execution cycle of the LOGO program as an event. At the highest level,

one might model the complete construction of an automobile as a single controllable

event. The choice of event granularity is completely arbitrary; nevertheless, it has

considerable impact on the effectiveness of the theory.

This application is also a good example of the imposition of asynchronous untimed

DES control theory on an inherently synchronous and timed system. While the
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manufacturing plant can be abstractly viewed as an asynchronous system, the final

control solution takes the form of a LOGO program which is highly synchronous and

timed.

A final notable aspect of their approach was the use of modular modeling tech-

niques in the design of the plant and legal specification for the purpose of creating

several modular supervisors, rather than a single monolithic supervisor. Because this

system is a relatively simple example of an application of DES control theory to a

low-level system, a variant of it is examined in detail in Chapter 5 for the purpose of

highlighting the issues that beset low-level control.

3.3 Prometheus

Prometheus is a model train system developed in [29] by Ryan Leduc for the pur-

pose of investigating the issues involved in modeling and designing supervisors for

large, real systems. To facilitate this investigation the author created a PLC-based

manufacturing plant with a monolithic DES plant model on the order of 1016 states.

A significant contribution of his work was the definition of several model reduction

theorems to aid in handling such a large plant; nevertheless, the primary focus of the

work was the investigation of the issues involved in converting a supervisor into a

physical implementation on PLCs.

The testbed was designed to simulate a manufacturing work-cell and focused on

expressing the problems of routing and collision. Composed primarily of model rail-

road components, the trains function as automated vehicles that provide and remove

material to and from three interacting manufacturing units represented by cranes.
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No material is actually transported or processed, but the simulated loading and un-

loading processes do consume real time. To add further complexity, the tracks are

interconnected, requiring switching and allowing the possibility for collision. The

testbed is controlled by two MC68332 microcontrollers and an Allen-Bradley PLC.

The microcontrollers control the trains and cranes directly and communicate with

the PLC which is responsible for the control of the overall system.

Methodology

The work offers an overview of the implementation process as three main steps: first

the synthesis of the supervisors, second their translation into clocked Moore synchro-

nous state machines (CMSSMs) and finally their implementation on PLCs as relay

ladder logic (RLL) programs. As justification for the CMSSM step Leduc argues that

a CMSSM can easily be implemented on most digital logic devices, thereby guaran-

teeing usefulness in applications that do not employ PLCs.

The work further analyzes some issues involved in modeling a real plant. The

author argues that it is important to model a system as several plant modules and

to avoid unnecessarily complicating the model. As evidence he notes that a large

system would be difficult, error prone and time-consuming for a human to model as

a monolithic plant. He considers a 300 state system to be too large.

He suggests a methodology for the modular definition of the plant. First he

suggests the definition of “fundamental” models (models of the basic components

ignoring how they interact in the overall plant). Second he suggests the definition

of “interaction” models (models describing how the fundamental models interact).

Following this approach, some modular models may still be prohibitively large and
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require further ad hoc partitioning. He notes that “not every detail of the plant’s

behaviour is required in every model, but every detail must be in at least one model”.

He also comments on the granularity of events. He argues that by encapsulating

several sub-events as a single event (whenever possible) one reduces the complex-

ity and thereby improves the quality of the model. He does note that by reducing

granularity, one limits the ability to satisfy future requirements.

The author argues that DES need not handle everything and that it may be

beneficial to defer complexity to other components. If something is hard to model in

the DES framework, one might consider encapsulating it as a stand-alone hardware

component that interfaces with the rest of the plant in an event-driven way. For

example, it would be extremely inefficient to model the filling of a tank as a DES

using events such as “one unit added” and “one unit removed”. For the sake of

massively simplifying the DES portion of the solution, one might install a subsystem

that monitors the tank and generates a single event “marker reached”. This approach

implicitly assumes the designer’s ability to change the system.

He does attempt to classify problems, noting that for plants that are fixed in their

operation, the plant model simply describes their possible behaviour. For example,

a machine on an assembly line may “start”, “finish”, “break” and “get repaired”.

Similarly in the cat and mouse maze, each animal may move between specific rooms

via specific doors. Prometheus is described as a programmable plant. Leduc claims

that such programmable plants must be defined by an interface specification. This

means that the event space must map to a software interface; which is to say that the

plant is every program that can be written using the interface specified by the event

space. He notes that this abstraction layer allows the ability to plug in and out the
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high and low level components at a later date.

Application Issues

Leduc makes a good argument that there is no guarantee that any plant model will

ever be accurate, and further notes that there exists an infinite number of correct

plant models for any given system. This follows from the ability to continually add

information about the system, further describing subsystems, until presumably one

must stop at the molecular level.

It is interesting to question why it is that a model can be correct even though

it lacks information. The answer is that a plant’s correctness is based only on the

arbitrary definition of the events Σ. Providing the real system it represents never

exhibits behaviour that could be described as as string s /∈ L(G ) were s ∈ Σ∗, then

the plant is correct. While highly granular and abstract event definitions ease the

task of defining the plant, they reduce the set of possible control objectives that can

be expressed and/or achieved.

Leduc notes that a synthesized supervisor enforces the specification given, not

necessarily the specification intended. This is the designer’s responsibility and is

often very difficult; nevertheless, one presumes that for complex systems all design

methods are nontrivial, so this is not a problem unique to DES control theory.

The problem of time arises in the Prometheus system. If the track connection at

a track junction is switched while a train is over that portion of track, then the train

will be derailed. If it is required to switch the track junction, it is not acceptable

to simply list the events “train at junction” and “junction switched” in order due to

the unknown time between execution of the events. Consequently two train location
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events are required “train enters danger zone” and “train exits danger zone”.

Forced Events

In [4], a complex modification of standard DES control theory is proposed to aid

in modeling systems that are tightly coupled to control objectives. It is suggested

that the plant should generate outputs (uncontrollable events) termed responses and

accept inputs (controllable events) termed commands. This framework allows con-

trollable events to be generated (forced) by the supervisor. While this modification is

theoretically much more amenable to systems like Prometheus, Leduc argues that the

modification is unnecessarily complicated. He claims it is more difficult to specify a

system in the modified framework and notes that many existing DES control theory

results would have to be modified for its use. Leduc claims “this is re-inventing the

wheel. There is no need to leave current [DES control theory]”.

SUPERVISOR

PLANT

Σuc ∪ Σc,p
Disablement
Commands

Σc,s

Figure 3.1: The relationship between plant
and supervisor in the Prometheus project

The approach used in the Prometheus

project was to divide the controllable events

into disjoint sets of those generated by the

plant Σc,p and those generated by the su-

pervisor Σc,s. As far as application of the

standard theory, one ignores this distinction

by assuming all events are generated by the

plant. It is only in the implementation of

the supervisor that the partitioning is used.

When the supervisor reaches a state where there exists an outgoing event of the set

that can be generated by the supervisor, it both instructs the plant that the event
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should occur and feeds back notification of the event to itself as shown in Figure 3.1.

This approach is interesting, but like all approaches that allow both the plant

and supervisor to generate events, it raises questions about ordering, priority and

communication delays. Consider a system where in state one the supervisor wishes

to generate an event but in state two wishes to prevent it. During the time that the

supervisor communicates to the plant that the event must be forced, the plant may be

communicating to the supervisor that an event that would have taken the supervisor

to state two has occurred. Consequently the plant receives the forcing event in a

undesirable sequence. Since this complication was not discussed in the work, one

must assume that such occurrences were impossible either due to the implementation

of the plant and supervisor or simply due to the nature of the system.



Chapter 4

The Problem of Implementation

When one has a system that is tightly coupled to control objectives, then the modeling

of the plant, legal specification and supervisor is a more arbitrary process where each

affects the other’s design. First, the designer must decide upon an event space for the

system. This phase involves a trade-off between simplification of the modeling process

and reduced automation in the generation of a final complete control solution. This

means that a complex subcomponent can be abstracted as a set of events, thereby

simplifying the DES process, but leaving its implementation as ad hoc future work.

Second, the designer must define a correct plant. In doing so it is usually advantageous

to make the plant as inaccurate as possible while still accurate enough to express the

control objectives. Correctness of a plant is based on the event space alone. As

long as the real system never exhibits behaviour that could be interpreted as a string

in Σ∗ but not in L(G ) then the plant is correct. Abstraction in event definitions

allows a less complex plant model, but this loss of accuracy can make certain control

objectives inexpressible. In developing legal specifications, the models should be made

as unrestrictive as possible to ensure maximum automation in supervisor synthesis.

43
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When an acceptable supervisor is obtained it must in the end be translated into a

complete control solution.

4.1 What is an Event?

If one views the system as an automaton, an event can be said to be the occurrence

of q′ = δ(σ, q). If one views the system as a formal language, an event can be said to

be the generation of an element σ from the alphabet Σ. If one views the system as a

directed graph, an event can be said to be a transition from a vertex to an adjacent

vertex along an adjoining edge in an allowable direction. In [37] the authors state:

“Events are considered to occur spontaneously (no auxiliary forcing mechanism is

postulated), asynchronously (i.e., without reference to a clock) and instantaneously.”

A common example of an event is “a button is pressed”. Consider a machine

that has a button that can be depressed and released by a human. Suppose that the

button is part of an electric circuit and suppose that it exhibits ideal behaviour (no

debouncing issues). The button as described is an interface for a human to control a

square wave within the circuit. How should this be modeled? What are the associated

events? Are they uncontrollable?

At a fairly high level of detail, a “use” of the button might generate a short pulse

corresponding to a press and a release: two events. The button might be logically

tied to some behaviour within the machine, an action that the human requests by

“using” the button. At a very abstract scale one might consider the press, release

and all components of the action as a single event. Certainly the lumped event is

not instantaneous, but perhaps it can be functionally considered so by assigning a

particular instant of its existence as its instantaneous time of occurrence. From the
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perspective of a human and a computer, a great many things may occur synchronously

within the computer in a time frame that is effectively instantaneous to the human;

furthermore, effective meaning of an event may allow an instantaneous marker to be

applied. For example “the user walks away” could be keyed to the instantaneous time

at which the user can be considered to be safely out of hearing range.

Events can easily be confused with system state. Consider a microcontroller with

an input pin that reads zero. At some later time the input pin reads one. The rising

edge may be considered the occurrence of the event, but the effective occurrence

is the time when the microcontroller reads the value. This is necessarily sometime

later but for certain systems may be assumed to be arbitrarily close. Alternatively

the designer might intentionally decide to not sample the input value until some

considerable time later (perhaps after some sequence of events). This later sampling

blurs the line between event and state. This technique is useful when it is part of the

design requirement to ignore an input for a period of time, this can be achieved at

design time by creating a plant that simply does not sample the input during that

period. Consider a keyboard, with 26 keys (one for each letter). By ignoring all other

key events in between any keydown-keyup sequence of a particular key, a plant of 27

states (i.e., “nothing active”, “a is active”, “b is active”, ..., “z is active”) is achieved

instead of the fully accurate plant of 226.

Another important consideration in event definition is plant existence. Many

systems described in this work do not fully exist until the use of DES control theory

is completed. Consequently the act of modeling the system participates in defining

the system. Imagine a machine where a button (a square wave on an input pin) is

related to exactly one action (some signals on output pins). The character of the
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input wave is no doubt beyond the control of the machine, but it can optionally be

ignored. Consider some lines of code that first test the input, then (perhaps in the

case of a falling edge) generate some output. If these are to be modeled as separate

observable events, lines of code must be inserted to communicate their occurrence to

the supervisory entity. Alternatively they could be modeled as a single controllable

event. When the sensor conditions are met, the supervisor can be asked whether or

not to carry out the output actions. From a plant design point of view, it may be an

equivalent amount of work to make an event observable or controllable.

What is Controllability?

The difference between a push button that delivers an uncontrollable signal to a

microcontroller and, say, a push button that is mechanically connected to a container

of highly concentrated acid and uncontrollably causes it to empty due to mechanical

action is an important consideration. This is the difference between occurrences that

can reasonably be ignored (input on a pin) and occurrences that cannot (a component

fails). Uncontrollable events that may be ignored can be lumped into neighboring

controllable events and seen as the initiating circumstances of the combined event.

Consider the cat and mouse system. The assumption of instantaneity is difficult

to meet. One would have to go to great lengths to provide transportation capsules

between the rooms (similar to air locks) for the purpose of avoiding the “lie in the

doorway” problem. Surely the heart of this example relates to resource management

between obedient entities. The cat is not forcefully prevented from entering a room,

instead it asks for permission to enter by a shared protocol. This could be accom-

plished by making the supervisor’s current feedback map values readable to the cat
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and mouse, or by a query/response system such as that employed by DESCO [21].

The query/response strategy supports the idea that controllable events should be

associated with uncontrollable initiation.

What is Observability?

Observability is a matter of taste. If a microcontroller is connected to a motor in

such a way that it can cause it to begin spinning in the forward direction, is this

controllable “forward” event also observable? Implicitly “forward” has occurred when

the command is given, but if the motor is broken, the event is observed when it has

not occurred. A sensor could be added to detect the start of forward motion, but

if the sensor fails the event is not observed when it has occurred. The answers to

questions on observability must fall to system assumptions, just as the promise of a

correct solution rests on the assumption that the ad hoc initial models are correct.

4.2 What is a Control Solution?

In many cases the control solution is supervisor, legal specification, and part of the

plant. In a vending machine, control objectives may affect the design of the plant.

Consider a system that cannot prevent the insertion of tokens. In the DES control

theory modeling process, the objective to not accept tokens when the machine is

empty cannot be realized. The event must be made controllable, perhaps by having

an uncontrollable initiating component (a sensor that observes a falling token) and a

controllable output component (a path switch directing the token to the bank or exit

location). The specification is part of the solution and affects the plant. The supervi-

sor provides logic for order of behaviours, but some events may need to be generated
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by the same entity that manages the supervisory logic. This is the case in many

microcontroller implementations (where the plant is composed of humans interacting

with components directed by a microcontroller). While the microcontroller’s portion

of the plant’s behaviour could be programmed separately from the supervisor logic,

integration of the two is a naturally desirable solution.

The problem of implementation is examined in three disparate systems in the

following chapters. Each system is approached with a different methodology, and

each exposes different facets of the implementation problem.



Chapter 5

Analysis of a LEGO Factory

5.1 Introduction

The researchers of [13] built a simplified assembly line using LEGO and Dacta prod-

ucts for the purpose of demonstrating the usefulness of DES control theory in man-

ufacturing systems. Their implementation presented challenges in capturing (in the

language of DES control theory) the physical system they had built, dealing with the

problem of state-space explosion in their DES models, and translating the DES solu-

tion (a computed supervisor) into a control solution for their real system (a LOGO

program used to control the Dacta interface box). The information in [13] describes

some of the components used and suggests some methodologies.

The following discussion summarizes their work, discusses alternate approaches

and highlights the difficulties that arise. The first section gives a straightforward re-

view of what they actually accomplished. The second section focuses on a simplified

version of a component in their system, and discusses how to implement the control

49
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theory. While the information here parallels their result, a different naming strat-

egy is used in order to simplify the discussion. Their methodology is for the most

part not explicitly stated. Several methodologies for achieving their result are pro-

posed and analyzed. It is demonstrated in Section 5.4.2 that without consideration

of implementation, control objectives can become unachievable.

LEGO

In 1989, the educational products department of the LEGO group changed its name

to Dacta and produced various electronic components that could easily be interfaced

with their standard connectible block products. These components included touch

sensors, light sensors, angle sensors and small motors. The components may be con-

trolled with a special interface box which can be connected to a personal computer.

Special software running on a personal computer can run programs written in a ver-

sion of the LOGO programming language to control the interface box; consequently,

LEGO can be used to produce custom programmable hardware. Today the Dacta

product line has been replaced by the MindStorms product line which was developed

in association with MIT. MindStorms provides many more physical and electronic

building blocks, and replaces the interface box with a custom microcomputer. The

microcomputer has fewer input/output connections than the Dacta interface box, but

unlike the interface box, it functions stand-alone from the personal computer once it

has been programmed.
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5.2 Summary of the Assembly Line

The simplified assembly line constructed with LEGO products was intended to em-

ulate an automobile manufacturing plant. The system was designed to input two

different physical parts at two separate locations. It was then able to transport the

two parts independently into a press, which was used to combine them into a single

part. The completed part was then transported to a third separate exit location.

Their complete model used all eight sensor inputs and all eight motor outputs of

the Dacta interface box and was controlled by LOGO code running on a personal

computer to which it was connected.

In translating their implementation into the language of DES control theory, they

partitioned the entire system into five sections: a transporter module having twenty

one states, a chassis module having thirty states, a roof module having fifteen states,

a press module having twenty three states, and an unloader module having eight

states. These modules imply a monolithic plant with 1,738,800 states.

Next they composed sixteen safety specifications and a single progress specifica-

tion, the combination of which represented the complete legal specification. Of the

safety specifications, some pertained only to a single plant module and were termed

local, others pertained to multiple modules and were termed global. Since the prefixes

of safe operations must themselves be safe, the safety specifications were required to

be prefix closed, and consequently, all states in the safety specifications were marked.

Since they chose to also mark all states in their plant modules, the progress spec-

ification was required to communicate the purpose of the plant. Combined, these

modular specifications imply a monolithic legal specification with 11,206,656 states.
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To combat the problem of state-space explosion, they employed the modular meth-

ods presented in [48]. Their implementation is a good example of the effective use of

this theory, and it is the focus of their paper. Once they had computed a supervi-

sor, it remained to translate it into a control solution for their real system (a LOGO

program used to control the Dacta interface box). To achieve this, they examined

their supervised plant (in which only the initial state was marked) and chose a single

path from the initial state to the marked state. This was accomplished by selecting

at most one controllable event when possible while traversing the graph of the super-

vised plant. They then translated the reduced supervised plant by hand into LOGO

code.

According to [13], the steps necessary to develop a control solution using DES

control theory are as follows.

1. Construction of FSM models of the system to be controlled.

2. Construction of FSM models of the safety and progress control specifications of
the system.

3. Use of supervisory control theory to obtain the maximally permissive supervisor
for the system.

4. Extraction of a controller from the supervisor, which permits at most one con-
trollable event to be enabled at each state.

5. Translation of the controller into control code or PLC.

The following discussion focuses on methodologies for actually generating a plant

and legal specification. It examines the idea of a progress specification, and con-

siders the implications of translating the supervisor into a control solution. While

this discussion parallels their result, it considers only a single simplified version of
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their transporter module. This avoids the difficulties of state-space explosion and is

sufficient to expose the relevant design issues.

5.3 A Physical Model

An abstracted model of a simplified transporter component is given in Figure 5.1.

Its purpose is to transport a payload through a linear distance. The model con-

tains two devices: a motor which generates output and a sensor which generates

input. The motor employs a rack and pinion to transport a payload backwards

or forwards in a single linear direction. The sensor is used to determine when the

payload passes certain points in certain directions. In reality this is accomplished

by monitoring the rotation of the motor shaft. For the sake of discussion, physical

Motor and Sensor

Point A Midpoint Point B

Payload

Figure 5.1: An abstract view of a transporter with a pay-
load at point A.

limitations and failures, such as

the length of the rack, possible ob-

structions of the payload, slipping

of the gear and miscounting of mo-

tor shaft rotations shall be tem-

porarily ignored. With these as-

sumptions, the payload can be transported infinitely along the x-axis, and the sensor

always accurately notes its passing of the marked points. The payload can be mod-

eled as a single point because any modification of its size can be accommodated by

adjusting the locations of the sensor’s firing points.

In the following discussion, the task required of the transporter is to move the

payload from point A to point B and then return to its initial position (which is

the same a moving an empty payload from point B to point A). The midpoint is
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remarked for the purpose of providing reusability. Although it is irrelevant to this

discussion, some future user may have a different goal, such as moving from A to B

to the midpoint, back to B and finally back to A. Because it so often occurs in reality,

it is a useful constraint that the plant should be capable of behaviour other than that

which is required to realize the current task.

5.4 Attempt and Complication

5.4.1 The Plant And Its Events

Since the motor is an output device, its associated events (“forward”, “stop”, “re-

verse”) are controllable. These events are instantaneous (as all events must be) and

signify a change in the motor’s desired behaviour. For example “forward” corresponds

to the interface box instructing the motor to start spinning in the forward direction,

and implies that it will continue to spin in the forward direction until instructed

otherwise. Uncontrollable events such as “the motor burns out” are not modeled.

Similarly, since the sensor is an input device, its associated events (“reachedA”,

“reachedB”, “reachedMid”) are uncontrollable. The definition of these events implies

constraints on the implementation of this DES model. Specifically, this implies that

some entity must exist which periodically monitors the sensor (which simply counts

rotations) and notifies the central controlling entity when any of the logical events

(“reachedA”, “reachedB”, “reachedMid”) occur. In this case the implied entity will

likely take the form of a subroutine that is called every iteration of the main loop in

the LOGO code running on the personal computer connected to the LEGO model.

A DES model of the simplified transporter is given in Figure 5.2. This model is
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a relabeled version of a model discussed in [13]. When it is presented in [13] it is

not immediately clear that an event such as “reachedA” may have any more specific

meaning than can be implied from its name.

forward stop

stop reverse

forward stop

stop reverse

forward stop

stop reverse

reachedMid reachedB

reachedMidreachedA

A+

A

A−

M+

M

M−

B+

B

B−

Figure 5.2: The plant model used to represent the transporter. In this figure, a dashed line is used to
represent an uncontrollable transition, while a solid line is used to represent a controllable transition.
The initial state is denoted by a single, short, incoming arrow, and marked states are denoted by a
double circle.

It is assumed that initially the payload is at point A and the motor is stopped.

In light of the event definitions, meaning can be derived from the current state of

the plant. For example, state A− indicates that the motor is running in the reverse

direction and the payload is at or left of point A, while state A can only guarantee

that the motor is stopped and the payload is somewhere left of the midpoint.

The purpose of the transporter is to move a payload from point A to point B and
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then back to point A. It is important to note that this movement has physical impli-

cations; specifically, the LEGO model could be damaged due to maximally extending

the rack or colliding with other components if the motor is run in the forward direc-

tion past point B or run in the reverse direction past point A. These possibilities must

be described in a safety specification. A safety specification in conjunction with a

progress specification can form a legal specification for the system. The specifications

given later in this document are adaptations of those discussed in [13].

f s

s r

f s

s r

f s

s r

rM rB

rMrA

rBrM

rB

s r

f s

s r

f s

rA rM

rA

Figure 5.3: The plant model for the transporter that expresses passing beyond points A and B.
Event labels have been shortened for readability with f, s, r corresponding to the motor events and
rA, rM, rB corresponding to the sensor events.

The plant model of Figure 5.2 should have been constructed by considering all

possible sequences of events. Consider the uncontrolled behaviour of the plant. When

not constrained by a safety specification it is quite possible for the payload to extend
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past point B, regardless of any catastrophic effect that may occur. Assume that

the payload does extend past point B some distance, and then is reversed back to

point A without suffering any harm. A possible string achieving this scenario is

“forward”, “reachedMid”, “reachedB”, “stop”, “reverse”, “reachedB”, “reachedMid”,

“reachedA”. This sequence cannot be generated by the plant model of Figure 5.2, but

is represented in an alternate plant model given in Figure 5.3.

Symbol Attribute Type Description

“forward” controllable output The motor (initially stopped) is caused to begin
(and continue) spinning in the forward direction.

“stop” controllable output The motor (initially spinning) is caused to stop.
“reverse” controllable output The motor (initially stopped) is caused to begin

(and continue) spinning in the reverse direction.
“reachedA” uncontrollable input The payload is sensed to have reached Point A

while the motor is spinning in the reverse direc-
tion.

“reachedMid” uncontrollable input The payload is sensed to have reached the mid-
point.

“reachedB” uncontrollable input The payload is sensed to have reached Point B
while the motor is spinning in the forward direc-
tion.

Table 5.1: Complete definition of events in the transporter model.

By our current understanding of the events, the plant of Figure 5.2 is incorrect.

Careful reading of [13] reveals that the simpler plant model of Figure 5.2 is justified

by increasing the complexity of the definition of the sensor events. Specifically, the

condition is added that “reachedA” and “reachedB” should only occur (be reported

by the sensor subroutine) when traveling in the outgoing directions. This follows from

the fact that the safety specification (given later) is only concerned with preventing

movement in the outgoing directions. With “reachedB” only reported in the forward

direction, the earlier example string collapses to a string that can be generated by the

simple plant of Figure 5.2. A complete description of all events for this plant model
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is given in Table 5.1.

Upon further inspection, it can be demonstrated that even in light of the more

restrictive event definitions, the plant of Figure 5.2 (adapted from [13]) is (strictly

speaking) incorrect. Consider driving the payload past point B, then reversing it left

of point B but not past the midpoint, then driving it forward past point B again. The

following events would be observed: “forward”, “reachedMid”, “reachedB”, “stop”,

“reverse”, “stop”, “forward”, “reachedB”. This string cannot be generated by the

simple plant model of Figure 5.2. The error is due to the fine line between all behav-

iour that could occur in this programmable system if one considers arbitrary programs

(restricted by the definition of the event space), and the behaviour that could occur

in this programmable system if one considers programs aligned with the designer’s

goals. In essence Figure 5.2 is a step in approaching the final controlled plant from

the original true plant of Figure 5.3. In this circumstance, the incorrect model still

leads to a correct solution but that can only be verified manually, after the fact, and

is based on the final (ad hoc) implementation. The entire purpose of employing DES

control theory is to automatically generate solutions that are guaranteed to be cor-

rect by construction. Since the simple plant model of Figure 5.2 does not, in fact,

represent all possible sequences of events, this guarantee is lost, and the benefit of

DES control theory is greatly diminished.

As a further detractor, this approach defers complexity from the DES control the-

ory portion of the solution to the ad hoc human-made portion of the solution. Recall

that the rotational sensor is a simple input device that merely monitors the rotation

of the motor shaft. From this information, a human programmer could write ad hoc

LOGO code to determine when each of the sensor events has occurred. Specifically
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one could count rotations and generate the “reachedB” event (for example) only when

the correct number of rotations occurs and the motor is known to be spinning in the

forward direction. In contrast, the automatically generated DES supervisor will itself

eventually be translated into LOGO code. Consequently, the final solution (a LOGO

program) contains both the DES supervisor and the ad hoc events. By choosing the

simpler plant model of Figure 5.2, the ad hoc portion of the solution (realization of

abstract events) is made more complex.

5.4.2 The Legal Specification

Parallel to the example in [13], the plant of Figure 5.2 has all its states marked. This

means that the plant model itself contains no information on what strings represent

completed units of behaviour. The purpose of the safety specification is to remove

behaviour that is damaging to the system; whereas, the purpose of the progress spec-

ification is to indicate desirable orderings of events and to indicate which strings

represent completed tasks. These combined describe the subset of the plant’s behav-

iour that is desirable.

Safety

For the transporter, damaging behaviour is limited to the possible extension of the

payload some distance beyond point A or point B. Note that due to the simplified

definition of events “reachedA” and “reachedB” it is not possible for the system to

determine how far past these points the payload has or will travel.

The safety specification is generated by first removing portions of the plant model

as shown in Figure 5.4, and second removing redundant information in a manner
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parallel to the computation of a reduced-state supervisor. The goal in generating the

safety specification is to express everything of which the plant is capable, minus the

specific strings that are damaging.

forward stop

stop

forward stop

stop reverse

stop

stop reverse

reachedMid reachedB

reachedMidreachedA

A+

A

A−

M+

M

M−

B+

B

B−

Figure 5.4: The construction of the safety specification.

Consider Figure 5.4. The only information guaranteed by state A is that the

payload is left of the midpoint. In order to prevent the payload from possibly reversing

past point A, the “reverse” event is deleted. Similarly, “forward” is deleted from state

B. At this point the model communicates “don’t move the payload past points A

or B”. By observation, this specification is controllable with respect to the plant and

therefore serves as an implicit supervisor.
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rM

rA

rB

rM

f, s f, s, r r, s

Figure 5.5: The safety specification for the transporter.

The safety specification may be

reduced as described in Section

2.2.8, yielding the final safety spec-

ification of Figure 5.5. The purpose

for this reduction is to simplify sub-

sequent computations on the model.

The reduction is valid because the

safety specification need only communicate what is disallowed. While the reduced

model of Figure 5.5 generates strings not generated by the plant, this is irrelevant be-

cause it is only used to eliminate strings from the plant, and is never used to generate

them on its own.

The Problem of Time

In the end, when a LOGO program is generated, and the assembly line is set in

motion, the generated solution and hence the safety specification do, in fact, succeed.

This success however is based on an implementation assumption that is not contained

within or considered by the employed DES control theory. Consider state B+ of Figure

5.4 or the corresponding state in the plant model. In the final solution, in some

iteration of the main loop, the subroutine that monitors the sensor may generate the

“reachedB” event causing the system to logically change state to B+. In some later

iteration of the main loop, by the methodology of [13] the program will generate “stop”

and the system will safely change state to B. It so happens that the LOGO program

runs iterations of its main loop at a rate much faster than the transporter motor

spins; consequently, the “stop” event is generated shortly after the “reachedB” event
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occurs. This is not in any way guaranteed to be the case by the DES control theory

used to generate the solution. In a purely theoretical view, the system is allowed to

happily remain in state B+ (with the motor running in the forward direction) for all

eternity.

Remember that this plant model is only one small module of a potentially massive

system. In [13] they require five plant modules for the simple task of connecting two

lego blocks. In a more complicated system it is reasonable to expect long strings of

events from other modules while a given module remains in a single state. No part of

the DES control theory employed in this example guarantees any degree of liveness.

With this consideration, it is impossible to achieve the human requirement “don’t

move the payload past points A or B” in the language of the DES models employed.

It is only in consideration of implementation (or by the use of considerably more

complex timed DES theory) that it is possible to sweep problems such as these under

the rug. That is to say that the fact that this requirement is not actually guaranteed

can be ignored by making and verifying the assumption that the system will never

linger in states B+ or A− longer than a known and sufficiently short amount of time.

This can only be verified once the implementation is complete, and if this verification

is not provable, the “correct by construction” assumption must be lost.

Progress

The researchers of [13] suggest the definition of a progress specification which has the

goal of expressing how the plant should behave. This necessarily precludes the plant

from behaving in any other way. Since it would defeat the automation benefits of DES

control theory to completely express exactly what the plant should do, some degree
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of freedom is necessary. In an input/output system such as the transporter, it is

convenient to consider only the events generated by the unprogrammed plant. In the

case of the transporter, these are the uncontrollable sensor events and are necessarily

caused by the motor events. By rigidly specifying all sensor events and arbitrarily

allowing all motor events, the specification can communicate “use the motor however

you want in order to make this occur”.

For the transporter, the required task is to move the payload from point A to

point B and then back to point A. This task is described by the sensor sequence

“reachedMid”, “reachedB”, “reachedMid”, “reachedA”, and by allowing all motor

events. Progress is communicated by the specification shown in Figure 5.6. Note

that since this progress specification separates the initial and final states, it commu-

nicates that the process should only be carried out once. This is simply an arbitrary

design decision.

rM rB

f, s, r f, s, r f, s, r

rM rA

f, s, r f, s, r

Figure 5.6: The progress specification for the transporter.

This progress specification has several physical implications. First it happily al-

lows the supervisor to stop and start the motor arbitrarily throughout the progress

of the task. One could view this as flexibility in the specification—perhaps another

component later added to the system will need to stop the transporter and do some
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work before allowing the transporter to complete its task. Second it indirectly de-

termines (due to uncontrollability) that it is not acceptable for the transporter to

backtrack in the completion of its task. This may be seen as reduced flexibility in

the specification—perhaps another component needs to use the space at point B be-

fore the payload is unloaded but the transporter has already moved the payload to

point B. This particular specification allows some flexibility while sufficiently limiting

allowable behaviour such that the ad hoc process of converting the final solution to

LOGO code is simplified.

5.4.3 A Control Solution

As stated previously the legal specification is formed from the synchronous product

of the safety specification and the progress specification. It is shown in Figure 5.7.

At this point the designer has produced correct DES models for both the plant and

the legal specification. This is the standard input for DES control theory and the

automatic generation of a solution can commence.

rM rB

f, s f, s, r s, r

rM rA

f, s, r f, s

Figure 5.7: The legal specification for the transporter.

The final legal specification of Figure 5.7 is found to be not controllable with

respect to the plant. From it, a maximally permissive supervisor (that allows the
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largest possible sublanguage of the legal specification) is automatically generated as

shown in Figure 5.8. According to conventional wisdom, one would next compute

a reduced supervisor as shown in Figure 5.9. This is the standard output of DES

control theory. For these models the various operations were performed by hand, but

for larger models, one would use software such as CTCT as described in Chapter 9.

rM rB

f, s f, s s, r

rM rA

s, r s

Figure 5.8: Maximally permissive supervisor.

f, s, rM s, r, rM s

rB rA

Figure 5.9: Reduced-state supervisor.

In this implementation, the de-

sired final solution is a LOGO program

that will correctly control the hardware

model. The reduced-state supervisor is

used to compute the supervised plant

as shown in Figure 5.10. From this, a

reduced supervised plant (shown in Figure 5.11) is generated in an ad hoc manner

from which LOGO code can be derived. In order to achieve this, it was suggested in

[13] to remove controllable events from the supervised plant until each state has at

most one outgoing controllable event while preserving a path from the initial state

to a marked state that signifies completion of the required task. The choice of which

controllable events to remove is ad hoc. In general, this task could be arbitrarily
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complex. In this situation, it is trivial due to the small size of the model and espe-

cially due to the form of the progress specification. By incorporating into the legal

specification a sequence of uncontrollable events (inputs) separated by states with all

controllable events (outputs) in self-loop, a single path is guaranteed to emerge in the

controlled plant. While this strategy was effective for this system, other systems with

varying behaviour may not permit such a sequential specification. In these cases, the

reduction would be more difficult.

Given existing subroutines to monitor the sensors, pseudocode for a complete

control solution is provided in Listing 5.1. This was extracted from the reduced

supervised plant by hand in an ad hoc manner. The approach for beginning-to-end

implementation of DES control theory just described parallels the work in [13] in

several ways. A physical system was proposed and modeled as a DES plant while

deferring some complexity to the event definitions. All states in the plant model

were marked, and the legal specification was formed from a safety and a progress

specification. The supervised plant was examined and reduced (in an ad hoc manner)

in order to isolate a desirable control sequence, which was translated into a final

control solution (LOGO code) by hand (in an ad hoc manner).

In reverse analysis of this methodology, it is clear that the generation of the

LOGO code depends only on the information contained within the supervised plant

of Figure 5.11. Recall that when L(X ) ⊆ L(G ) and X is controllable with respect

to G then X is equivalent to the supervised plant X /G . Consequently, considerable

computation could be saved by intentionally generating L such that L(L ) ⊆ L(G ).
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Figure 5.10: Supervised plant.
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Figure 5.11: Reduced supervised plant.
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Listing 5.1 A final control solution in pseudocode. This code assumes access to the
motor and sensor in an object-oriented manner, and further assumes that code has
been written to test for the logical sensor events unique to this system.

int state = 0;

void init()

{

state = 0;

motor.stop();

sensor.reset();

}

boolean run()

{

if (state == 0)

{

motor.goForward();

state = 1;

}

else if (state == 1) { if (sensor.reachedMid()) { state = 2; } }

else if (state == 2) { if (sensor.reachedB()) { state = 3; } }

else if (state == 3)

{

motor.stop();

state = 4;

}

else if (state == 4)

{

motor.goReverse();

state = 5;

}

else if (state == 5) { if (sensor.reachedMid()) { state = 6; } }

else if (state == 6) { if (sensor.reachedA()) { state = 7; } }

else if (state == 7)

{

motor.stop();

state = 8;

}

sensor.update();

if (state == 8) { return false; }

else { return true; }

}

void main()

{

init();

while(run()) {}

}
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Finally, it is natural to ask the question, “When the language of the final control

solution is known, can the solution be automatically generated from a reduced super-

vised plant model (such as Figure 5.11), thereby avoiding human error?” Certainly,

in the context of this simple example the answer is ‘yes’, as demonstrated by the

simplicity and standardized nature of the pseudocode in Listing 5.1. The same can-

not be said for the ad hoc process of reducing the supervised plant. This is achieved

by arbitrarily removing outgoing controllable events based on intuitive desires of the

human designer.

5.5 Alternate Approaches

The Reality of Design

There is a wide variety of systems that can be conveniently modeled as discrete-event,

and of these, some classes are very different than others with respect to implemen-

tation of DES control theory. Consider some of the properties of the transporter

problem. It is very important to realize that the physical model and the DES model

are created simultaneously. Even if a previous employee had first snapped together

the LEGO blocks and hooked up the motor and sensor to the Dacta interface box, the

plant would still be the empty set. The connected blocks, motor and sensor (without

control) generate nothing. There is no plant until the DES control theory is imple-

mented. This is very different from a class of problems where there is an existing

system functioning under existing and imperfect control (such as is the case with

DESCO discussed in Chapter 3). One might assume that a third employee might

have written an ad hoc and faulty LOGO program to control the transporter but this
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is not the same as an existing system. Either the faulty program must be deleted

(which reverts to the original case) or the goal changes to modeling and controlling

the LOGO code itself. This is quite different than modeling the actual LEGO system

and, in cases such as this, would be strikingly inefficient.

Consideration of the Goal

In the case of the LEGO transporter, the ultimate goal is to connect together some

physical components and write a LOGO program that correctly instructs the physical

components to transport the payload from point A to point B and back to point A.

Once the physical setup has been defined and has been translated into a DES model

such as the plant shown in Figure 5.2, the remaining task is to generate the LOGO

code. In order to generate the LOGO code, it is only necessary to obtain a model of

an appropriately supervised plant. In the previous discussion this was accomplished

by constructing and reducing a safety specification, constructing a progress specifi-

cation, obtaining a legal specification as the synchronous product of the safety and

progress specifications, synthesizing a maximally permissive supervisor from the legal

specification and plant, reducing the supervisor, and finally computing the supervised

plant as the synchronous product of the reduced-state supervisor and the plant.

Consider an alternate methodology for achieving the same result. First recall that

an appropriately supervised plant should not drive the transporter outside of points A

or B (for safety reasons) and further should generate no other string of sensor events

than “reachedMid”, “reachedB”, “reachedMid”, “reachedA” (for correct progress). In

this, as in the original discussion, it shall be assumed that the process should only be

carried out once. With the control objectives in mind, consider the construction of a
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legal specification by first imposing safety and second incorporating progress.
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Figure 5.12: Safety imposed by removing
events from the plant.

Safety can be imposed as shown in Figure

5.12. This model is the same as the original

construction of the safety specification from

Figure 5.4. In this stage the plant is exam-

ined and two events are removed in order to

guarantee safety. This ad hoc process is nec-

essarily the job of a human designer. Pre-

viously once safety was expressed redundant

information was removed converting it into a

reduced-state model. In this new methodol-

ogy, the constraint is added that the ad hoc expression of safety must generate a

language that is a subset of or equal to L(G ). Figure 5.12 is guaranteed to comply

with this constraint because it was constructed by only removing states and/or tran-

sitions from the plant. Assuming the plant is a minimal-state representation of itself,

any state-space reduction of Figure 5.12 is guaranteed to violate the new sublanguage

constraint.

Next consider modifying the model to communicate progress. This can again

be achieved in an ad hoc manner by a human designer. One must simply split all

states that allow paths that generate unwanted sequences of sensor events—namely

states zero and three. It is, however, perhaps too much to ask of the designer to

manually incorporate the requirements for progress into the legal specification. As

in the previous example it may be easier to express it as a progress specification

and automatically compute the final legal specification. The progress specification
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of Figure 5.6 is reproduced here as Figure 5.13. The final legal specification is the

synchronous product of safety and progress and is shown in Figure 5.14.

a b c d e
rM rB

f, s, r f, s, r f, s, r

rM rA

f, s, r f, s, r

Figure 5.13: Adding progress to the legal specification.
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Figure 5.14: The synchronous product of safety and progress.

This legal specification is different than the previous specification of Figure 5.7

because the safety specification was not reduced. This legal specification is not con-

trollable with respect to the plant (nor was the previous legal specification). It is,

however, highly desirable to achieve a controllable result. The synchronous product
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of the safety and progress specifications is guaranteed to generate a sublanguage of

L(G ) because the safety specification itself generates a sublanguage of L(G ). If it

were also controllable, it would not only serve as an implicit supervisor, but also

would represent the supervised plant, which is the goal of this exercise.
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Figure 5.15: The legal specification, supervisor, and supervised plant.

Consider modifying the synchronous product algorithm to delete from the result

any states that fail to include any outgoing uncontrollable events that exist in the

corresponding states of the input automata and further deleting all states that uncon-

trollably lead to these deleted states. This is effectively the same as computing the

synchronous product and the maximally permissive supervisor simultaneously. It has

the benefit of reduced computational complexity and guarantees that the language

produced by the supervisor is a sublanguage of the language produced by the plant.

This achieves the goal of automatically synthesizing a model of an appropriately

supervised plant, and the result is shown in Figure 5.15.
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Summary

All the work in this chapter has hinged on the assumption (given in [13]) that in

the end a human designer would choose a single path from the controlled plant and

generate a LOGO program from it. An important property of this system is that no

plant actually exists. There will never exist a plant and supervisor in the standard

closed-loop form. The solution for this system is a LOGO program that is unrelated

to the idea of interacting finite-state machines. In light of this fact, the human

designer needs only to acquire a model of the controlled plant from which to extract

a LOGO program by an ad hoc method. The standard application of theory that

one might assume to employ is inefficient for a system such as this. An alternate

methodology is summarized below. While it only decreases the complexity of the

task by some constant factor, one could find the decreased workload appreciable in

practice. The reality is that a human must give a description of the plant, a human

must give a description of what is legal, and a human must extract a single path

from the controlled plant. The automation therefore lies in the generation of the

controlled plant model from the human’s description of what is possible and what is

legal. The key difference here is that this automation is carried out in a single step.

The user need only input the safety and progress models as described. Tedious tasks

such as the separate computation of the final legal specification, the supervisor and

the reduced supervisor could be avoided.

1. Define the event space.

2. Define the plant FSM G .
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3. From a copy of the plant define a safety FSM that generates a language con-

tained in or equal to L(G ) (which can be achieved by paring down the transition

structure of the plant).

4. Define a progress FSM that is a series of uncontrollable events with all control-

lable events in self-loop.

5. Run an algorithm that simultaneously computes the synchronous product of

safety and progress and removes all uncontrollability with respect to G . That is

to say that, while computing the synchronous product, if a state from the safety

specification is not included in the result and there exists an uncontrollable

transition to that state (in the original safety specification), then the state that

originates the uncontrollable transition must also be removed from the result

(and so on recursively).

6. The result is an appropriately supervised plant from which the designer may

choose a path and generate a LOGO program.

The methodologies examined and proposed in this Chapter provide means of ap-

plying DES control theory to a class of systems. These procedures require considerable

ad hoc components and, applied to problems of this scale, are arguably more com-

plicated and error prone than a straightforward ad hoc solution. Nevertheless, they

do promise to scale to larger systems and would presumably realize an advantage in

such cases. These strategies along with the others reviewed in previous chapters are

listed and categorized in Chapter 8.



Chapter 6

Resource Management

6.1 System Description

In [37] Ramadge and Wonham illustrate the principles of DES control theory by

considering “two users of a single resource”. They model the system, define a legal

specification, compute a supervisor and further compute a reduced-state supervisor.

This is the standard procedure by which DES control theory would theoretically be

used to solve problems, and a suitable supervisor is considered the final solution. It

can be demonstrated that there is a gap between this solution and its implementation.

First consider the behaviour of a single user as shown in Figure 6.1. Note that

it is assumed that granting use of the resource is controllable and that once the user

desires the resource, the user does not cease to desire the resource before acquiring

the resource. With these two assumptions in place it is clear that the abstract model

in Figure 6.1 is correct.

76
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Idle

Request Use

want

grant

abandon

Figure 6.1: Behaviour of a user and a resource.

The shuffle of two such models (shown

in Figure 6.2) represents the concurrent be-

haviour of the two users under the assump-

tion that actions are asynchronous and in-

dependent. This is valid if any implemen-

tation interprets two simultaneous events

as arbitrarily one before the other. Note

that this model contains all possible behav-

iour including potentially undesirable be-

haviour.

In [37] the control objectives for this system are mutual exclusion (only one user

should have access to the resource at any given time) and fair usage (the user that first

requests the resource should first receive the resource, as in a queue). These objectives

are formalized in Figure 6.3 which generates a sublanguage of the language generated

by Figure 6.2. Hence Figure 6.2 represents the plant and Figure 6.3 represents the

legal specification.

In the legal specification, mutual exclusion was achieved by the deletion of the

state “UU” and fair usage was achieved by splitting the state “RR”, thereby elimi-

nating any ambiguity as to which user first requested the resource. Recall that if the

legal specification is found to be controllable with respect to the plant, then it can

serve as an implicit supervisor. In this case it is indeed found to be controllable.
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Figure 6.2: Behaviour of two users and a single resource. The symbol wi indicates user i suddenly
wanting the resource. The symbol gi indicates user i suddenly being granted the resource. The
symbol ai indicates user i suddenly abandoning the resource. States are labeled USER1 USER2
with I indicating the idle state, R indicating the request state and U indicating the use state.
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Figure 6.3: Legal behaviour of two users with a single resource. R′ is used to indicate that the
respective user was the first to enter the request state. The remaining symbols are as defined in
previous figures. This figure models the control objectives of mutual exclusion and fair usage. Since
this specification is found to be controllable with respect to the plant it also serves as an implicit
supervisor.
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Figure 6.4: Reduced-state supervisor of two users with a
single resource. Here R

U
simply indicates that the respective

user may be in either the request state or the use state. The
remaining symbols are as defined in previous figures.

In general it is assumed that

a supervisor with a smaller state

space is more desirable, and since

a supervisor acts in conjunction

with events generated by the

plant, much of the structure in

Figure 6.3 is redundant. For

this reason, the reduced-state su-

pervisor shown in Figure 6.4 is

computed as the final solution.

Note that while the automaton

in Figure 6.4 could generate il-

legal strings, this never occurs

in closed-loop, because all events

are generated by the plant.

6.2 Plausible Implementations

Consider a concrete example of this abstract model, namely two humans in a clothing

store with only one change room as shown in Figure 6.5. In this case the supervisor

might be implemented by the store clerk. Consider now what exactly is the plant?

Certainly the individual humans may generate the “want” and “abandon” events, but

what entity generates the “grant” events? If the store clerk is the supervisor then

strictly speaking, it cannot generate events. Following the framework, there must

exist a fourth entity within the plant that generates “grant” events. In the worst
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case, these might be generated randomly. Alternatively they might be triggered by

any “want” event. Clearly, in an implementation it is desirable that there exist some

notion of causality, but if the “grant” generating component is more intelligent and

only generates grant events according to the legal specification, then the plant is

self-controlled and has no need for DES control theory. This concern exposes the

possibility of integrating DES supervision into the plant as the control solution.

User 1 User 2

Resource

Supervisor

Figure 6.5: Two human users and a resource with a human supervisor.

In the scenario of Figure 6.5 a single store clerk could serve as both a supervi-

sor and a component of the plant. If the store clerk were given a copy of the legal

specification in Figure 6.3 (which is an implicit supervisor) and was instructed to

generate “grant” events as soon as possible whenever allowable, a correct implemen-

tation would be complete. This is not the case for the reduced-state supervisor in

Figure 6.4 because it would continually generate “grant” events in all states other

than the initial state. The store clerk is both the supervisor and part of the plant,

so it must have knowledge of not only what should occur but also what can occur.

The latter is exactly the redundant information that was removed in order to create
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the reduced-state supervisor. This demonstrates that if the plant is not fully defined

independent of the control objectives, then DES control theory cannot be applied in

the standard manner. This issue is revisited at the end of this chapter.

6.2.1 Automatic Solutions

User 1
Request Device

Grant Device
RESOURCE

User 2

Request Device

Grant Device

PIC16F84
(supervisor)

+5v

osc

4 MHz

Figure 6.6: Two human users and a re-
source with a machine supervisor.

Up to this point the discussion has focused on

high-level implementation utilizing existing com-

plicated objects such as humans. While existence

of a solution has been shown, the idea of handing

a human a paper copy of Figure 6.3 is somewhat

clumsy and doesn’t scale to automated systems.

This motivates investigation into low-level and

automatic implementations such as the scenario

depicted in Figure 6.6. Here control is imposed

by a machine, but in order to achieve an imple-

mentation such as this, the system must be more

strictly defined. In the human scenario it is not necessary to specify exactly how

“want”, “grant” and “abandon” are realized because the human components are ver-

satile and complex. In a civilized situation, “w1, w2, g1, a1, g2, a2” might map to the

following interchange: “May I (user1) use the room”, “May I (user2) use the room”,

“Go ahead (user1)”, “I’m (user1) done”, “Go ahead (user2)”, “I’m (user2) done”. In

this exchange addressing is determined by eye contact, and protection of the resource

is achieved by a shared protocol where the users don’t use the resource without per-

mission. In a less civilized example, the clerk might protect the resource by main
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force, but the dynamics of the situation are the same.

In the machine example of Figure 6.6 the users are contained in separate rooms,

each with a request device and a grant device. Consider the situation where the re-

quest device is a binary switch connected to an input pin and the grant device is a lock-

able door connected to an output pin. A human user indicates “want” by flipping the

switch (input reads one), and indicates “abandon” by returning the switch to the ini-

tial position (input reads zero). Similarly “grant” corresponds to the unlocking of the

door (output zero) and a necessary component of “abandon” must be a re-locking of

the door (output one). Note that the state of the lock, not the position of the human,

must indicate possession of the resource. Once the door is unlocked, the human has

WL
01

WL
11

WL
10

L← 0

W ← 0 (⇒ L← 1)

W ← 1

Figure 6.7: Complete behaviour of a user and a re-
source. State labels show the values of the system vari-
ables want and locked. In the initial state WL or 01
indicates that the resource is un-wanted and locked.
The transition “W ← 0 (⇒ L ← 1)” represents two
changes of state (namely 10 → 00 → 01) and reads:
“The user ceases to want the resource which implicitly
denies access to the resource.”

uncontrollable access to the resource

and therefore even if the human

never exits the room it must be con-

sidered to be in possession of the re-

source. For rigor, assume that the

human cannot revert the switch and

rush through the door before it is

locked, and assume that the door is

the only access to the resource and

cannot be compromised.

This description implies that a

single user is associated with two bi-

nary variables describing four possi-

ble states. This conflicts with the
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three state model of Figure 6.1 until one realizes that “abandon” actually represents

two changes of state. First the user indicates “abandon” and second “abandon” is

enforced as shown in Figure 6.7. This difference is, in fact, an artifact of the imple-

mentation. Consider an alternate situation where the grant device is a door without

a lock but having a buzzer that can be made to ring for three seconds by a very

short pulse on the output pin. In this situation, “grant” corresponds to such a pulse

and there is no machine restriction on the “abandon” event. This is accomplished by

deferring complexity to a different component of the system, namely the human.

6.2.2 Implementation Options

These nuances of implementation re-occur in many other systems and can be summa-

rized by two concepts: obedience and communication. Components of a system may

or may not be obedient. An obedient component may be trusted to behave accord-

ing to predefined protocols and therefore control can be achieved via communication.

For example, a human may be trusted to not pass through a door unless a light is

green, or a software process may be trusted to not access an area of memory unless a

predefined boolean value it can read is set to true. Similarly some humans cannot be

trusted to not use doors (hence the invention of locks), and some software processes

(viruses) cannot be trusted to not modify data (hence the physical read-only switch

on 3.5-inch floppy disks).

The concept of control by communication itself has two components: state-based

communication and transient communication. A light that is lit when the user

is not allowed to access the resource and unlit otherwise is an example of state-based

communication; whereas a light that briefly flashes or a bell that briefly rings to
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communicate that the user is now allowed to access the resource is an example of

transient communication. Note that transient communication requires an additional

assumption that the relevant component never misses the communication.

In transient communication the lack of a flashing light, or the lack of a ringing bell

does not imply that the user does not have access to the resource, and hence the state

of the communicator (the means of communication) is not consistent with the state

of the communication (the message received). In all transient communication, the

message received (in this case the granting of access to a resource) must implicitly

expire at some later predefined state. In the case of the two users and a resource

system, each entity may know that once the resource is abandoned, further access is

implicitly denied.

Finally, consider a working solution realized by machine code in the microcon-

troller for the switches and locks system previously defined, and note that replacing

the locks with lights that are lit when the locks would be unlocked and unlit otherwise,

and replacing the humans with obedient humans who never enter the room unless

their respective lights are lit demonstrates that the control solution for a non-obedient

system is identical to the control solution for an obedient system with state-based

communication. Further note that this is not the case for obedient systems with tran-

sient communication, which defer complexity to sub-components in order to simplify

the control solution.

The re-labeled specification of Figure 6.8 contains enough information for any

firmware programmer to realize an implementation of the switches and locks scenario

of Figure 6.6 without any knowledge of the DES control theory with which it was

generated and verified. While this may not provide an efficient solution or even a
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scalable solution, it demonstrates a bridge from theory to application.
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Figure 6.8: Complete legal behaviour of two users with a single resource. Each state records the
current value of all system variables, and each transition documents the nature of their changes. This
figure models the control objectives of mutual exclusion and fair usage. It serves as an integrated
plant and supervisor; namely specifying what outputs to generate and which inputs to ignore.
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6.3 The Plant Myth

At this point, the plant, legal specification and supervisor seem well understood and

various implementations seem straightforward. Reconsider the plant of Figure 6.7

in the context of the switches and locks implementation of Figure 6.6. Does the

plant model define all possible behaviour? Before the microcontroller is programmed,

no behaviour exists. After the microcontroller is correctly programmed only legal

behaviour exists and DES control theory is unnecessary.
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X
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Figure 6.9: Unrestricted plant.

Consider a single user plant

model expanded to show all sys-

tem states and extended to a com-

plete graph as shown in Figure 6.9.

The transitions labeled X represent

two simultaneous changes of state.

For simplicity, assume the micro-

controller always functions quickly

enough to distinguish arbitrarily

close events as one before the other.

This eliminates the possibility of

the X transitions. Furthermore, the human behaviour is assumed to be restricted

by the rule that a user does not cease to desire the resource before acquiring the re-

source. This means the user will never revert the switch before the resource is granted

and guarantees that 11
W
→ 01 will never occur. Finally, based on the high-speed mi-

crocontroller assumption, the door will always be locked very soon after the switch is

moved to the abandonment position. That is to say that 00
L
→ 01 will always quickly
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follow 10
W
→ 00, thereby guaranteeing that 00

W
→ 10 will never occur.
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Figure 6.10: Restricted plant.

At this point the plant is defined by

Figure 6.10, but it includes more transi-

tions than were expected by the analysis

at the beginning of this chapter. What is

it about the system that could preclude

the possibility of 10
L
→ 11 and 01

L
→ 00

other than the fact that the behaviour is

intuitively not useful? In fact, there is

nothing to preclude these events. They

are quite possible based on the software

interface defined by the event space. The definition of the event space is of great

importance, and the following may only hold for systems (such as this) where con-

trollable events map to output pins on a programmable device and uncontrollable

events map to input pins on a programmable device.

In this case, the boundary between plant and legal specification has become

blurred because the microcontroller component (still unprogrammed) could be ca-

pable of taking actions not only in response to the actions of other entities (such as

the humans) but also of its own initiative. Since it is desirable to automatically gen-

erate an appropriate program for the microcontroller, strictly speaking, one should

not disregard possible events simply because they are not useful.

On the other hand, one could simply view this as iterative construction of a con-

trolled plant. Consider a plant G . Now suppose that L is constructed by copying G
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and then only removing some controllable transitions. Such an L is not only control-

lable with respect to G but is in fact equal to the controlled plant L /G . Furthermore,

one might choose to call this new model the plant, because, once programmed, the

microcontroller will not in fact be capable of generating the removed events.

In light of this, it is safe to iteratively construct a specification (that, in essence,

constitutes the plant, the legal requirement, the supervisor, and the controlled plant)

in the following manner. Once the event space has been defined, start by defining X

as an automaton that expresses the widest possible range of behaviour. Next construct

an automaton L1 that removes some behaviour (either unreasonable or undesirable)

and confirm L1 controllable with respect to X . Finally, define X = L1/X . Repeat

for more requirements Li until all requirements have been included. The automaton

X contains all required implementation information for plant components that do not

yet exist (code on the microcontroller) and further contains all necessary supervisor

information implicit in those plant behaviours that could have existed but did not

survive the generation process into the final system specification. Note that in this

scenario, no attempt is made to generate a reduced-state supervisor, because it relies

on the assumption of classic closed-loop control; which is to say, it requires that the

plant exists independent of the control objectives.

Summary

This material provides specific means of applying DES control theory to specific

systems. As in any problem, the choice of how to view the system and the tools

to employ involves trade-offs between various goals. These strategies along with the

others reviewed in previous chapters are listed and categorized in Chapter 8.



Chapter 7

Initiated-Event Methodology

In this chapter a new methodology is presented for application of DES control theory

to low-level systems with programmable components. The methodology is developed

in detail for one system, and then its application to two other systems is described in

less detail, for the purpose of demonstrating both its flexibility and its weaknesses.

This new approach, called the initiated-event methodology, is presented using a vend-

ing machine as a running example. Its fundamental precepts include a particular style

of event space definition (namely, abstracting uncontrollable inputs and controllable

outputs into a single controllable event that is uncontrollably initiated) and the goal

of automatic code generation (for the programmable component of the plant). As

it is described (with the vending machine example), justification for the approach is

provided. Furthermore, this new methodology is summarized (along with the other

approaches examined in this work) in Chapter 8.

The core human component of the approach is in the event space definition, and

three separate styles of automatic result are proposed: monolithic, distributed and

integrated. The monolithic and distributed results follow from classical DES control

90
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theory. The integrated result applies to a smaller set of systems and requires more

input from the human designer, but it provides savings in both time and data com-

plexity. All three results are accompanied by pseudocode that indicates how such

results could be obtained in a general way. Furthermore, Appendix C contains con-

crete representations of each result. The combination of these should be sufficient

for an individual to implement automated code generation from the initiated-event

methodology for an arbitrary platform.

Finally, one should note that the initiated-event methodology does not provide

a completely automated solution. For each event definition it is required that the

conditions for initiation and the work necessary for fulfillment both be provided (in

code) by the human designer. Such code would presumably be inserted into the

automatically generated framework as the final phase of the DES solution.

7.1 Vending Machine

Discrete-Event Systems control theory is founded upon FSM models, and the vend-

ing machine is a favorite real-world example of textbooks introducing finite-state ma-

chines. Furthermore, the vending machine is a low-level, non-intelligent device, and

as such is illustrative of many of the complications that can arise during the appli-

cation and implementation of DES control theory. In this section the initiated-event

methodology is introduced implicitly via a vending machine example.
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7.1.1 System Description

Consider a fairly high-level view of a very simple vending machine, depicted in Figure

7.1. The vending machine can accept one type of token and dispense one type of

pop. The pop costs two tokens. The human users may insert tokens (which may be

rejected). The users may also request pop (using a button that may be ignored). The

machine contains a maximum of three pop and may be refilled by a human technician.

Figure 7.1: A representation of a simple vending machine.

From the point of view of a control solution (such as a microcontroller), the inputs

caused by the human users are uncontrollable (values read from input pins) and the

outputs generated by the machine are controllable (values written to output pins).

This point of view, however, results in a rather unwieldy application of DES control

theory. From a more abstract point of view, difficulties such as controllable event

generation and separation of the plant from the control objectives may be resolved.

The event space is the aspect of the modeling language that is determined by the

chosen point of view. The event space defined in Table 7.1 is representative of the

more abstract (and beneficial) point of view.
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Symbol Description

“token” controllable. A token is received into the machine’s bank. Assume that a human
may asynchronously and uncontrollably input tokens into the machine, but that a
subsystem always senses this and always has the option of accepting or rejecting
the token. Further assume that this decision is always carried out fully before the
human is able to take any other action. Further assume that no user ever inputs
any matter other than a valid token. Finally, the token bank is assumed to be of
infinite size. The instantaneous time of this event is taken to be the time after
which the machine is no longer able to control the position of an inserted token.
Note that if the token is rejected, then this event has not occurred.

“pop” controllable. A pop is delivered from the machine. This physically corresponds
to a mechanical action in the ejection device which can occur whether or not any
pop exists in the machine. This event is considered to have occurred regardless
of whether or not a pop was actually dispensed from the machine. All possibil-
ity of jamming or mechanical failure is ignored. Assume that a human user may
asynchronously and uncontrollably request the vending of a pop by pressing and
releasing a button, but that a subsystem always senses this and always has the
option of ignoring the input or dispensing a pop. Further assume that this decision
is always carried out fully before the human is able to take any other action. The
instantaneous time of this event is taken to be the time after which the ejection
device stops moving. Note that if the ejection device does not attempt to dispense
a pop, then this event has not occurred.

“refill” uncontrollable. The pop hopper is manually refilled such that the machine con-
tains three pop. It is assumed that during the act of refilling, all other input is
prevented from occurring. The instantaneous time of this event is taken to be the
time after which the refiller stops preventing other users from interacting with the
machine.

Table 7.1: Events in the vending machine.

7.1.2 Rules

The description of the vending machine system can be summarized as a list of rules

that communicate the machine’s goals and physical limitations. Figure 7.2 demon-

strates the rule that pop costs two tokens. It contains two pieces of information

that can be read as Rule 1.1 “pop events must be separated by at least two token

events” and Rule 1.2 “pop events must be separated by at most two token events”.



CHAPTER 7. INITIATED-EVENT METHODOLOGY 94

0 1 2
token token

refill refill refill

pop

Figure 7.2: Rule: pop costs two tokens.

The former is indicated by the lack of

“pop” transitions from states zero and

one. The latter is indicated by the

lack of a “token” transition from state

two. The structure of the automaton

facilitates the counting of un-spent to-

kens that have been received into the

machine’s bank and implicitly represents the numerical cost of pop. The counting

depends only on the “token” and “pop” events. The “refill” event has no impact on

this rule and is included in self-loop only to be unrestrictive. Note that this rule is

actually the synchronous product of the two pieces of information it represents. Rule

1.1 is described by Figure 7.2 with the addition of the “token” event in self-loop at

state two. Rule 1.2 is described by Figure 7.2 with the addition of the “pop” event

in self-loop at state zero and transitioning from state one to zero.

3 2 1 0
pop pop

token, refill token token

refill

pop

refill

refill

Figure 7.3: Rule: the machine should not steal money.

Figure 7.3 demon-

strates the rule that

the machine should

not steal money. It

contains two pieces of

information that can

be read as Rule 2.1

“don’t receive tokens

into the machine’s bank when there is no pop in the machine” and Rule 2.2 “don’t

attempt to deliver pop (i.e., drive the ejection device) when there is no pop in the
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machine”. The former is indicated by the lack of a “token” transition from state

zero. The latter is indicated by the lack of a “pop” transition from state zero. The

structure of the automaton facilitates the counting of remaining pop in the machine

and implicitly represents the physical limitation that the machine can contain a maxi-

mum of three pop. The counting depends only on the “pop” and “refill” events. Note

that this rule is actually the synchronous product of the two pieces of information it

represents. Rule 2.1 is described by Figure 7.3 with the addition of the “pop” event

in self-loop at state zero. Rule 2.2 is described by Figure 7.3 with the addition of the

“token” event in self-loop at state zero.

The rules represented in Figures 7.2 and 7.3 communicate the desired behaviour

of the machine (the legal specification). What then is the possible behaviour (the

plant)? Considering the event space, the plant must be defined by Σ∗ (a single state

automaton with all events in self-loop). This definition seems unfortunately broad

but follows from the fact that each event may by asynchronously, independently and

uncontrollably initiated.

7.1.3 Monolithic Supervision

Assume that the control solution is to be achieved with a microcontroller. The un-

controllable refilling of the machine by a technician might cause a pulse on an input

pin after its completion. In the modeling language, this single pulse maps to the gen-

eration of the “refill” event. The controllable events “token” and “pop” correspond

to complicated series of actions on both input and output pins whenever the event is

initiated. It very well may be that the microcontroller is required to do work even
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when the event is not allowed to occur. In both cases, the series starts with uncon-

trollable signals on input pins and branch to carry out one of two possible series of

actions on output pins. This means that each event corresponds to a single decision,

namely whether to follow the “yes” branch or the “no” branch. It is this property

that allows them to map to controllable events in the modeling language.

Considering the subsystems in this manner and with a perspective at the level

of machine code on the microcontroller, one can imagine the system assembled, pro-

grammed and in place. Because events are assumed to be atomic, the main loop

could simply poll a “refill indicator” sensor, a “token inserted” sensor, and a “pop

request button” sensor, executing the appropriate subroutine whenever each occurred.

Pseudocode for a general plant of this form is given in Listings 7.1 and 7.2. All the

solution would lack is the answer to the “yes/no” questions when choosing a branch

in the controllable event routines; which is to say, all it would lack is a supervisor.

Listing 7.1 Pseudocode snippet for a general plant

...

void main()

{

doEvent0();

doEvent1();

...

doEventN();

}

Pseudocode for a general supervisor of this form is given in Listing 7.3. All events

in the event space are initiated by external systems (human users and a human

technician causing signals to appear on the input pins) so there is no question as

to how the microcontroller (viewed as the plant) should generate events. It is the

manner in which the event space is defined that allows the DES control theory to be

applied in a straightforward way.
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Listing 7.2 Pseudocode snippet for a general event

// # is an integer on [0..N]

void doEvent#()

{

boolean initiated = testSensor#(); // test if this event is being initiated

if (initiated)

{

boolean enabled = notifySupervisor(#);

if (enabled)

{

// processing for "yes" branch

// although uncontrollable events are always enabled, the supervisor still needs to be notified

}

else

{

// processing for "no" branch

}

}

}

Listing 7.3 Pseudocode snippet for a general supervisor

const NUM_EVENTS = #; // the number of events in the event space

int state = 0; // global integer initialized to zero

// data in the form [state0],[state1],...,[stateM]

// where [stateI] = [event0_destination,event1_destination,...,eventN_destination]

// and where -1 implies disablement (i.e. no destination)

int[] data = {1,-1,0,2,-1,1,-1,3,2,4,-1,0,5,-1,1,-1,6,2,7,-1,0,8,-1,1,-1,9,2,-1,-1,0};

// event is the ID of the event that is notifying the supervisor (i.e. 0..N)

boolean notifySupervisor(int event)

{

int next_state = data[state*NUM_EVENTS + event]; // get the requested data

if (next_state == -1)

{

// disabled

return false;

}

else

{

// enabled

state = next_state;

return true;

}

}

The complete legal specification for the vending machine can be computed as the

synchronous product of Figures 7.2 and 7.3 as shown in Figure 7.4, and since it is found
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to be controllable with respect to the plant, it also serves as an implicit supervisor.

A partial implementation of the plant and supervisor in assembly language for a

PIC16F84 microcontroller is given in Appendix C as Listing C.1.

0 3 6
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refill

token

token token

token token

token

pop
pop

pop

refill

refill

refill

refill

refill

refill

refill

refill

refill

Figure 7.4: The complete legal specification (via synchronous product) which also serves as an
implicit supervisor.

Concrete code solutions for the vending machine problem (such as those listed

in Appendix C) can, to a considerable degree, be generated automatically given the

event space (Table 7.1), plant (Σ∗), and legal specification (Figures 7.2 and 7.3). The

only ad hoc components of the solution are the testing of the event initiation sensors

and the content of the “yes/no” branches of the event subroutines (which are simply



CHAPTER 7. INITIATED-EVENT METHODOLOGY 99

the specific realization of the abstract event definitions).

7.1.4 Distributed Supervision

The current solution, however, can be improved upon by employing principles from

distributed control theory to decrease the amount of data required to achieve super-

vision. The monolithic supervisor of Figure 7.4 was generated as the synchronous

product of the set of rules that define the system. In distributed control, an event is

disabled if any of a set of supervisors disables the event. Under full observation (as

is the case) this policy is equivalent to the synchronous product operation. Therefore

instead of precomputing a monolithic supervisor from the set of rules, each rule can

be treated as a distributed supervisor.

Listing 7.4 Pseudocode snippet for a general event with distributed supervisors.

// # is an integer on [0..N]

void doEvent#()

{

boolean initiated = testSensor#(); // test if this event is being initiated

if (initiated)

{

boolean enabled = true; // disable if any supervisor disables

enabled = enabled && notifySupervisor1(#);

enabled = enabled && notifySupervisor2(#);

...

enabled = enabled && notifySupervisorX(#);

if (enabled)

{

confirm(); // notify all supervisors that the event was not disabled by anyone

// processing for "yes" branch

// although uncontrollable events are always enabled, the supervisors still need to be notified

}

else

{

// processing for "no" branch

}

}

}
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Pseudocode for a general event (which is part of the plant) that supports distrib-

uted supervision is given in Listing 7.4, and pseudocode for a group of distributed

supervisors is given in Listing 7.5.

Listing 7.5 Pseudocode snippet for distributed supervisors

const NUM_EVENTS = #; // the number of events in the event space

int s1state = 0, s2state = 0, ..., sXstate = 0;

int next_s1state = 0, next_s2state = 0, ..., next_sXstate = 0;

// data in the form [state0],[state1],...,[stateM]

// where [stateI] = [event0_destination,event1_destination,...,eventN_destination]

// and where -1 implies disablement (i.e., no destination)

int[] s1data = {1,-1,0,2,-1,1,-1,0,2};

int[] s2data = {0,1,0,1,2,0,2,3,0,-1,-1,0};

...

int[] sXdata = {0,0,0};

boolean notifySupervisor1(int event)

{

int next = s1data[s1state*NUM_EVENTS + event]; // get the requested data

if (next == -1) { return false; }

else { next_s1state = next; return true; }

}

boolean notifySupervisor2(int event)

{

int next = s2data[s2state*NUM_EVENTS + event]; // get the requested data

if (next == -1) { return false; }

else { next_s2state = next; return true; }

}

...

boolean notifySupervisorX(int event)

{

int next = sXdata[sXstate*NUM_EVENTS + event]; // get the requested data

if (next == -1) { return false; }

else { next_sXstate = next; return true; }

}

void confirm()

{

s1state = next_s1state;

s2state = next_s2state;

...

sXstate = next_sXstate;

}

A partial implementation of the plant under distributed supervision in assembly

language for a PIC16F84 microcontroller is given in Appendix C as Listing C.2. These

listings demonstrate a savings in data complexity at a cost of increased source code
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and runtime complexity. Specifically, let E be the size of the event space, let R be

the number of rules, let Si be the number of states in rule i, and let Kn be constants.

Then monolithic supervision has a data complexity of O(S1 × S2 × ... × SR) while

distributed supervision has a data complexity of O(S1 + S2 + ... + SR). For example,

in a five rule system, where each rule has five states, distributed supervision requires

25 units of data whereas monolithic supervision could require 3125 units of data.

This gain comes at a cost of E × (R ×K1 + K2) instructions which both consumes

program memory and increases runtime. Specifically, under monolithic supervision an

event decision is O(1), versus O(R) under distributed control. While these are both

constant time, the difference is real and can have an important impact on systems

where runtime is vastly more important than storage space.

In the simple vending machine application as detailed in the assembly listings of

Appendix C, the overhead of distributed supervision (in increased bytes of program

memory) is not worth the gain; however in a system with more rules the opposite

could easily be the case. Furthermore, the relative overhead could be reduced by

optimizing the implementation of the separate supervisory subroutines as a single

indexed routine.

7.1.5 Integrated Supervision

In an effort to further reduce the complexity of the final solution, consider a general

supervisor. It has two main components: its structure which keeps track of important

state information about the plant and its transitions which determine the actions

allowable in various system states. In the case of the vending machine system, that

information could alternatively be contained in two system variables (un-spent tokens
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and available pop) and the four sub-rules previously defined. This is obvious in the

ad hoc solution in Listing C.3 of Appendix C, which is notably less complex than

the automatically generated solutions. In this solution, each event routine (doPop,

doToken, doRefill) is responsible for accurately updating the system variables (tokens,

pops), and the controllable routines (doPop, doToken) are further responsible to test

all applicable rules (from 1.1, 1.2, 2.1, 2.2) in order to decide whether to process the

“yes” or “no” branch. From this perspective, the ad hoc solution seems to be an

integrated version of the plant/supervisor solution. In fact, by adding information

to the “rules” or “supervisors” and limiting the scope of the modeling language,

integrated solutions such as the ad hoc solution in Listing C.3 of Appendix C can

also be automatically generated.

Consider the following general restriction: all integer system variables affected

by events from Σ must be defined along with their initial values, as must the effect

each element of Σ has on each system variable. Compliance to this restriction for the

vending machine system is given in Tables 7.2 and 7.3.

System Variable Initial Value Description

“tokens” 0 The number of tokens received into the machine’s bank since
the last pop was dispensed.

“pops” 3 The number of pops currently in the vending machine.

Table 7.2: System variables of the vending machine.

Symbol Impact on tokens Impact on pops

“token” tokens = tokens + 1 no change
“pop” tokens = tokens - 2 pops = pops -1
“refill” no change pops = 3

Table 7.3: Events impact on system variables.
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Listing 7.6 Pseudocode algorithm for generation of an integrated solution.

// initialization code //////////////////////////////////////////////////

for each system_variable

output: system_variable = initial_value // from Table 7.2

next system_variable

// main code ////////////////////////////////////////////////////////////

output: loop

output: {

for each event

output: doEvent

next event

output: }

// event code ///////////////////////////////////////////////////////////

// need to compute state values

for each rule

initial_state.value = rule.affected_variable.initial_value

for each remaining_state

remaining_state.value = path_from_initial_state.value

// any path will do since we assume the fsm is designed to represent single values in each state

// when calculating the value you consider only modifications to the affected_variable

// by each transition on the path

next remaining_state

next rule

for each event

output: doEvent

output: {

output: if (isInitiated()) // this is not automated in any of the solutions

output: {

condition_list = nothing

for each rule

for each state

if (state.disables(event))

{

condition_list.add(rule.affected_variable != state.value)

}

next state

next rule

output: if (condition_list)

output: {

for each system_variable

if event.hasModificationFor(system_variable) // from Table 7.3

{

output: system_variable = modification

}

next system_variable

output: // yes branch, do custom work.

output: }

output: else

output: {

output: // no branch, do custom work.

output: }

output: }

output: }

next event
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Does recording this information actually constitute more work for the designer?

Is it even possible to define the rules of Figures 7.2 and 7.3 without being conscious

of this information. I believe it is not. The only remaining information necessary to

automatically generate an integrated solution is to specify the relation of the structure

of the rules to the system variables. Consider the following general restriction: the

state structure of each rule must correspond to exactly one system variable and that

variable must be noted. The monolithic legal specification does not comply with

this restriction but its components (Figures 7.2 and 7.3) do, and are associated with

system variables tokens and pops, respectively.

With these restrictions in place and the additional information collected, an in-

tegrated solution can be automatically generated by the algorithm in Listing 7.6.

Integrated supervision has only been demonstrated to apply to systems under full ob-

servation whose legal specifications are controllable and can be represented by modu-

lar automata that each correspond to exactly one integer system variable. While this

is only a subset of the systems to which DES control theory may be applied, many

real systems do fall into this set. Furthermore, it may be possible to expand the use

of integrated supervision to other classes of systems.

In the concrete code examples of Appendix C, the system under monolithic su-

pervision required 78 words (for program and data) while distributed supervision

required 108 words and integrated supervision required only 33 words. When con-

sidering scaling, one must consider an increasing event space, an increasing rule set,

and (for monolithic and distributed supervision) an increasing data requirement to

represent the supervision logic.

The runtime of distributed and integrated supervision increases linearly with the
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number of rules but is constant under monolithic supervision. Conversely, the data

requirement of integrated supervision increases linearly with the number of rules while

the data requirement of distributed supervision increases with the sum of the sizes of

the rules, and monolithic supervision increases with the product of the sizes of the

rules. This implies that for complex systems, only distributed or integrated super-

vision provide a viable solution, and in any context where it is possible, integrated

supervision provides the superior solution.

Finite-State Machines with Parameters

The benefit of the “integrated” methodology is derived from the replacement of state

structure with integer values. A more general approach to this same optimization

is presented in [14]. The “integrated” approach recognizes that for many low-level

systems, the set of legal specifications (and hence modular supervisors) often corre-

sponds to the recording of single integer system variables. The methodology exploits

this observation by eliminating the state structure in exchange for appropriately ma-

nipulated parameters.

In [14], they note that “modeling in finite-state machines has long suffered the

potential problem of state explosion that renders it unsuitable for many practical

applications.” They propose modeling finite-state machines with parameters. Specif-

ically, they append finite sets of parameters to FSMs and show with examples how

systems can be modeled efficiently with their approach while mitigating the problem

of state-space explosion.

They demonstrate only the modeling of plants, and show how to perform basic

operations (such as synchronous product) with their new structures. Their approach
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allows integer counting in FSMs to be much more efficiently modeled, thereby elim-

inating exactly the property that is exploited by the “integrated” approach. The

work in [14] suggests that all DES control theory be adapted to support this new core

structure of FSMs with parameters. Certainly, such advances would improve DES

control theory.

In the meantime, the action of the “integrated” approach is actually quite different

than the ideas proposed in [14]. Specifically, instead of increasing the overall efficiency

of modeling and computation within DES control theory, the “integrated” approach

exploits a property of a class of solutions such that the specific, concrete realization

of the solution, is implemented in a more efficient manner.

7.2 Application to Other Systems

The methodology here described works well for the vending machine system, and it

has been shown that even at this scale, DES control theory can compete with ad hoc

methodologies as an effective solution. One wonders how well these strategies can

be applied to other problems. These methodologies and their implications are listed

and categorized in Chapter 8, but concrete examples for various systems are briefly

provided here to help convince the reader that the necessary properties are not unique

to the vending machine system.

7.2.1 Resource Management

Reconsider the switches and locks scenario of Chapter 6 reproduced here as Figure 7.5.

By the new methodology, the controllable outputs should be tied to uncontrollable
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Figure 7.5: Two human users and a re-
source with a machine supervisor.

inputs. An appropriate event space is given in

Table 7.4. Note that in the event definitions, ini-

tiating signals are clearly defined as are all as-

sumptions restricting the behaviour of the other

entities in the system (namely the users). A fur-

ther requirement for the automatic generation of

the integrated solution is the specification of sys-

tem variables and their relationship to the event

space. These are provided in Tables 7.5 and 7.6.

Symbol Description

“g1” controllable. User #1 has moved the switch to the request position (switch1 =
1), and the grant device has been adjusted to allow access to the resource (lock1 =
0). Until lock1 is set to zero, this event has not occurred. While switch1 = 1, this
event is continuously being initiated. Recall that once a user requests the resource
(switch = 1) it is assumed they do not cease to request the resource (switch = 0)
until they have been granted the resource (lock = 0)

“g2” controllable. User #2 has moved the switch to the request position (switch2 =
1), and the grant device has been adjusted to allow access to the resource (lock2 =
0). Until lock2 is set to zero, this event has not occurred. While switch2 = 1, this
event is continuously being initiated.

“a1” uncontrollable. User #1 has moved the switch to the abandon position (switch1
= 0), and the grant device has been adjusted to prohibit access to the resource
(lock1 = 1). This event has been arbitrarily labeled uncontrollable to indicate that
its initiation should never be ignored. Assume that the microcontroller is always
able to adjust the lock before any human is able to modify the system in any way.

“a2” uncontrollable. User #2 has moved the switch to the abandon position (switch2
= 0), and the grant device has been adjusted to prohibit access to the resource
(lock2 = 1).

Table 7.4: Events in the switches and locks resource management scenario.
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System Variable Initial Value Description

“owner” 0 The current owner of the resource. Zero implies no owner.
“lock1” 1 The output controlling the grant device for user #1. Zero

implies unlocked.
“lock2” 1 The output controlling the grant device for user #2. Zero

implies unlocked.

Table 7.5: System variables of the resource management system.

Symbol Impact on owner Impact on lock1 Impact on lock2

“g1” owner = 1 lock1 = 0 no change
“g2” owner = 2 no change lock2 = 0
“a1” owner = 0 lock1 = 1 no change
“a2” owner = 0 no change lock2 = 1

Table 7.6: Events impact on system variables of the resource management system.

g2a2

g1

a1

a2
g2

a1

g1

Figure 7.6: Resource management plant model.
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g2

a2

a1

g1

a1 , a2

Figure 7.7: Rule: mutual exclusion.

With the event space fully defined, it remains to model the plant and the control

objectives. An appropriate plant is given in Figure 7.6. This plant is more restrictive

than Σ∗ because of the restricting assumptions placed on the human users. The

control objectives for this system were mutual exclusion and fair usage. The latter is
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guaranteed simply by the definition of the event space, and the former is expressed

as a rule in Figure 7.7.

Listing 7.7 Pseudocode for the automatically generated solution.

owner = 0; lock1 = 1; lock2 = 1;

loop { doGrant1(); doGrant2(); doAbandon1(); doAbandon2(); }

doGrant1()

{

if (isInitiated()) // switch1 = 1

{

if (owner != 1 && owner != 2)

{ owner = 1; lock1 = 0; // yes branch, do custom work. none in this case. }

else { // no branch, do custom work. none in this case. }

}

}

doGrant2()

{

if (isInitiated()) // switch2 = 1

{

if (owner != 1 && owner != 2)

{ owner = 2; lock2 = 0; // yes branch, do custom work. none in this case. }

else { // no branch, do custom work. none in this case. }

}

}

doAbandon1()

{

if (isInitiated()) // switch1 = 0

{

if (true) { owner = 0; lock1 = 1; // yes branch, do custom work. none in this case. }

else { // no branch, do custom work. none in this case. }

}

}

doAbandon2()

{

if (isInitiated()) // switch2 = 0

{

if (true) { owner = 0; lock2 = 1; // yes branch, do custom work. none in this case. }

else { // no branch, do custom work. none in this case. }

}

}

Recall that for automatic generation of the integrated solution each rule must cor-

respond to exactly one system variable. This rule corresponds to the owner variable

and its values are shown in each state. Since this rule is found to be controllable
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with respect to the plant, it (along with the plant and the fully defined event space)

can serve as valid input to the integrated solution generation algorithm. Pseudocode

output according to the algorithm is given in Listing 7.7. This demonstrates that the

necessary restrictions in this methodology for automatic integrated solutions admit

systems quite different from the vending machine system, thereby suggesting that the

restrictions are not severe.

7.2.2 LEGO Transporter

Motor and Sensor

Point A Midpoint Point B

Payload

Figure 7.8: An abstract view of a transporter with a pay-
load at point A.

Recall the abstract Transporter of

Chapter 5 reproduced here as Fig-

ure 7.8. Under the new method-

ology, the controllable outputs

should be associated with initiat-

ing inputs. Recall that the goal of

this system is to transport the payload from point A to point B and back to point A.

While the sensor inputs were considered to be uncontrollable events, they are—from

another point of view—merely the predictable result of the controllable motor output.

From the point of view of Chapter 5, the new methodology cannot be applied

to this system. Consider, however, what was actually achieved in the LEGO model.

The designer expresses a desire for a transporter module that can move a payload

from A to B and then return to point A. The system was modeled to include the

motor commands “forward”, “reverse”, “stop”, and to report sensor conditions that

could be interpreted as “rotations = A”, “rotations = M”, “rotations = B”. After

employing DES control theory, the designer in an ad hoc manner determines from the
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result that “forward”, “rotations = M”, “rotations = B”, “stop”, “reverse”, “rotations

= M”, “rotations = A”, “stop” will achieve the goal. One might argue that this is

obvious from the requirement. Note that this ad hoc process also removes extraneous

but non-damaging behaviour that could have provided flexibility for differing future

goals.

Symbol Description

“goA” uncontrollable. Initiated when an external component generates a pulse on the
goA input pin, this event has occurred when the motor has begun to drive the
payload to the A position.

“goM” uncontrollable. Initiated when an external component generates a pulse on the
goM input pin, this event has occurred when the motor has begun to drive the
payload to the M position.

“goB” uncontrollable. Initiated when an external component generates a pulse on the
goB input pin, this event has occurred when the motor has begun to drive the
payload to the B position.

Assumptions and Notes
Only one external component interfaces with this device, so the signals on goA,
goM, goB and busy cannot suffer confusion of origin.
The external component will never initiate goA, goM, goB while busy = 1.
Pulses on goA, goM, goB input pins are never missed by the transporter.
The external component viewed under DES control theory interprets a zero on the
busy pin as an uncontrollable event indicating that the previous event (goA, goM,
goB) has achieved the desired result.
There is a sufficient time delay between the external component initiating one of
goA, goM, goB and its testing of the busy pin such that the transporter can always
set busy=1 before it is tested.

Table 7.7: Events for a reusable transporter.

From another point of view, a more advantageous model can be generated. In-

stead of designing for a specific task, consider designing the transporter as a general

purpose tool. Tasks for the tool might include transportation to various positions.

Assume that the transporter is implemented with a microcontroller, with an output

pin attached to the motor, an input pin attached to the sensor, and for simplicity,
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three input pins (goA, goM, goB) and one output pin (busy) attached to other mod-

ules in the system. An appropriate event space and extended event information for

such a system is given in Tables 7.7, 7.8 and 7.9.

System Variable Initial Value Description

“position” 0 The current position of the platform. A=0, M=1, B=2.
“busy” 0 The current value of the busy pin.

Table 7.8: System Variables of the transporter component.

Symbol Impact on position Impact on busy

“goA” position = 0 busy = 1
“goM” position = 1 busy = 1
“goB” position = 2 busy = 1

Table 7.9: Events impact on system variables of the transporter component.

0 1 2

goM goB

goA goM

goB

goA

Figure 7.9: Plant: the payload can’t move
to the position it is already at.

By the event definitions, the occurrence of

an event correlates to the beginning of the

driving of the motor. Consequently, these

events cannot occur when the payload is al-

ready at the destination. This physical limi-

tation is captured in the plant model of Figure

7.9. This limitation raises the concern that the

external component may not be aware of the

limitation and may initiate the events at illegal states. This is solved by interpreting

Figure 7.9 as both the plant and the legal specification, and noting that its struc-

ture corresponds to the position variable. Since the plant cannot generate the illegal

events, the specification is technically controllable with respect to the plant and au-

tomatic solution generation can commence. The result produced by following the
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integrated controller algorithm is shown in Listing 7.8. Note that while the result

effectively ignores initiated “goA”, “goM” and “goB” when already at the specified

destination, this is transparent to the external component because it simply requests

an action, then monitors the busy pin until it reads zero. Since the busy pin was at

zero before the request, this exchange seems valid to the external component.

To increase efficiency, the transporter and external component could alternatively

be realized on the same chip by replacing the pins with memory locations and toggling

between their main loops. Further note that in an all-encompassing point of view, one

might wish to perceive events “goA”, “goM”, “goB” as composite transitions, initiated

by the external device, remaining in a temporary busy state, and terminating when

the rotational sensor indicates the destination is reached and the busy pin is returned

to zero. While such a model is correct, the current model is also correct and provides

a more efficient solution for code generation for the transporter component.

Finally, note that Listing 7.8 contains some custom code as required by the as-

sumptions defined in the event space. While this must be added in an ad hoc manner,

it parallels the ad hoc control of the token acceptance device in the vending machine

system. Furthermore, it is left to the designer to provide ad hoc code to conditionally

drive the motor forward or reverse in the “yes” branch of “goM”. While these con-

straints add a burden to the human designer, it is arguably no more a burden than

that imposed by arbitrarily extracting a control pattern from a supervised plant as

was suggested in Chapter 5.

While this example proves to be the least elegant of the three, it demonstrates

that the necessary restrictions in this methodology for automatic integrated solutions

admit a variety of systems, and by the existence of these demonstrates the usefulness
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of the approach.

Listing 7.8 Pseudocode for the automatically generated solution.

position = 0; busy = 0;

loop { doGoA(); doGoM(); doGoB(); }

doGoA()

{

if (isInitiated()) // pulse on goA pin

{

if (position != 0)

{

busy = 1; position = 0; // some ad hoc code would go before the modification to position.

// yes branch, do custom work. (go reverse and count sensor rotations until A is reached).

// important to set busy = 0 when finished as specified in the event space assumptions.

}

else { // no branch, do custom work. none in this case. }

}

}

doGoM()

{

if (isInitiated()) // pulse on goM pin

{

if (position != 1)

{

busy = 1; position = 1; // some ad hoc code would go before the modification to position.

// yes branch, do custom work. (go forward or reverse based on previous state and monitor the sensor).

// important to set busy = 0 when finished as specified in the event space assumptions.

}

else { // no branch, do custom work. none in this case. }

}

}

doGoB()

{

if (isInitiated()) // pulse on goB pin

{

if (position != 2)

{

busy = 1; position = 2; // some ad hoc code would go before the modification to position.

// yes branch, do custom work. (go forward and count sensor rotations until B is reached).

// important to set busy = 0 when finished as specified in the event space assumptions.

}

else { // no branch, do custom work. none in this case. }

}

}



Chapter 8

Classifications

In the preceding analysis, properties of various systems have been noted and exploited

in the methodologies employed. Here these properties and methodologies are sum-

marized. Each methodology has advantages and disadvantages which are noted, as

are the preferential system properties for each.

8.1 System Properties

Immutable Plant

An immutable plant is assumed to exist independent of the designer. It is fully

defined and cannot be augmented in any way. In this circumstance the plant must

admit observation and control in the classical closed-loop form, otherwise DES control

theory cannot be applied. An immutable plant is a general assumption of classical

DES control theory, and may in the future be the dominant form in high-level systems.

As DES control theory comes into popular use, it is reasonable to expect that systems

may be constructed for the purpose of functioning under DES control, and therefore

115
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can be expected to conform to the classical interface. When employing DES control

theory on an immutable plant, the definition of the event-space is fixed and therefore

obvious.

Augmentable Plant

A lesser restriction than the immutable plant, it may be the case that the plant exists,

is fully defined but can be augmented in various ways. Optionally, such a plant may

be considered immutable, but the ability to augment the plant provides an avenue

for optimization. Specifically, if components of the legal requirement are found to

be uncontrollable, ad hoc or formal analysis may be employed to determine what

changes to the plant are necessary in order to achieve the requirement, and what cost

this entails. There has been little investigation into this topic, likely because of the

usability and complexity issues still unsolved in the core theory. When employing

DES control theory on an augmentable plant, the event-space is not fixed. This

admits the possibility of optimization but is an added burden on the human designer.

Decoupled Plant

A decoupled plant can be described independent of supervision and control objectives.

Whether it exists or is yet to be manufactured, this implies that such a system can

reasonably function without the presence of supervisory control. These systems can

be said to be decoupled from the control objectives. This corresponds with the

primary assumption that events are generated by the plant. In highly coupled plants,

it is unreasonable to ignore the causality between events, which conflicts with the

primary assumption that events occur spontaneously. Some systems (such as the cat
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and mouse maze) are obviously decoupled, while others (generally incomplete plants)

intuitively appear highly coupled to control objectives. By redefining the event-space

according to the initiated-event methodology such systems can be made to appear

decoupled. For this reason, decoupled plants are defined to be those systems that are

obviously and intuitively decoupled. In general, high-level decision-making systems

are obviously decoupled, while low-level control implementations tend to be highly

coupled.

Incomplete Plant

Generally, the problem of a coupled plant occurs because the plant is intuitively

incomplete. Certain systems simply don’t exist without the influence of control. In

low-level control, such as with systems directed by a microcontroller, various intuitive

events are associated with the supervisor rather than with the plant. This conflicts

with the primary assumption that events are generated by the plant. Because of

the coupling of these events to the control objectives, it is unreasonable to associate

them with a system functioning without control. Similarly since the microcontroller

can’t be programmed until the supervisor is computed, these events can’t even occur.

Consequently, the plant is said to be incomplete.

Implied Solution

Some specifications imply a solution. This is usually the case in coupled or incomplete

plants. For the LEGO and vending machine examples, this was the case. For example

“pop costs two tokens” implies that a machine should allow two tokens, allow a pop,

repeat. Merely stating the problem implies a solution. This is not the case with other
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systems such as the cat and mouse maze. The specification “mutual exclusion” against

an arbitrary maze with hundreds of rooms is nontrivial for a human to solve in an ad

hoc manner, yet is trivially solved by DES control theory. In systems with an implied

solution, many methodologies can lead to a DES solution that is more complicated,

more work and more error-prone than a solution achieved by other methods.

8.2 Design Ideologies

Physical Disablement

The means of supervisory disablement is not addressed by standard DES control

theory. One might assume that the supervisory entity is capable of physically altering

the plant such that various events cannot occur. This approach is troublesome. The

event set can be arbitrarily large and the disablement feedback map can arbitrarily

change as the supervisor changes state. Considering this, and the fact that physical

changes consume real-time, one must accept that the application of the disablement

feedback map is not instantaneous and, in fact, may consume an arbitrarily large

amount of time. The idea of physical disablement by the supervisor is infeasible for

many systems. As stated previously, DES control theory is best suited for high-level

decision making, and of all the systems researched for this dissertation, none employ

this ideology.

Blanket Feedback

In the middle ground between physical disablement and query/response is blanket

feedback. As the supervisor changes state it communicates a feedback map to the
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plant. The plant is then responsible to not generate any events disabled by the new

feedback map. Disregarding the possibility of physical disablement, this requires that

all controllable events are controllably generated, meaning that once initiated, an

event can be optionally forced to not occur. With an appropriately defined event

space, nearly all systems can be described with controllably generated events, al-

though this does restrict the expression of a given system.

Consider a chemical plant that contains a tank with a varying amount of liquid.

It may be advantageous to model “filled to eighty liters” as a controllable event. If

the system changes state such that this event should be disabled, the input that fills

the tank can be forced closed. This is control by disablement and corresponds to the

classical theory. Since the liquid level could be arbitrarily near the eighty liter mark

when the system changes state, it may be too late to disable the event. Such an event

is uncontrollably generated but controllably disabled, and cannot be modeled as a

controllable event unless it is guaranteed that the plant will always have sufficient

warning before the event occurs.

Query/Response

Among the systems examined, this is the most popular and most efficient ideology.

Instead of realizing the classic closed loop, one may adopt a query/response system

where the plant asks permission to generate an event and the supervisor responds

with “yes” or “no”. Similarly the plant may ask the supervisor for a set of enabled

events, of which it will generate one. Both of these strategies were employed in the

DESCO examples. The fundamental property of this ideology is that controllable

events are controllably generated, not controllably disabled. This generally requires
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obedient components within the system and an existing but imperfect control entity

that essentially intermittently asks the DES supervisor for advice.

Consider, for example, the cat and mouse maze. Because the mouse may de-

cide to sleep in a doorway, it is difficult to impose control by physical disablement.

Fortunately the system is a metaphor for resource management which could, for ex-

ample, be implemented among two obedient software processes. In such a system,

the “mouse” software process will first desire access to a resource, second receive

permission and finally possess the resource. The supervisor (also a software process)

may simply check its feedback array indexed by its current state. In fact, in a sys-

tem with shared data, communication can be greatly reduced. The mouse process

may read the supervisor’s feedback array indexed by the supervisor’s current state;

thereby eliminating the query/response. In a sense this is a blanket feedback system

where the plant possesses a copy of the supervisor’s feedback array, and only the

supervisor’s current state need be communicated.

8.3 Design Methodologies

8.3.1 Standard

The standard methodology is best for systems with a complete or decoupled plant

and assumes, but does not require, an immutable plant. This methodology is very

difficult to use on an incomplete or coupled plant because control requires event

generation as well as disablement. If the system has an augmentable plant, efficiency

advantages may be gained by employing alternate methodologies such as integration.

In all cases, the gains achieved by DES control theory are most pronounced when
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there is not an implied solution, and this is to some degree an assumption of the

standard methodology. The cat and mouse maze is an excellent candidate for this

methodology, and the work with DESCO is a clear example of its application.

Method

The plant is modeled as an automaton or a set of modular automata. In the case of

an immutable plant this is a straightforward representation of existing behaviour.

The legal requirements are modeled as a set of automata. The definition of the legal

specification is the most error-prone phase of this method. A monolithic supervisor,

or a set of modular supervisors are automatically generated using software such as

is described in Chapter 9. Since the plant exists independent of supervisory control,

a minimal-state supervisor is most efficient. Consequently, a supervisor reduction

algorithm should be employed. Finally, feedback may be facilitated by whichever

ideology is permitted by the plant. With this method, the reduced-state supervisor

(or set of modular reduced-state supervisors) is, in fact, the control solution. Given a

specification for its closed-loop interface to the plant, concrete implementations could

be automatically generated for various programming languages.

8.3.2 Single Path

This is the methodology proposed by [13] and examined in Chapter 5. It can handle

an incomplete or coupled plant and requires an implied solution. Supervisory

control is not employed. Instead a single control path is achieved which aids a pro-

grammer in writing an implementation of a fixed system. In some cases the process

is unreasonably complex and the generated solution is no less error-prone than one
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generated by ad hoc methods. Without an implied solution, some requirements

(such as “let the cat and mouse roam as freely as possible”) cannot be achieved. By

this method, an arbitrary single controllable path would be chosen from the gen-

erated supervisor, meaning that when the mouse enters a room in which multiple

controllable doors can safely be opened, only one will be permitted. The single path

follows directly from the implied solution. Furthermore, in many systems the ad

hoc process of selecting the single path can become arbitrarily complex. Despite these

drawbacks, this methodology can perform very well for certain systems, such as fixed-

path manufacturing plants. Essentially the method helps discover which sequence of

outputs is necessary to achieve a desired sequence of inputs.

Method

The plant is modeled as an automaton or a set of modular automata. It is assumed

that the system does not exist prior to the generation of a control solution. The event

space must be defined in accordance with the inputs and outputs of the implementa-

tion device. A moderate degree of event abstraction is employed. It is required that

individual events roughly map to individual actions or conditional occurrences in the

language of the implementation device. The plant is consequently defined as all the

behaviour the implementation device is capable of observing and causing, limited by

the definition of the event space. The event space can be seen as the interface between

software and hardware, thereby reducing the scope from all possible programs (with

which the implementation device could be loaded) to only those that can be described

as sequences from the event space. While this could result in a single state plant, the

actual behaviour may be further limited by causality relationships between certain
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events. Specifically, because of the interconnections of the hardware, an input event

may be the direct result of a series of output events, and therefore may only occur

after certain sequences. The event space definition and analysis of possible sequences

leads to the plant model(s).

The legal requirement is first modeled as a set of safety requirements which only

remove destructive behaviour. This can be accomplished by examining the plant

model(s) and deleting states or transitions that damage the system. These very likely

exist because the plant as defined serves no purpose. It only describes all possible

programs (restricted by the interface of the event space) that could be loaded onto the

implementation device. This property follows from the assumption that the system

does not exist previous to the generation of a control solution. In consequence, the

plant restricted by the safety specification still does not serve any purpose. This is

solved by the generation of a progress specification, which communicates the job that

the system should perform. This can be modeled as a single automaton that connects

a sequence of uncontrollable input events separated by states with all controllable

output events in self-loop. This requires that the human designer knows the specific

string of input events that indicates the proper functioning of the machine.

With the plant and legal models defined, automatic computation of a supervisor

can be performed. This can be achieved by first computing a monolithic plant and

monolithic legal specification, but this may represent too vast a computational task.

A method for achieving a supervisor without computing the monolithic models is

detailed in [13]. Once the supervisor has been obtained, the human designer must

(by an ad hoc algorithm) remove controllable events such that no state has more than

one outgoing controllable event. This process may be arbitrarily complex. Next, the
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human designer must (by an ad hoc algorithm) translate the remaining structure into

the control language of the implementation device. Because the events were made to

roughly correspond to single actions or conditions within the implementation device,

this last step should not be overly complex.

8.3.3 Initiated-Event

All three variants of this methodology were demonstrated with the vending machine

system in Chapter 7. This methodology and its variants were developed specifically

to handle an incomplete or coupled plant and to maintain the usefulness of DES

control theory even in the face of an implied solution. Based on these system

properties, it is best for low-level control. Furthermore, while it is possible to use these

methods without an implied solution or coupled plant, they should be expected

to perform poorly. It would not make sense to employ these methodologies without

an incomplete plant. All three variants demonstrate automatic code generation

for the PIC16F84 microcontroller. It is believed that these methods could be used

to automatically produce solutions for any implementation device. The integrated

variant further helps to automatically generate solutions that compete with correct

ad hoc solutions in terms of data requirement and runtime efficiency. The integrated

variant was demonstrated on three systems in Chapter 7.

All three methods use the same core, while “modular” and “integrated” attempt

to increase the efficiency of the solution. In a system with a large event space and

a large number of rules “modular” can be expected to outperform “monolithic” in

data requirement at a slight cost of runtime efficiency. For a restricted set of systems,

and increased design time, “integrated” should significantly outperform both of the
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others.

The fundamental strategy of these methodologies is in the event-space defini-

tion and employs the query/response ideology. Inputs, outputs and causality are

abstracted into single events. All controllable events must be associated with some

initiating input and some generated output. Generally output will be required re-

gardless of whether an event is enabled or disabled. The enablement decision simply

indicates which branch of output to process. Inputs not directly associated with out-

puts should be modeled as uncontrollable events. This abstraction defers complexity

to ad-hoc components of the final solution, but does not represent a reduction of au-

tomation any greater than that of comparable methods. With the event-space defined

in this manner, the plant may often be limited to a single-state automaton. It may

be given structure based on assumptions applied to the inputs. Often this can only

be achieved by placing restricting assumptions on other entities that interact with

the system.

Monolithic Method

First the event-space must be defined according to the “initiated-event” ideology.

This is the most important and most error-prone phase of the process. Differing

perspectives in this phase yield results differing widely in complexity and re-usability.

With the event space defined, the plant automaton should be forthcoming. It is

important to not unwittingly include legal requirements in the plant. In the “initiated-

event” ideology, all events are initiated by uncontrollable inputs; consequently the

possible behaviour (i.e., the plant) can only be restricted by assumptions placed on

those inputs (i.e., assumptions in the event definitions). A sequence of events is only
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impossible if the event definitions make it impossible, regardless of its irrelevance to

the system objectives.

Second, the legal requirement should be specified as a set of low-level rules. By

creating modular automata that each express only a single component of the legal

requirement, the automation of DES control theory can be maximized. If one instead

completely models the implied solution (which can be a considerably taxing job)

then too much complexity is consumed by its ad hoc definition, and the gains of DES

control theory may be lost.

With the event-space, the plant and the legal modules fully defined, generation of

a solution can commence. In the monolithic method, a supervisor is generated from

the synchronous product of the legal modules. The automatic code generation creates

a representation of this supervisor and a subroutine for each event in the event space.

The plant code simply calls each event routine in sequence. Each event routine tests

for its initiating conditions (which requires ad hoc code). If initiated, an event queries

the supervisor. Based on the response, it processes the “yes” or “no” branch of its

routine (which have ad hoc contents).

The only ad hoc components of the automatically generated final solution are

exactly the specific realizations of the abstract event definitions. It has not been

investigated, but it is believed that using some variant of hierarchical DES control

theory, these definitions may themselves be automatically generated.

Modular Method

The modular method provides a decreased data requirement at a slight cost of run-

time efficiency. It is in almost every respect identical to the monolithic method.
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When computing the supervisor, instead of taking the synchronous product of the

legal automata, each is transformed into a modular supervisor. This slightly impacts

the implementation of the query/response ideology and increases the runtime pro-

portional to the number of supervisors. The decrease in data requirement can be

significant, namely the sum of the state-sizes of the rules versus the product of the

state-sizes of the rules.

Integrated Method

The integrated method attempts to compete with ad hoc methods by dissolving the

distinction between plant and supervisor. This method requires extra information at

design time and restricts the possible legal requirements. Integer system variables

must be defined, along with their initial values and each event’s impact on each

variable. This implies that regardless of system state, the occurrence of an event

must always affect each system variable in the same way. Furthermore, it is required

that the state structure of each rule correspond to exactly one system variable, and

that variable must be noted.

With this additional information (and the event-space, plant, and legal modules

as input), an algorithm has been proposed to automatically compute a code solution.

The solution takes the plant/event form of the previous solutions but integrates the

supervisor logic into the event headers. Specifically, whenever an event is initiated,

it tests various system variables according to the relevant rules defined by the legal

modules. If the “yes” branch is taken it also updates relevant system variables.

Consequently, the ad hoc component of the “integrated” method is the same as in

the previous methods.
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The automatic generation algorithm is able to determine which variables each

event must test and how to test them. It is further able to determine how the variable

should be updated. The suggested algorithm, requires that each state in each rule

correspond to exactly one integer value. Furthermore, the rule testing compares

against a set of values. This means that in the worst case, testing for an event’s

enablement/disablement condition could imply a number of actions equal to the sum

of the number of states in all rules. It is believed that a more intelligent algorithm

using intervals instead of single values could overcome both these difficulties.

8.4 Closing Remarks

With the theory and methodologies here provided, it is clearly possible to advanta-

geously apply DES control theory to many disparate real systems. In particular, the

initiated-event methodology (developed in this dissertation) allows for the advanta-

geous application of DES control theory to partially defined programmable systems.

It is these systems that have the most non-intuitive interface with the implementa-

tion of DES control theory. Despite this resolution, the practical application of DES

control theory still cannot be achieved. Software aids are necessary for the speci-

fication, design and verification of DES components. Software is further necessary

for the required computations and synthesis performed with these components in the

generation of a supervisory solution. In the case of programmable systems, software

is again needed to maximize automation in translation from the supervisory solution

to an actual implementation in the language of the programmable device (such as

the code generation algorithms suggested in Chapter 7). For these reasons, various

software tools have been developed to help individuals employ DES control theory.
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Several tools are reviewed in the next chapter with a focus on the IDES tool which was

developed by this author. Currently there is little cooperation between the available

DES software tools, and their interfaces are generally difficult to use and intended

for experimentation rather than industrial use. A major goal of the IDES tool is the

provision of an adaptable interface for the human specification of DES components.

It is hoped that in the future the IDES tool will interface with various other DES

related software tools.



Chapter 9

Software

9.1 Background

A number of software packages exist to aid researchers in the field of DES control

theory. Foremost among these are CTCT [49] and UMDES [27]. These packages

focus on the manipulation of automata and provide complex functions necessary in

supervisory control. They are robust command-prompt applications and can generally

handle arbitrarily large inputs. Both accept inputs in custom text-based formats and

produce outputs in the same formats. The UMDES software is paired with a partner

program GIDDES [39] which provides a graphical user interface and visualization of

the automata. In [50], seven graph and automata manipulation applications (other

than CTCT, UMDES and GIDDES) are evaluated in detail and requirements are

suggested for an optimal interface for software designed to represent and manipulate

automata. These, among others, are briefly reviewed in the following section.

130
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9.1.1 Relevant Packages

CTCT [49]

The CTCT application is essentially a command-prompt tool that does not accept

batch commands. Its purpose is to perform manipulations and computations on

DES components specified in its own custom text-based format. It is a time-tested

tool and is used by many researchers in the field. The authors of [20] provide an

evaluation of the CTCT tool. They state that “the lack of a graphical metaphor in

the representation of a DES ... is an unfortunate oversight ...” but confirm that “it is

still a powerful and useful tool in the modeling of a DES.” They further remark that

the “product’s usability and effectiveness are reduced due to a cluster of interface

design problems” and claim that “a system is only as good as the user’s ability to use

it.”

The CTCT application is a good engine for the manipulation of DES components,

but it lacks any means of visualization, has a difficult user interface and does not

provide any means to partner with a front-end display engine.

UMDES [27]

The UMDES application is a command-prompt tool that does accept batch com-

mands. Its purpose is to perform manipulations and computations on DES compo-

nents specified in its own custom text-based format. A graphical representation of

the DES components given as input and generated as output is provided by GIDDES.

The UMDES application is a time-tested tool and is used by many researchers in the

field.
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Being a command-prompt tool, UMDES shares some of CTCT’s interface prob-

lems. While these are alleviated to some degree by GIDDES (a GUI front-end), it

is not an ideal solution because input is form-based rather than graphical. Because

UMDES does provide a means to partner with a front-end display engine it could be

used as a component of any new tool.

GIDDES [39]

The GIDDES application is a GUI front-end for engines that manipulate DES com-

ponents. The GIDDES tool is currently distributed with UMDES as a bundled pack-

age. The GIDDES tool is a Java GUI application that allows form-based creation

of UMDES input files. It provides visualization of the specified automata using a

component of GraphViz called Grappa [2] (an automatic graph layout program), and

it provides access to the UMDES functions.

The GIDDES tool is a good front-end display engine, but does not allow custom

modification to visualizations of DES components and requires from-based specifica-

tion of DES components rather than graphical specification. The GIDDES application

is currently tailored to UMDES and therefore does not yet serve as a GUI layer for

arbitrary applications.

GraphViz [2]

GraphViz is an open source set of graph drawing tools for Unix and Windows. The

mandate of the program is to find efficient drawing algorithms for use on graphs

as large as several hundreds of nodes. The tool aims to make very readable draw-

ings, approaching the quality of manual layouts. GraphViz’s algorithms attempt to
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automatically produce aesthetic graphs by favouring recognition and readability of

individual objects; avoiding edge crossings, sharp bends and intersection of unrelated

objects; and emphasizing symmetry, parallelism and regularity. The output is of very

high quality. Simple, user-friendly installation is provided for multiple platforms and

several separate tools are provided under the GraphViz umbrella.

While GraphViz itself cannot directly be used to specify or manipulate DES com-

ponents, the automatic layout algorithms it provides would be an excellent choice to

incorporate into any tool that needs to display the result of an operation (such as

synchronous product) on DES components. The GIDDES software is an excellent

example of such usage. The automatic layout algorithms should, however, only be

used to determine the initial layout of a newly generated DES component. The hu-

man user should be able to make custom modifications to the result, and to specify

components manually in a graphical, point-and-click manner.

DaVinci [11]

The daVinci 1 application is an interactive graph visualization system. It is different

from conventional graph editors in that it is not able to alter the graph structure

directly. It was designed to be used as a GUI layer for arbitrary applications. The

connected program is exclusively responsible for controlling the graph structure, and

the only task of daVinci is to display the graph on the screen. Of particular interest

are daVinci’s interactive properties such as manual improvement of the graph layout.

It is possible to influence the generated graph layout directly at runtime, resulting in

immediate feedback on the visualization.

The daVinci application is a good front-end display engine, for systems that have

1In February 2005 a new version of DaVinci was released under the name uDraw.
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graphs as output. While it merges automatic layout with custom positioning, it

does not allow the manual specification of graphs; furthermore its automatic layouts

are not demonstrably superior to those of GraphViz. For these reasons, a front-end

optimized for manual specification and modification of DES components, partnered

with GraphViz for necessary automatic layouts, would provide a superior solution.

Graphlet [44]

The Graphlet application is a toolkit for graph editors and graph algorithms. It fea-

tures Graphscript, which is an extensible programming language for graph algorithms

with user interfaces. Compiled versions for several platforms and the source code it-

self are available upon request. The toolkit has an impressive GUI, and includes

implementations of many standard graph manipulation and testing algorithms.

The Graphlet application is a good toolkit for visualization and automatic layout

of arbitrary graphs. Its focus is on graph theory, including issues such as testing

planarity and finding the shortest path between two nodes. While such features are

important in computing automatic layouts, the tool is specialized in a direction away

from that which is immediately applicable to the representation and manipulation of

DES components. Again, the greatest contribution this tool could make to the DES

effort is in automatic layout of graphs, and its results are not demonstrably superior

to those of GraphViz.

VGJ [5]

Visualizing Graphs with Java (VGJ) is a graph drawing and layout tool. It accepts

input and generates output in various text-based standards, and supports automatic
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layout and organization of the graphs. It also allows graph specification by an intuitive

point–and–click GUI. Unlike many other applications this tool allows the representa-

tion and visualization of graphs in three dimensional space.

The VGJ tool provides a means of specifying and manipulating the layout of 3D

graphs. Its automatic layout capabilities are noticeably inferior to those of GraphViz,

as is the quality of its visual output. The manual specification system lacks many

features and has defects such as drawing overlapping edges between nodes. This tool

would only be a viable option if 3D output was an essential requirement.

XFIG [51]

The Xfig application is a fully-featured, interactive drawing tool. In its vector drawing

mode it can produce excellent visual representations of directed graphs that can be

exported to various image formats.

The tool is not easy to learn and is not optimized for the specification of DES

components. Furthermore there is no means of associating it with a DES manipulation

engine such as CTCT or UMDES.

PSTricks [52]

PSTricks is a collection of PostScript-based TEX macros. It allows inline use of

the majority of PostScript capabilities and consequently provides specification for

the curves and shapes necessary to realize a graph. Like its TEX host, PSTricks is

essentially a markup language but has an unforgiving syntax and its compiler errors

are technical and unfriendly.

An advantage of this package is the tremendous amount of control the user has
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over the display and formatting of the graph, but the learning curve for its use is

daunting, and users not already experienced with a TEX package will likely find its

complexity prohibitive. Like XFIG, there is no means of associating PSTricks with

a DES manipulation engine; however, because of its ease of inclusion in research

documents, it would be desirable for a DES software solution to be able to export

DES components to the PSTricks format.

Wiese’s Little Automata Builder [46]

This tool automatically generates a graphical display of an automaton given its defin-

ition as a regular language. It is programmed in Java and allows no user manipulation

of the output but does draw high-quality visual output. It also achieves efficient use

of space by forcing the nodes to a grid sequence.

This tool does not allow the manual, graphical specification of DES components,

nor does it provide any means for an interface with a DES manipulation engine;

nevertheless, several of the operations it performs could serve as inspiration in the

generation of a fully-featured DES tool.

FSA6 [35]

The FSA6 application is a collection of utilities to construct, manipulate and visualize

finite automata. Regular expressions specified by a simple text syntax serve as its

input. It is an open-source project, but is difficult to compile and no installation

package is provided. It includes an optional GUI only for use on the SICStus Prolog

platform. Of particular note, however, is that FSA6 provides interfacing to graphViz,

VCG, daVinci and PSTricks.
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This tool does not allow the manual, graphical specification of DES components,

nor does it provide any means for an interface with a DES manipulation engine;

nevertheless, several of the operations it performs could serve as inspiration in the

generation of a fully-featured DES tool.

9.2 IDES

After a survey of the relevant software, it is apparent that no fully-featured suite

exists for beginning–to–end application of DES control theory. While many of the

complex DES computations have been implemented in DES manipulation engines

such as CTCT and UMDES, the human interaction with these tools is limited by their

interface and hence error-prone. Furthermore, these manipulation engines provide

little aid in the initial generation and design of the DES models to be used, and do

not aid in the translation of a supervisory solution to any specific implementation.

Having established that a need for DES software exists, we propose the following

assumptions and requirements.

Assumptions

A1. The majority of humans employing DES control theory will first have a personal

understanding of a system and second generate a plant that represents that

system.

A2. The majority of humans generating a plant from a personal understanding of a

system will draw it as a directed graph before recording it in any other format.

A3. The best software tool for a given human interaction task is one that allows a
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human to enter correct inputs in the most comfortable and natural way possible,

and that generates correct outputs in a timely manner and in a format easily

understood by its intended audience.

Requirements

Based on these assumptions, an ideal modeling tool for DES control theory would

provide the following features.

R1. The tool should allow a user to input DES components by drawing them as

directed graphs on a medium like paper with a stylus, and to import DES

components from various existing data formats.

R2. The tool should allow useful functions to be performed on the specified DES

components (possibly generating new components) in a usable and effective

manner.

R3. The tool should allow export of DES components to various third party formats.

R4. The tool should directly interface generated solutions with the systems on which

they are based, or it should automatically produce software libraries that do

the same.

In this context all existing tools fall short. Clearly the requirements are ambitious,

albeit possible. The technology detailed in [17] and commercialized by E-Ink Corpo-

ration [18] could easily provide such an interface. The development and distribution

of such a technology would, of course, be costly, and in the interim a standard GUI

application on a personal computer controlled by a keyboard and mouse can suffice.
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The challenge is to translate the hand-drawn analogy as smoothly as possible to a

keyboard and mouse environment. The Integrated Discrete-Event System (IDES)

software package that I have created attempts to partially solve this problem.

The IDES software is a multi-purpose modeling tool that accomplishes two goals.

First it functions as an interface for specifying DES components in a manner as anal-

ogous as possible to pen and paper drawing. Second it demonstrates the integrated

use of DES control theory with custom hardware components for research and peda-

gogical purposes. It is only a partial solution to the greater DES modeling problem.

The primary contribution of the IDES tool is providing an interface analogous to pen

and paper drawing.

When a user of DES control theory wishes to use a modeling tool, the input can

only exist in one of three formats.

1. The DES components exists beforehand in some pre-existing computer data set,

perhaps in a popular format such as that of CTCT or UMDES.

2. The DES components exists beforehand as some paper-based representation,

possibly graphical.

3. The DES components exists only in the user’s mind, possibly as vaguely defined

as an understanding of a system.

The IDES tool was designed with the second and especially the third input pos-

sibilities in mind. The first input possibility is really an issue of backwards compati-

bility. Once an ideal modeling toolkit exists, all other formats would quickly fall out

of use. Unfortunately, ideal situations usually only exist in theory, so any robust tool

should support the import of other data formats. In the IDES software, this was left
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for future work, and it therefore only partially solves the requirement R1.

Several existing packages such as CTCT and UMDES already solve requirement

R2, albeit with a clumsy interface. The GIDDES tool already solves the problem of

coordinating the use of the functions provided by such toolkits in a usable manner.

For these reasons and due to time constraints no attempt was made to satisfy the

requirement R2 in the IDES tool. It serves only as a usable and effective means of

specifying DES components, and connections to the functions of CTCT and UMDES

were left to future work.

The IDES software mainly allows export only to graphical formats; consequently,

it only partially satisfies the requirement R3; however, it does interface with custom

hardware via the RS232 protocol [19]. It allows monitoring and control of plants that

support its communication method as described in the Appendix at Section A.7. In

this sense it satisfies the requirement R4, but there is much room for improvement

and future work.

9.2.1 Implementation Details and Availability

The IDES tool is a Java application composed of 57 classes and more than 17,000

lines of code. It was developed by Michael Wood and represents more than 500 hours

of research and development time. It was produced in the Eclipse IDE [25], and

its GUI is based on the SWT widgeting library [25]. While Java is by nature cross

platform, because of the use of the SWT, native components are required. While the

SWT has been demonstrated to function on a wide variety of platforms, the IDES

toolkit only provides an installation package for the Windows platform. Installation

packages for other platforms were left as future work. Other than the SWT, the
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IDES software utilizes several other third party libraries, namely: Acme.zip (for GIF

encoding), comm.jar (for access to the COM1 port), j2d4swt.jar (for use of Java2D

inside the SWT), jimi.jar (for PNG encoding), and two custom classes written by

Lenko Grigorov for access to GhostScript and MiKTeX.

The primary goal of the IDES software was to facilitate a highly usable interface

for the definition of DES components by human users. This requires that the respon-

siveness of the tool not significantly drop as graph parts are added to the model and

also implies an upper bound on reasonable graph sizes. The upper bound may be

derived from the fact that graphs are presumed to be entered and manipulated en-

tirely by human users, and at some point it must become unreasonably inefficient for

a human to specify an arbitrarily large graph. This is supported by related projects

examined in Chapter 3. The author of [29] suggests that a module of more than

300 states is prohibitively large and should be decomposed into smaller sub-models.

Similarly in [13] no design module had more than thirty states, and the synthesized

control solution had only fifty states. These examples and the continued advancement

of modular and hierarchical DES control theory are strong motivation for an interface

that is optimized for the specification of small models.

Figures 9.1 and 9.2 display the results of a responsiveness study of the IDES soft-

ware on a Pentium 4, 3.00 GHz, CPU with 1 GB of RAM. The most complex addition

or manipulation operation in the software that increases with graph complexity is the

repositioning of a highly connected node. This operation was performed on graphs

of increasing sizes and the response rate of the software was recorded. It is displayed

in both milliseconds between updates and updates per second. The results show

that lag is independent of graph complexity until there are at least 160 objects in
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the graph. This implies that the computation required for updates to small graphs

is inconsequential in comparison to the overhead of the environment in which they

exist.

The average responsiveness of a graph with 500 objects was found to be 10 frames

per second. While a frame rate this low does produce visible jitter, it is essentially

unnoticeable due to the snap-to-grid feature discussed in Section A.2 of the Appendix.

While the software is running, its memory imprint ranges from 15 MB to 25 MB of

RAM even when manipulating graphs with up to 4000 objects.
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Figure 9.1: Responsiveness versus graph size in
ms.
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Figure 9.2: Responsiveness versus graph size in
frames/s.

The IDES software is considered the property of the DES lab at Queen’s Uni-

versity. At the time of the writing of this dissertation, it is available online at

http://www.aggressivesoftware.com/research/ides/ and the installation process is very

simple. It is password protected and download permission is arbitrarily granted by

Queen’s DES Lab. Tutorials, JavaDoc and bug reports are also available at the same

site. A complete description of the IDES software and all its functions is given in
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Appendix A. The IDES software was used extensively in experimentation and mod-

eling during the research and formatting of this thesis. All of the DES figures in this

thesis were automatically generated by the IDES software. Several experiments with

DES models in real custom hardware were performed in conjunction with the IDES

software. The details of one such model are given in Appendix B.

9.2.2 Development Processes

The primary goal of the IDES software was to facilitate a highly usable interface for

the definition of DES components by human users, and this goal was reflected in the

development process. In order to understand the following discussion, it is helpful to

be familiar with the final product as explained in Appendix A; nevertheless, a quick

summary is given here. The IDES software lets the user draw a directed graph on

a part of the screen arbitrarily called the canvas. The graph is controlled by canvas

tools. Canvas tools are selectable from the main menu and from the main toolbar.

Only one canvas tool can be selected at a given time and it determines how the mouse

is able to manipulate the graph. In this manner, the IDES software is similar to many

painting programs. On the canvas a DES is represented as a directed graph realized

by circles interconnected by curved arrows. These nodes and edges can be decorated

in various ways including text labels. Furthermore, they may be repositioned and the

edges may be manipulated as Bezier curves.

The development cycle of the IDES interface iterated on experimentation with hu-

man users. Subjects ranged from naive (no knowledge of DES, no formal knowledge

of graphs, marginal experience with computers) through intermediate (no knowledge
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of DES, moderate knowledge of graphs, moderate experience with computers) to ad-

vanced (considerable experience with DES, formal knowledge of graphs, considerable

experience with computers). Users were given a simple graph drawn with pen and

paper and a workstation with the IDES software in its initial state and were asked

to recreate the graph using the IDES software. This provided unbiased analysis of

the usability and effectiveness of the interface. Users were also asked to draw arbi-

trary graphs with the IDES software as a means of gauging their expectations of its

functionality. These experiments lead to the following discoveries.

No Logical Relationship Between Graph Components

Naive users consistently persisted in ignoring the relationships between nodes and

edges, considering them no more related than lines of ink on paper. This resulted

in attempts to create edges before creating nodes. In an early implementation, there

were three separate canvas tools for node creation, edge creation and object reposi-

tioning and customization. This proved ineffective because users persisted in creating

graph components in an arbitrary order. Specifically, in the DES paradigm, and in all

graph theory, while it is permissible to have an unconnected node, it is meaningless

to have an edge that lacks either source or destination. As a solution to this problem,

the node and edge creation tools were merged to a single tool. This solves the problem

of unconnected edges. In the new paradigm, a single click on blank space creates a

node, while a single click on an existing node initiates an edge from that node. As an

accelerator, a double click on blank space both creates a node and initiates an edge

from it. Once an edge is initiated it tracks the mouse pointer. A single click on an ex-

isting node terminates the edge at that node, while a single click on blank space both
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creates a new node and terminates the edge at it. The implementation of this solution

greatly accelerated users’ ability to create graphs, but also introduced the problem of

mistakenly initiated edges. Once initiated, an edge could not be abandoned because

a click on blank space created a new node. The most acceptable solution to this was

found to be employing right-click as cancel.

Clicking Paradigms

It was found that regardless of user type, different users unpredictably and approxi-

mately equally fell into one of two clicking paradigms. Users would attempt to specify

an edge either by mousing down, dragging and releasing or by clicking, moving the

mouse and clicking again. This problem was solved by implementing both methods.

Its only failure is that a quickly specified self-loop in the down, drag, release paradigm

can be misinterpreted as a single click in the alternate paradigm leaving the user with

a partially initiated edge. A second click solves the problem, finishing the self-loop.

Visual Model Stronger Than Mental Model

Startling to the author, many users (including advanced users) failed to choose the in-

ternal area of a node as a clicking target for edge termination. Because the arrowhead

of an initiated edge tracks the mouse pointer and because completed edges themselves

paint from a point on the circumference of a node to a point on the circumference

of another node, users would click outside of (but near) a target destination node,

instead of inside it. This conforms with their visual model of the graph they are cre-

ating because the arrowhead is approximately in the position they wish to achieve,

but is less consistent with an abstract graph model because the target node is not
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explicitly specified. This result is particularly interesting because it implies humans

tend more toward visual stimulus than abstract mental models. This problem was

solved by first checking if a click fell inside any nodes and second checking if it fell

near any nodes before concluding that it was a click on blank space.

Maximally Merged Tools

Originally, separate interfaces existed for moving existing objects in the graph and

specifying decorations like labels, but users consistently found this frustrating. In the

end, a single canvas tool was made responsible for all graph customizations. This

was limited only by edge label specification. In a DES, an edge label indicates which

event from the event space has occurred. If α joins nodes one and two, and α joins

nodes seven and eight, it is the same α. It is one unit of data with a considerable

amount of meta-data such as its meaning within the system and its controllability

or observability to various supervisors. For this reason edge labels cannot be simply

text. The final accepted solution was to create a separate data environment where

events could be specified. When a user attempts to label an edge (by double clicking

it) if no events are defined they are forwarded to the tab where they may be defined.

If some events are defined, a popup chooser appears. This chooser allows the user

to toggle which events are associated with the edge. While the learnability of this

solution was found to be lower than simple text entry, the increased power of the

model and ease of use for educated users was found to be most desirable.
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Logical Justification of Results

As stated previously, a DES component such as a plant can be realized as a directed,

labeled graph. To achieve an environment analogous to pen and paper drawing, it is

necessary that the environment allow the specification of the graph given an amount

of input information less than or equal to the information required to realize the same

graph on pen and paper. Otherwise, the synthetic environment is more work than

the pen and paper environment and hence a failure. The specification of a graph

in a pen and paper environment can be decomposed into the following four minimal

information actions.

• A node can be created by a single action, namely the specification of its origin.

• An edge can be created by a dual action, namely the specification of its source

and destination nodes.

• A label can be created by a dual action, namely the specification of its value

and the object to which it pertains.

• The dual action specification of an edge can implicitly create one or both of its

associated nodes.

The IDES interface finalized by user experimentation has converged to such a specifi-

cation. Aside from the restriction of separately specifying the event space, the IDES

software provides access to all four minimal information actions with nearly zero

learning required. Assuming the user has basic knowledge of a mouse and is familiar

with the predominate left-click as primary action convention, then as described in

the previous experimentation results, they may specify edges and labels in arbitrary
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orders and arbitrary configurations with the same input information used in the pen

and paper environment, and the added benefit of automation. The only learnability

issue is the requirement of switching to a different canvas tool for label specification,

and the use of double-clicking to activate label specification.

9.3 Test Case

Several custom hardware components were developed for experimentation and use

with the IDES software. A single test case is described in Appendix B. It contains two

microcontrollers, a small LCD and several push buttons and LEDs. These components

represent the behaviour of a simple vending machine. This simple test case is included

only as an example of hardware that may interface with the IDES software. In this

case, the example is fairly contrived. The code on the microcontroller notifies the

IDES software of various events and listens for an echo of its notification. Without

this echo, it assumes disablement. In the DES model of this component, a single

controllable event “lost pop” is deemed bad. By running an appropriate supervisor

in the IDES software connected to the hardware component, the occurrence of this

event (initiated by a human pressing a button) is prevented. Full details of the

hardware implementation are included in anticipation of attempts to reproduce this

result before advancing to more complicated models.
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Conclusions and Future Work

Discrete-Event Systems control theory provides automated control solutions for sys-

tems that are characterized by asynchronous and instantaneous changes of state.

Goals expressed in the language of this theory permit the automatic generation of

control solutions which guarantee that illegal behaviour will never occur. Despite

intensive research on and expansion of the theoretical aspects of this field, a limited

amount of research has been reported on its implementation and integration into ex-

isting systems. The background theory has been provided and problems arising from

the primary assumptions (the plant exists; events are generated by the plant; events

occur spontaneously, asynchronously and instantaneously; events are abstract; con-

trol is imposed by disablement) have been noted. A survey of related work has been

provided along with a wide array of applicable systems. Some of these systems have

been examined in detail, their properties noted and methodologies proposed. These

properties and methodologies have been reviewed in Chapter 8. Finally, relevant

software tools have been analyzed with emphasis on the application developed by

this author. The work described herein constitutes some of the first steps in making
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the use of Discrete-Event Systems control theory accessible outside of the academic

realm.

Certainly it has been confirmed that DES control theory is most amenable to

pre-existing systems that function in a non-optimal way and admit control. It has

also been confirmed that the best performance is achieved when high-level control is

required, and the specification does not imply the solution. Despite the disadvantages

associated with systems that do not meet these criteria, it has been shown that the

theory can still be advantageously applied. Specifically, several methodologies have

been provided for systems in which a portion of the plant and the entire supervisory

entity exist within an implementation device such as a microcontroller. Chapter 8

summarized system properties and design methodologies, thereby demonstrating how

DES control theory may be applied to a wide variety of systems and how these systems

should be approached.

Finally, in analysis of the currently available software tools, it was demonstrated

that a real need exists for usable and intuitive software. As a result, the IDES

software was developed, which functions as an effective interface for specifying DES

components in a manner analogous to pen and paper drawing, and demonstrates the

integrated use of DES control theory with custom hardware components for research

and pedagogical purposes. To date, other academic tools (such as CTCT, UMDES

and GIDDES) have been unconcerned with integrating hardware and software for

control and testing purposes. Hence, the IDES software is unique in its attempt to

provide an interface for all of modeling, testing and control. Nevertheless, the IDES

tool currently serves primarily to aid researchers in visualizing and communicating

their work. As can be expected, there is room for future work on this tool, and with
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more development time and integration with other tools, it could help advance DES

control theory beyond the academic realm.

10.1 Future Work

The work in this dissertation has necessarily covered a wide variety of systems and due

to time constraints could not examine large examples in detail. If DES control theory

is to come into popular use, it must demonstrate a tangible advantage over alternate

methods on real world problems. In order to handle the complexity of larger systems

it would likely be necessary to employ more advanced modular and/or hierarchical

DES control theory. An investigation into the use of DES control theory to solve an

existing complex problem in industry utilizing these advancements would provide a

major contribution in increasing the usability of the theory.

The ability to augment a plant provides an avenue for optimization. Specifically, if

components of the legal requirement are found to be uncontrollable, ad hoc or formal

analysis may be employed to determine what changes to the plant are necessary in

order to achieve the requirement, and what cost this entails. There has been little

investigation into this topic. It would be very beneficial if during the synthesis of

a supervisor, the designers were also given information on how the plant could be

modified to achieve a larger subset of the legal specification.

The demonstrated benefit of the “integrated” methodology is derived from the

replacement of state structure with integer values. A more general approach to this

same optimization is presented in [14] as mentioned in Chapter 7. The continued ex-

pansion of FSMs with parameters throughout core DES control theory should greatly

increase the applicability of the theory to complex real-world problems.
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The algorithms for automatic generation of machine code for the PIC16F84 have

only been proposed and not fully implemented. It would be beneficial to have these

fully implemented. A software that could specify DES components, then automati-

cally generate machine code, allow the designer to complete the ad hoc components,

and finally burn the result onto a chip would greatly aid in convincing researchers

and professionals of the applicability of DES control theory.

10.1.1 IDES

The primary goal in the development of the IDES software was to achieve an inter-

face analogous to pen and paper drawing and to export the defined components to

various graphical formats. The software solidly achieves these requirements; however,

it could be made vastly more powerful. If one considers relatively simple advance-

ments, several features such as rendering of the grid could be re-implemented in a

more efficient manner. The quality of inline rendering of LATEX labels should also be

improved. A more standardized file format such as XML should be employed. Also,

for increased usability, a complete redesign of the transition specification tab and

additional alignment features for edge label placement would be highly desirable.

A very important enhancement would be the ability to define multiple automata

tied to the same event-space. Specifying modular or hierarchical relationships between

these components would also be desirable. Instead of modeling a single automaton,

a single use of the software should model an entire system, including plant modules,

legal specifications and computed supervisors. For computation of the supervisors,

integration with an existing tool such as CTCT would be desirable. Layouts for the

computed results could be provided by third party tools such as GraphViz. These
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two advancements (multiple models and connection to computation engines) would

accelerate IDES from a visualization tool to a full blown design tool. Further inclu-

sion of implementations of the suggested automatic code generation algorithms would

accelerate IDES to a complete end-to-end design solution. Finally, inclusion of mod-

ular and hierarchical techniques, both in the input and computation components of

the software would make IDES legitimately capable of tackling real world problems

in a usable, robust and advantageous manner. The acceptance of any framework

hinges on the gain of its use minus the difficulty of its use. A standardized and usable

conglomerate design tool is necessary for the application of DES control theory to be

feasible.
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Appendix A

IDES Software User’s Guide

A.1 Introduction

The purpose of this guide is to help people use and understand the IDES Software.

The first section (which gives an overview of all the toolbar and menu options) is not

intended to be read linearly but has been structured like a lookup table. Because of

this, information is often repeated in its various sub-sections.

The later sections are written as linear tutorials describing the basic tasks users

can undertake. For most users it will be sufficient to read only the Drawing a Graph

and Modifying a Graph sections. These describe all the basic tasks that general

users will be interested in performing. The remaining sections document the more

advanced features and can be overlooked until needed.
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A.2 The Toolbars and Main Menu

A.2.1 New System

Figure A.1: New System.

The New System toolbar item unloads the current

system, letting the user start from scratch. If the user

has made any changes to the current system, the user

will first be prompted to save.

A.2.2 Open

Figure A.2: Open.

The Open toolbar item allows the user to load a previ-

ously saved system. If the user has made any changes

to the current system, the user will first be prompted

to save. The system is saved as a simple text file with

the extension gml. These files can be opened in any

simple text editor like Notepad and modified manually.

A specification for a valid file for the IDES software is given in the IDES file Spec-

ification section of this guide. The files do not strictly conform to the GML format

as explained in that section.

A.2.3 Save

Figure A.3: Save.

The Save toolbar item allows the user to save the cur-

rent system to a file. The user will only be prompted

for a file name if working with a new system, otherwise

it will automatically save over the file of the current
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system. The system is saved as a simple text file with the extension gml. These

files can be opened in any simple text editor like Notepad and modified manually. A

specification for a valid file for the IDES software is given in the IDES file Specifi-

cation section of this guide. The files do not strictly conform to the GML format as

explained in that section.

A.2.4 Save As...

Figure A.4: Save as....

The Save As... toolbar item allows the user to save the

current system to a new file. The user will be prompted

for a new file name. The system is saved as a sim-

ple text file with the extension gml. These files can

be opened in any simple text editor like Notepad and

modified manually. A specification for a valid file for

the IDES software is given in the IDES file Specification section of this guide. The

files do not strictly conform to the GML format as explained in that section.

A.2.5 Export To LATEX

Figure A.5: Export to LaTeX.

The Export To LATEX toolbar item allows the user

to export a representation of the graph to LATEX. It

requires that the user has first specified a Print Area,

and if one is lacking, the user will be prompted for it.

Regardless of the user’s system settings, a LATEX code

representation will be printed in the text area inside

the LATEX Output tab.
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If the user has checked the Export LATEX directly to EPS option (from the

Options menu) then the system will attempt to generate an EPS file which may be

included in LATEX documents. The user will be prompted for a save location for this

file. The code used to generate the EPS file is printed in the text area in the LATEX

Output tab. Sample code for the inclusion of an EPS file in a LATEX document is

also printed as a remark at the bottom of the code, and is reproduced in Listing A.1.

Listing A.1 Example LATEX code for the inclusion of any EPS file.

\documentclass[12pt]{article}

\usepackage{graphicx}

\begin{document}

\includegraphics[scale=1]{yourfilename.eps}

\end{document}

If the user has checked the Export LATEX directly to TEX option (from the

Options menu) then the system will attempt to generate a TEX file which contains a

representation of the graph as a figure and may be included in LATEX documents. The

user will be prompted for a save location for this file. The contents of the TEX file

are printed in the text area in the LATEX Output tab. Sample code for the inclusion

of the generated file in a LATEX document is also printed as a remark at the bottom

of the code. Listing A.2 reproduces a generalized version of that information.

Listing A.2 Example LATEX code for the inclusion of a TEX file containing a figure
generated by the IDES software.

\documentclass[letterpaper,12pt]{report}

\usepackage{setspace}

\usepackage{pstricks} % only necessary for figures using the pspicture environment

\usepackage{pict2e} % only necessary for figures using the picture environment

\begin{document}

\psset{unit=1pt} % only necessary for figures using the pspicture environment

\include{your_tex_file_name_WITHOUT_TEX_EXTENSION} % example: mygraph (instead of mygraph.tex)

\end{document}
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A.2.6 Export To GIF

Figure A.6: Export to GIF.

The Export To GIF toolbar item allows the user to

save a representation of the graph in the GIF format. It

requires that the user has first specified a Print Area,

and if one is lacking, the user will be prompted for it.

The export process has some flaws. The export will fail

if the selected Print Area is not entirely visible on the

user’s screen (i.e., is hidden by other windows, has scrolled off screen, etcetera) at

the instant the user clicks the export button. Also note that in WinXP, the user may

need to refresh their Windows Explorer view before opening the exported GIF file in

order for it to be readable.

A.2.7 Export To PNG

Figure A.7: Export to PNG.

The Export To PNG toolbar item allows the user

to save a representation of the graph in the PNG for-

mat. It requires that the user has first specified a Print

Area, and if one is lacking, the user will be prompted

for it. The export process has some flaws. The export

will fail if the selected Print Area is not entirely vis-

ible on the user’s screen (i.e., is hidden by other windows, has scrolled off screen,

etcetera) at the instant the user clicks the export button.
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A.2.8 Undo

Figure A.8: Undo.

The Undo toolbar item was not implemented as a real

undo. Every five actions (loosely defined) the IDES

software remembers a snapshot of the system. These

are saved in the IDES/system folder. Undo replaces

the system with the previous snapshot, and therefore

does let the user backup, but not ideally.

A.2.9 Redo

Figure A.9: Redo.

The Redo toolbar item was not implemented as a real

redo. Every five actions (loosely defined) the IDES

software remembers a snapshot of the system. These

are saved in the IDES/system folder. Redo lets the

user move forward through these snapshots when the

user has moved backwards through them using Undo.

Note that if the user activates Undo, then makes any changes (even just clicking on

a node) the ability to Redo can be lost.

A.2.10 Copy

Figure A.10: Copy.

The Copy toolbar item lets the user copy the selected

graph elements (which appear drawn in dark red). Note

that regardless of the user’s group of selected elements,

an edge will only be added to the copied group if both

of its respective nodes are included in the selection. In
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the IDES software, an edge cannot exist without a starting and ending node.

A.2.11 Paste

Figure A.11: Paste.

The Paste toolbar item adds copies to the graph of

whatever graph elements the user last copied. If paste

is used from the main menu, toolbar or CTRL+V

shortcut, the new elements will appear centered on

the screen. If paste is used from the right-click popup

menu, the new elements will appear centered at the

mouse-click location.

A.2.12 Delete

Figure A.12: Delete.

The Delete toolbar item permanently deletes the se-

lected graph elements (which appear drawn in dark

red). The user will not be warned or prompted for

confirmation. If this tool is used accidentally, the Undo

tool may be of assistance, although it will go backwards

farther than the user’s last action.

A.2.13 Connect

The Connect toolbar item attempts to initialize communication over the COM1 port

on the user’s computer. This should always succeed, regardless of whether or not there

is any external device attached to COM1. When connected, the button is drawn in

a depressed mode and reads Disconnect. The user may click it a second time
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Figure A.13: Connect.

to disconnect. The purpose of this feature is to support

the Trace feature. More information on this feature

can be found in the Animated Trace section of this

guide.

A.2.14 Start Trace

Figure A.14: Trace.

The Start Trace toolbar item allows the user to initi-

ate an animated trace of transitions in the graph. The

user must be connected in order to initiate a trace.

Once a trace has been initiated, the button is drawn in

a depressed mode and reads Stop Trace. The user

can stop a trace at any time by clicking the trace button

a second time. When a trace is started, the initial state of the graph becomes high-

lighted in blue. The system then listens for transitions. When they occur, the blue

highlight animates across that transition to the appropriate state. Transitions can be

received from an external device connected to the COM1 port of the user’s computer

or via the trace field and manual use of the Alpha button. More information on this

feature can be found in the Animated Trace section of this guide.

A.2.15 Alpha

Figure A.15: Alpha.

The Alpha toolbar item is a manual means of feeding

custom transition values to the Trace system. This

allows the user to animate arbitrary event strings. The

values sent by the alpha button are specified using the
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trace text box at the bottom of the Graph Specification tab. More information on

this feature can be found in the Animated Trace section of this guide.

A.2.16 Grid Options

Figure A.16: Grid display and se-
lection.

The Grid Options toolbar item controls the snap-to-

grid feature. This applies to the placement of nodes and

assists the user in creating nicely aligned graphs. The

left half is a toggle button which determines whether

the grid should be drawn or not. The right half is a

drop down list which determines the scale of the grid.

The current grid options are saved and loaded with the

user’s system. The last-used grid option is remembered

for use in any new systems the user creates. Note that

some actions run considerably slower when the grid is

visible.

A.2.17 Show All Edges

Figure A.17: Show all edges tog-
gle button.

The Show All Edges toolbar item is a program option

that is not saved or loaded with the user’s system, but

is constant across all systems and is remembered for

successive uses of the IDES software. When selected,

it causes all edge curves to be drawn in the modifiable

mode. This is useful when the user intends to customize

several edge curves at once, but it can become cluttered in complex graphs.
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A.2.18 Show All Labels

Figure A.18: Show all labels tog-
gle button.

The Show All Labels toolbar item is a program op-

tion that is not saved or loaded with the user’s system,

but is constant across all systems and is remembered for

successive uses of the IDES software. When selected,

it causes all edge labels to be drawn in the modifiable

mode. This can save the user time if the user intends

to customize several edge labels at once. It also clarifies which labels belong to which

edges.

A.2.19 Zoom

Figure A.19: Zoom canvas tool

The Zoom toolbar item is a canvas tool. Only one

canvas tool can be selected at a given time, and it de-

termines what the mouse can do to the graph. Zoom

allows the user to zoom in and out five steps in either

direction. Left clicks on the graph zoom in, and right

clicks on the graph zoom out. Note that the zoom

is centered around the mouse click. The zoom effect

causes a repositioning of the user’s graph, the user can adjust this using the scroll-

bars, or the Move canvas tool. Note that the user is still able to perform all functions

regardless of the current zooming state. Figure A.20 shows the graph in Figure A.19

zoomed out by one step and Figure A.21 it zoomed in by one step.
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Figure A.20: Zoomed out by one step. Figure A.21: Zoomed in by one step.

A.2.20 Create Nodes or Edges

Figure A.22: Create nodes or
edges canvas tool.

The Create Nodes or Edges toolbar item is a canvas

tool. Only one canvas tool can be selected at a given

time, and it determines what the mouse can do to the

graph. This tool lets the user draw nodes and edges in

the graph, and it is the default selected startup tool.

This tool is discussed in the Drawing a Graph section

of this guide.

A.2.21 Modify Nodes, Edges or Labels

Figure A.23: Modify nodes,
edges or labels canvas tool.

The Modify Nodes, Edges or Labels toolbar item

is a canvas tool. Only one canvas tool can be selected

at a given time, and it determines what the mouse can

do to the graph. This tool lets the user modify the

positions and shapes of nodes and edges and labels in

the graph. It also lets the user specify edit and create

labels. This tool is discussed in the Modifying a Graph section of this guide.
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A.2.22 Print Area

Figure A.24: Print area canvas
tool – selecting, defining and dov-
ing.

The Print Area toolbar item is a canvas tool. Only

one canvas tool can be selected at a given time, and it

determines what the mouse can do to the graph. The

print area is necessary for export to PNG, GIF and

LATEX. When selected, the user can click and drag on

the canvas to specify a bounding box for the print area.

Once an area is specified it can be moved. With the

print area tool still selected, when the mouse hovers

over the print area, the cursor changes to the move

cursor, and the user can click and drag to move the

print area. No other graph objects are repositioned.

The user can also adjust the bounds of the print

area by moving the cursor over the borders. The cursor

will change to a directional cursor and the user can click

and drag to adjust the borders. Note that to get rid of

the print area, the user can click and release outside of

the specified area.

Once a print area is specified, the user is able to

export to PNG, GIF or LATEX. These actions are available on the top toolbar and in

the File menu under Export.

The Draw a border when exporting option affects the user’s export. If this

option is selected, there will be a black border around the user’s exported graph. If

it is not selected, there will not be a border. The border would appear exactly where
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the print area bounds were specified.

The export to PNG and GIF features have some flaws. The export will fail if

the selected Print Area is not entirely visible on the user’s screen (i.e., is hidden

by other windows, has scrolled off screen, etcetera) at the instant the user clicks the

export button.

A.2.23 Move Graph

Figure A.25: Move graph canvas
tool – selecting and moving.

The Move Graph toolbar item is a canvas tool. Only

one canvas tool can be selected at a given time, and it

determines what the mouse can do to the graph. With

this tool, the user is able to move the entire graph.

It is similar to a permanent scroll bar. The user may

simply left-click, drag and release to move the graph.

Note that if the user drags the graph off screen, the

scrollbars will adjust after the user releases the mouse

button. Also note that this tool drags the grid as well

as the graph as visible in Figure A.25.

A.2.24 The File Menu

Figure A.26: File menu.

The File Menu contains exactly the same options as

the File toolbar, except for Exit which shuts down the

IDES software. On exit, either by the File menu or by

the X at the top right of the window, if the user has

modified the current system, the user will be prompted



APPENDIX A. IDES SOFTWARE USER’S GUIDE 174

to save the changes. Note that some of the options in the File menu also have keyboard

shortcuts.

A.2.25 The Edit Menu

Figure A.27: Edit menu.

The Edit Menu contains exactly the same options as

the Edit toolbar. Note that some of the options in

the Edit menu are also available in various right-click

popup menus on the canvas. Note that some of the

options in the Edit menu also have keyboard shortcuts.

A.2.26 The Graph Menu

Figure A.28: Graph menu.

The Graph Menu contains exactly the same options

as the Graph toolbar except that the grid options are

only available on the toolbar.

A.2.27 The Options Menu

Figure A.29: Options menu

The Options Menu contains system settings. Most of

these are not saved or loaded with individual graphs,

but are constant across the IDES software. They are

remembered for successive uses of the IDES software.

Send Error Reports

The Send Error Reports menu item is a part of the Options Menu. Regardless

of this option, if a crash occurs the error message is printed to the console (if it
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exists), and is displayed in a popup window. If this option is selected, the IDES

software will attempt to spawn an internet browser to a bug-report URL, and it

will preload the text box there with the appropriate error message. The user can

also enter a description of what was being done when the error occurred. All the

user has to do to submit the bug report is click the Add button at the right hand

side of the screen. The user does not need to sign in to the webpage to add bug

reports. At the time of the writing of this dissertation, the bug-report URL was

http://www.aggressivesoftware.com/research/ides/bugs/

Use LATEX for Labels

The Use LATEX for Labels menu item is a part of the Options Menu. There are

two options for drawing Labels: Glyphs and LATEX. Glyphs are faster, native to

Java and look nicer on the IDES software screen and in exported PNGs and GIFs.

Glyphs only support regular keyboard symbols. LATEX is slower, requires that the

user has GhostScript and MiKTeX installed, and looks somewhat unattractive on the

IDES software screen and in exported PNGs and GIFs. LATEX supports all LATEX

commands, so the user is able to make much more diverse labels, and it works very

well in the export to LATEX—meaning that even though it may not look attractive

in the IDES software, it will look good in the exported LATEX. The only current bug

with LATEX labels is with line breaks in Node labels. Because line breaks are not

supported in the picture environment, the software manually breaks up the code and

repositions the fragments, and it does not work perfectly.
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Export LATEX directly to EPS

The Export LATEX directly to EPS menu item is a part of the Options Menu.

It is a system option and is not saved or loaded with individual graphs. When this

option is selected, use of the Export to LATEX feature causes the system to attempt

to generate an EPS file which may be included in LATEX documents. The user will

be prompted for a save location for this file. The code used to generate the EPS file

is printed in the text area in the LATEX Output tab. Sample code for the inclusion

of an EPS file in a LATEX document is also printed as a remark at the bottom of the

code, and is reproduced in the Export to LATEX section of this guide.

Export LATEX directly to TEX

The Export LATEX directly to TEX menu item is a part of the Options Menu.

It is a system option and is not saved or loaded with individual graphs. When this

option is selected, use of the Export to LATEX feature causes the system to attempt

to generate a TEX file which contains a representation of the graph as a figure and

may be included in LATEX documents. The user will be prompted for a save location

for this file. The contents of the TEX file are printed in the text area in the LATEX

Output tab. Sample code for the inclusion of the generated file in a LATEX document

is also printed as a remark at the bottom of the code, and is reproduced in the Export

to LATEX section of this guide.

Draw a border when exporting

The Draw a border when exporting menu item is a part of the Options Menu.

It is a system option and is not saved or loaded with individual graphs. When this
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option is selected, a black border is drawn around the user’s exported PNG, GIF or

LATEX output in place of the bounding box of the specified print area. When it is not

selected, no border is drawn.

Use standard Node size.

The Use standard Node size menu item is a part of the Options Menu. It is not a

system option and is saved and loaded with individual graphs. The default behaviour

of nodes is to size to snugly fit their internal labels. When this option is selected, all

nodes adjust to the largest node size. This is helpful for symmetry in the graph.

Use pstricks in LATEX output.

The Use pstricks in LATEX output menu item is a part of the Options Menu. It is a

system option and is not saved or loaded with individual graphs. This determines the

environment used when generating a LATEX representation of the graph. PsTricks

allows the use of the pspicture environment. When this option is not selected, the

picture environment from the Pict2e package is used. When the user exports the

graph as a TEX file, the output can be manually modified according to the syntax of

the chosen environment.
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A.2.28 The Help Menu

Figure A.30: Help menu

The Help Menu contains a link to a web

based tutorial at a help-tutorials URL and a

message about the version and authors of the

IDES software. At the time of the writing

of this dissertation, the help-tutorials URL was

http://www.aggressivesoftware.com/research/ides/tutorials/

A.3 Drawing a Graph

Figure A.31: Creating a new
node.

When the IDES software program is started, the Cre-

ate Nodes or Edges canvas tool is selected by default.

When the user clicks on blank space on the canvas with

this tool, a node is created roughly centered about the

cursor, as shown in Figure A.31. Every action other

than this uses the tip of the cursor, but node creation

is centered about the cursor as a whole. When a grid

is specified (20px is the default), the origin of created nodes snap to the nearest grid

location. This can result in the created node seeming to appear in the wrong location,

but is actually desirable behaviour.

When the user clicks with the pointer of the cursor inside (over top of) a node,

edge creation begins. When the user is in the process of creating or modifying graph

objects, they are drawn in bright red. When creating edges the user has two options.
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The user may click-and-release to start the edge, then move the cursor, then click-

and-release to finish the edge. Alternatively the user may mouse-down to start the

edge, then move the cursor, then mouse-up to finish the edge. When the user is in

mid-creation of an edge, its tail is drawn at the center of the start node, and its head

is drawn at the tip of the cursor, as shown in figure A.32.

Figure A.32: Creating a new
edge.

To finish the edge creation process, the user may

simply click on blank space. Another node is created

and the edge is joined to it. A new node created in this

way is centered at the grid location nearest the tip of

the cursor. To speed things up, the user may double

click on blank space. This both creates a new node

and starts a new edge from it. To join an edge to an

existing node, the user may simply click with the cursor’s pointer inside (on top of)

an existing node.

Figure A.33: An example graph.

Edges will attempt to automatically position them-

selves in a desirable manner. All edges by default travel

directly between the centers of their source and desti-

nation nodes. When the default behaviour would cause

overlap or collision, the edges attempt to reposition

themselves accordingly. Notice that in Figure A.33 the

two edges between the left and center node have formed

into arcs symmetrically. Multiple edges between two nodes will always attempt to dis-

play in a symmetrical and reasonable manner. Notice also the arc from the left-most

node to the right-most node. Edges will draw in a wide arc such as this when they
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detect other nodes along their default path. The automatic positioning algorithms

are based on a set of common configurations, and can be tricked into undesirable

behaviour.

Figure A.34: Disconnecting an
edge.

To create a self-loop the user may start an edge in

the usual way and choose the same node as the desti-

nation. To speed things up, the user may double click

on a node to create a self-loop.

The Create Nodes or Edges tool can also be

used to disconnect an edge from a node and reconnect

it elsewhere. To disconnect an edge, the user must click

with the pointer of the cursor on top of the arrowhead of the edge. This causes the

edge to revert to the mid-creation state, as shown in Figure A.34. The user cannot

disconnect an edge from its tail end; however, the user can use the right-click menu

to reverse the direction of the edge and then disconnect it.

A.4 Modifying a Graph

Figure A.35: Respositioning a
node.

Since the default layout algorithms are not perfect, the

user will need to customize the position of elements in

the graph. The Modify Nodes, Edges or Labels

canvas tool facilitates this. The user can mouse-down

on a node, drag it around, and mouse-up to reposition

it. As shown in Figure A.35, all the edges connected to

the node will adjust with the user’s movement. Note

that all elements being modified will paint in bright red.
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Figure A.36: Customizing an
edge.

To adjust edges the user must first click on their ar-

rowheads. This selects the edge and causes it to draw

its anchors (four green circles). The user may click on

and drag the anchors to reposition them. The edge will

update accordingly, as shown in Figure A.36. When the

user moves one anchor, its attached anchor may also

update. In most cases this makes adjustments easier

and faster. In some cases this behaviour can be frus-

trating, so the feature can be disabled by holding down the CTRL button while

modifying individual anchors. Once the user has customized the position of an edge,

later movements of its associated nodes will attempt to maintain the user’s customiza-

tions. In some cases this is undesirable. The right-click menu can be used to reset

configuration of an edge or a group of edges.

Figure A.37: Customizing a self
loop.

Self-loop edges are not fully customizable. As

shown in Figure A.37, the user can click on its arrow-

head or single anchor point to rotate it about its node,

nothing more.

The modify tool can also be used to group objects.

Grouped objects paint in dark red. Whenever the user

clicks on an object, it becomes the active object and

paints in dark red. Such an action creates a group of only one element. The user

can hold the CTRL button and click on other objects to add or remove them from

the current grouping. The user can also mouse-down on blank space and drag the

mouse to specify a new grouping, as shown in Figure A.38. When the user releases
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the mouse button, the bounding box of the group area will shrink to encompass the

selected nodes.

Figure A.38: Selecting a group.

When the user has created a grouping with a

bounding box (rather than creating the group via

CTRL+click), the user can drag the grouped elements.

When the user moves the mouse over the grouped area

the cursor changes to the move cursor. The user can

then mouse-down, drag and release to move all the ob-

jects in the selected group, as shown in Figure A.39.

Note that this is very different than using the move tool, and the grouped objects

still snap to the grid if one is specified.

Figure A.39: Moving a group.

When moving the group, all affected objects paint

in bright red. Note that a grouped self-loop will not

paint as modified because it is defined at an angle from

its source node which is not being changed. External

edges connected to the group will update in the usual

way, attempting to maintain their specified configura-

tions. Note that the user can use CTRL+click to add

more nodes and edges to the group, but the bounding box does not change shape be-

cause unselected nodes may exist in the intermediate space. Movement of the group

will include all grouped elements, even those outside the bounding box. If the user

has added an edge to the group without adding either of its nodes, then the edge will

not move when the user moves the group.

Left clicking on empty space, or on a graph object causes the current grouping
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to be abandoned and a new one (perhaps empty) to be formed. Note that right

clicking does not affect the groupings. The grouping behaviour just described plays

an important role with the edit functions as described in the Right-Click Popup

Menus section of this guide. The Modify Nodes, Edges or Labels tool can also

be used to specify and modify edge and node labels as described in the Labels section

of this guide.

A.5 Right-Click Popup Menus

When the user right-clicks on the canvas with any tool except the zoom tool, one

of four popup menus is generated depending on whether the click was on an edge’s

arrowhead, inside a node, on blank space inside the bounding box of a grouped area,

or on blank space outside the bounding box of a grouped area.

A.5.1 Inside the Bounding Box

Figure A.40: Inside the bounding
box.

When the user right-clicks on blank space inside the

bounding box of a grouped area, a popup menu is gen-

erated with actions that affect everything within the

group.

Snap To Grid

The Snap To Grid option causes all the grouped

nodes to snap to the specified grid, which, in turn, may cause reconfiguration of

attached edges.
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Reset Configuration

The Reset Configuration option causes all edges attached to grouped nodes to

revert to their default configurations based on the automatic layout algorithms.

Copy

The Copy option copies all grouped objects and stores them in the edit buffer. Edges

will only be copied if both their start and destination nodes are also in the group.

Edges cannot exist in this software without both associated nodes.

Delete

The Delete option deletes all grouped objects. The user will not be warned or asked

for confirmation. If the user makes a mistake, the Undo action can be helpful, but

it will go backwards several steps. Note that if the user deletes a node, all attached

edges will also be deleted. Edges cannot exist in this software without both associated

nodes.

A.5.2 Outside a Bounding Box

Figure A.41: Outside the bound-
ing box.

When the user right-clicks on blank space not inside

the bounding box of a grouped area, a popup menu is

generated with all applicable edit options.

Undo

The Undo option was not implemented as a real undo.

Every five actions (loosely defined) the IDES software
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remembers a snapshot of the system. These are saved in the IDES/system folder.

Undo therefore does let the user back-up, but not ideally.

Redo

The Redo option was not implemented as a real redo. Every five actions (loosely

defined) the IDES software remembers a snapshot of the system. These are saved in

the IDES/system folder. Redo lets the user move forward through these snapshots

when the user has moved backwards through them using Undo. Note that if the user

activates Undo, then makes any changes (even just clicking on a node) the ability to

Redo can be lost.

Paste

The Paste option adds copies to the graph of whatever graph elements the user last

copied. The new elements will appear centered at the user’s click location.

A.5.3 Edges

Figure A.42: Edge right-click
popup menu.

When the user right-clicks on a graph object regardless

of whether it is inside a bounding box or not, a popup

menu is generated that applies to the selected object

only. The popup menu for an edge may be activated

by right clicking on its arrowhead. When the edge is

drawing its anchors and/or label, they may also be used

as valid right click targets.
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Label

The Label option activates the label chooser which can also be activated by double-

clicking on the arrowhead or label of the edge. If no edge transitions have been

specified, then this menu forwards the user to the Graph Specification tab. Labels

are described in the Labels section of this guide.

Reset Configuration

The Reset Configuration option causes the edge to revert to its default configura-

tion based on the automatic layout algorithms.

Straighten

The Straighten option causes the edge to reconfigure as a straight line.

Arc More

The Arc More option causes the edge to increase its arc. It is a primitive feature

and does not work very well.

Arc Less

The Arc Less option causes the edge to decrease its arc. It is a primitive feature

and does not work very well.

Reverse Direction

The Reverse Direction option causes the edge to reverse direction.
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Delete

The Delete option removes the edge from the graph. The user will not be warned

or asked for confirmation.

A.5.4 Nodes

Figure A.43: Node right-click
popup menu.

When the user right-clicks on a graph object regardless

of whether it is inside a bounding box or not, a popup

menu is generated that applies to the selected object

only. The popup menu for a node may be activated by

right clicking inside the node.

Initial State

The Initial State option sets the node as the initial state of the graph. Only one

node can be the initial state, if another was previously set as the initial state, its

setting is revoked. The initial state is designated by an incoming arrow symbol. This

symbol can be rotated about the node by clicking and dragging it with the modify

tool. The user can also use this menu to uncheck this option.

Marked State

The Marked State option sets or unsets the node as marked. Marked nodes draw

with a double circle.
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Reset Configuration

The Reset Configuration option causes all edges attached to the node to revert to

their default configurations based on the automatic layout algorithms.

Delete

The Delete option deletes the node and all attached edges. The user will not be

warned or asked for confirmation. If the user makes a mistake, the Undo action can

be helpful, but it will go backwards several steps. Edges cannot exist in this software

without both associated nodes.

A.6 Labels

There are two options for drawing Labels: Glyphs and LATEX. Glyphs are faster,

native to Java and look nicer on the IDES software screen and in exported PNGs and

GIFs. Glyphs only support regular keyboard symbols. LATEX is slower, requires that

the user has GhostScript and MiKTeX installed, and looks somewhat unattractive on

the IDES software screen and in exported PNGs and GIFs. LATEX supports all LATEX

commands, so the user is able to make much more diverse labels, and it works very

well in the export to LATEX—meaning that even though it may not look attractive

in the IDES software, it will look good in the exported LATEX. The only current bug

with LATEX labels is with line breaks in Node labels. Because line breaks are not

supported in the picture environment, the software manually breaks up the code and

repositions the fragments, and it does not work perfectly.

When the Use LATEX for Labels option is selected, the software will attempt
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to find the locations of MiKTeX and GhostScript. If it can not find them, it will

ask the user for their locations. If the user cancels out of the dialogue, or gives false

information, Use LATEX for Labels will be automatically deselected. The software

cannot embed LATEX in the graph without MiKTeX and GhostScript.

A.6.1 Node Labels

Figure A.44: Adding a label to a
node.

To add or edit the label for a node, the user may sim-

ply double-click the node when the modify tool is

selected. This opens a popup window where the user

may type the text for the node. When the user is done,

they may simply click back anywhere on the main win-

dow, or hit ENTER. It was the assumption that most

labels would be a single line. If the user wants multiple

lines, they may hold CTRL when the hitting the ENTER key and a new line will be

generated instead of closing the popup. While the popup is open it may be resized.

The last used size is stored as a system variable and remembered for successive uses

of the software. Figure A.44 demonstrates the input of information into the popup

text box.

Figure A.45: The resulting Glyph
label.

When Use LATEX for Labels is not selected the

system is using glyphs. This means that exactly what

the user puts in the popup text box will appear centered

in the node, as shown in Figure A.45. Note that the

only difference between the input and the result is that

the input text box is left aligned, while the rendered
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glyphs are centered. When Use LATEX for Labels is selected, the system is using

LATEX. This means that the contents of the popup text box is the LATEX code, while

what appears in the graph is the rendered LATEX.

Figure A.46: The resulting La-
TeX label.

When switching between glyph and LATEX labels, if

no value has been specified for the destination format,

then the value specified in the current format (if any)

is used. Glyph and LATEX values are stored separately

and are remembered as the user switches back and forth

between them. Note that the user must use \\ in or-

der to achieve a new line in the rendered LATEX, but

CTRL+ENTER still functions for a new line in the text box. Figure A.46 demon-

strates the result of switching to LATEX. Because no LATEX label was previously defined

for the node, it assumes the previously specified glyph value. Since LATEX code ignores

the carriage return, it renders the text as a single line.

Figure A.47: A complex LaTeX
example.

Figure A.47 demonstrates a more complicated

LATEX label. Note that the poor resolution of the ren-

dered label is due to a flaw in the implementation of

the IDES software. In graphs Exported to LATEX for

use in LATEX documents, the resolution is of high qual-

ity. Also note the careful use of the $ symbol. If it is

not use appropriately, the rendered result can be quite

undesirable.
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A.6.2 Edge Labels

Figure A.48: The graph specifications tab.

Edge labels are very different from node

labels. The user still has the same

glyph/LATEX options and behaviour, but the

user must specify transitions in the Graph

Specifications tab (shown in Figure A.48)

before the labels can be added to edges.

Most of the fields such as Name, Descrip-

tion, Machine Code and Properties are

optional meta-data. Symbol is the value

used for glyph labels, and LATEX is the value used for the code for the LATEX labels.

When using LATEX labels, the rendered version of the code appears to the right of the

LATEX specification, otherwise that area states that LATEX rendering is disabled.

Figure A.49: The edge label
chooser in LaTeX mode.

To specify transitions, the user may simply enter

values into any of the boxes and click Save As New.

To edit existing transitions, the user must click on a

row in the table. This populates the top edit area with

the selected data. After making the required changes,

the user must click Save Changes. Once the user

has specified transitions, it is very easy to specify edge

labels. The user may use the label option from the edge’s right-click menu, or with the

modify tool selected, the user may double-click on the arrowhead or on an existing

label. All these actions activate the transition chooser popup.

The transition chooser popup shown in Figure A.49 is simply an array of toggle
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Figure A.50: An uncontrollable
transition.

buttons, as the user switches them on and off, the

respective values appear or disappear near the edge.

When the user is finished, they may simply click any-

where off of the popup chooser. The transition chooser

contains all specified transitions, and any combination

of these may be associated with any edge. They ap-

pear as a comma delimited list in the order in which

they are added to the edge. As demonstrated in Figure

A.50, any edge that is associated with at least one uncontrollable transition is drawn

as a dashed rather than a solid line. Controllability is specified by the properties

field of the transition. Unfortunately the LATEX picture environment doesn’t support

dashed lines, so they only appear in exported LATEX when the Use pstricks in LATEX

output option is selected.

Figure A.51: The edge label
chooser in glyph mode.

When switching back to glyphs, as demonstrated in

Figure A.51, note that the selections in the chooser do

not change. The only difference is that the displayed

values are derived from the symbol field in the speci-

fications table, instead of the LATEX field. In the case

were a transition is defined without either a value in the

symbol field or in the LATEX field, the corresponding

button in the transition chooser is drawn with an empty

value.

Note that the user can reposition the label with the modify tool by clicking

on it and dragging it. It can be moved to any arbitrary location, but cannot be
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rotated from the horizontal. Advanced users who export to LATEX using the pspicture

environment and the Export LATEX directly to TEX option can manually modify

the result to rotate labels by substituting the \put(x,y){example text} command with

the \rput{angle}(x,y){example text} command.

A.7 Animated Trace

Figure A.52: Graph specifications tab contain-
ing a manual trace value.

The Trace feature allows the user to initi-

ate an animated trace of transitions in the

graph. Note that in the Graph Specifi-

cations tab (shown in Figure A.52), each

transition may be assigned a value in the

machine code field. This feature was de-

veloped for use with custom external hard-

ware representing a real plant. The exter-

nal hardware was designed to transmit sin-

gle bytes representing events as they occurred in the plant. The bytes were transmit-

ted over a serial cable using the rs232 protocol. The machine code field specifies

which bytes map to which transitions in the graph model.

Because the Trace feature was designed for use with external hardware, it requires

that the Connect toolbar item first be used to establish that hardware communi-

cation is possible before starting a trace. The connect button attempts to establish

that (9600 baud, 8 data bits, no parity, 1 stop bit, no flow control) communication

over the COM1 port on the user’s computer is possible. This should always succeed,

regardless of whether or not there is any external device attached to COM1. When
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connected, the button is drawn in a depressed mode and reads Disconnect. The

user may click it a second time to disconnect, which would also terminate any current

trace.

Figure A.53: An initiated trace.

Once connected, a trace can be initiated by clicking

the Start Trace toolbar button which then is drawn

in a depressed mode and reads Stop Trace. The

user can stop a trace at any time by clicking the trace

button a second time. When a trace is started, the

initial state of the graph becomes highlighted in blue,

which is visible in colour versions of Figure A.53. The

system then listens for transitions. When they occur,

the blue highlight animates across that transition to the appropriate state, which is

visible in colour versions of Figure A.54. The label area at the very bottom of the

software window reports information on the current state of the trace. It displays

messages when the user connects, disconnects and starts or stops a trace. It also

displays any machine codes as they are received.

Figure A.54: A trace in mid ani-
mation.

If no initial state is specified, then starting a trace

has no effect. If a machine code is received and no

outgoing transition from the current node is associated

with the received machine code then it is simply ig-

nored. If a machine code is received and more than

one outgoing transition from the current node is asso-

ciated with the received machine code then one of them

is arbitrarily chosen (but not randomly chosen). The
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trace continues until the Stop Trace toolbar button is clicked. While a trace is

in progress, it is still possible to edit all data, both in the graph and in the graph

specifications.

The software/machine communication is based on single byte packets which are

interpreted as integer values between zero and 255. This limits the effective event

space to 256 elements, but was deemed sufficient for simple modeling purposes. As

an added feature, the system can also be used as a means of control. When a byte

is received from COM1 and an associated outgoing transition is found, the software

sends the same byte back out COM1, but if no matching transition is found, it does

not echo the byte. Custom hardware can interpret this as control. If the custom

hardware consistently sends controllable event codes before the events occur, it can

interpret the lack of an echo as indication that the event should be disabled.

As an added feature, the Alpha toolbar item is a manual means of feeding custom

transition values to the Trace system. This allows the user to animate arbitrary

event strings. As with the hardware trace, the alpha mode requires that all specified

machine codes be integers, but the alpha mode accepts all positive integers; whereas,

the hardware mode is limited by the single byte packet size. In the alpha mode,

noninteger machine codes are simply ignored.

The values to be sent by the alpha button are specified using the Trace text

box at the bottom of the Graph Specification tab. This text box functions as an

integer array. Any sequence of integers may be specified in it as a comma-delimited

list with no spaces. When a trace is started, a pointer is initialized to the first element

of that array. Each time the user clicks the Alpha button the current element of the

array is transmitted to the trace system and the pointer in incremented. When the
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end of the array is reached, subsequent pushes of the Alpha button are ignored. To

start the animation from the beginning, the user must stop and restart the trace.

In Figure A.52 the value in the trace text box at the very bottom of the window

is 1,2,2,3,1,1,2. Note that in this case the event labels are equal to their respective

machine codes, but in general they are permitted to differ. When a trace is started,

the highlight goes to the initial state as shown in Figure A.53. When the Alpha

button is pressed, the trace system receives a 1 and the graph animates across that

transition to the next state as shown in Figure A.54. A second press of the Alpha

button would cause the graph to animate across the self-loop with machine code 2.

A.8 IDES file Specification

It was originally the intention that the IDES software utilize the GML format, but

a custom format was ultimately used instead. An example of such a file is given in

Listing A.3 below. No tabs characters are allowed. No blank lines are allowed. Each

system variable and data name must be preceded by exactly four spaces and must be

separated from its value by exactly one space. For any string value that could include

a line break, the escape value &#13 must be used instead.

The first five lines contain system variables. It is acceptable to not include any or

all of these lines; however, including some of the variable names with empty or invalid

values will cause the file to be unreadable by the IDES software. The five parameters

are as follows:

grid : The snap-to-grid value for this graph (acceptable values are 0, 5, 10, 20, 30).

grid displacement : The displacement from (0,0) that the grid and entire graph

has undergone due to the move tool. Manually modifying this value will considerably
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damage the graph.

scale : The current zoom state. Manually modifying this value will considerably

damage the graph.

trace : The string saved in the trace text box at the bottom of the graph specifications

tab.

standard node : The boolean (1 or 0) value for the Use standard node sizes

option.

print area : The coordinates of the print area in the form top left x, top left y,

bottom right x, bottom right y.

The second section contains the graph specifications data. The parameter names

correspond exactly to the field names in the graph specifications tab of the IDES

software. In the file, data sets must be numbered [0 . . . n − 1] in increasing order.

This ID is later used by edges to indicate which data set they include. Each of the

data sets’ seven parameters may be left blank except for parameters controllable and

observable which are boolean values and must be valued either 0 or 1. All other

parameters are strings and may be left blank.

The third section contains the nodes. Their parameters are as follows:

id : Values [0 . . . n− 1] in ascending order are used by the edges to indicate to which

nodes they are connected.

x : The x coordinate of the node’s origin.

y : The y coordinate of the node’s origin.

r : The radius of the node.

a : The attributes of the node represented as a bitwise integer, see the JavaDoc for

more details.
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dx : The x component of the direction vector of the initial state arrow, if it exists.

dy : The y component of the direction vector of the initial state arrow, if it exists.

l : The glyph label for the node.

c : The code for generating the LATEX label for the node.

The final section contains the edges. Their parameters are as follows:

source : The id of the node at which this edge originates.

target : The id of the node at which this edge terminates.

x1 : The x coordinate of the tail of the Bezier curve.

y1 : The y coordinate of the tail of the Bezier curve.

ctrlx1 : The x coordinate of the control point for the tail of the Bezier curve.

ctrly1 : The y coordinate of the control point for the tail of the Bezier curve.

ctrlx2 : The x coordinate of the control point for the head of the Bezier curve.

ctrly2 : The y coordinate of the control point for the head of the Bezier curve.

x2 : The x coordinate of the head of the Bezier curve.

y2 : The y coordinate of the head of the Bezier curve.

dx : The x component of the direction vector of a self-loop curve.

dy : The y component of the direction vector of a self-loop curve.

tdi : A comma-delimited list of data IDs associated with this edge.

gtx : The x component of the displacement of the top left corner of the label from

the midpoint of the curve.

gty : The y component of the displacement of the top left corner of the label from

the midpoint of the curve.

a : The attributes of the edge represented as a bitwise integer, see the JavaDoc for

more details.
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Listing A.3 Example of the IDES file format

graph [

grid 20

grid_displacement (-36,-38)

scale 1.0

trace

standard_node 0

print_area 14,13,375,371

data0.NAME Want

data0.LATEX $w_{1}$

data0.SYMBOL w1

data0.CONTROLLABLE 1

data0.OBSERVABLE 0

data0.MACHINE_CODE

data0.DESCRIPTION Suddenly wants the resource.

data1.NAME Grant

data1.LATEX $g_{1}$

data1.SYMBOL g1

data1.CONTROLLABLE 0

data1.OBSERVABLE 0

data1.MACHINE_CODE

data1.DESCRIPTION Suddenly is granted the resource.

node [

id 0

x 64

y 62

r 19

a 3

dx 0.77724487

dy 0.6291982

l I,I

c I I

]

node [

id 1

x 204

y 62

r 19

a 0

l R,I

c R I

]

edge [

source 0

target 1

x1 83.0

y1 62.0

ctrlx1 102.0

ctrly1 62.0

ctrlx2 146.0

ctrly2 62.0

x2 178.0

y2 62.0

dx 0.0

dy 0.0

tdi 0

gtx 5

gty 5

a 0

]

]



Appendix B

A Vending Machine

B.1 Summary

A pop vending machine is the classic textbook example of a finite-state machine. It

was, therefore, an obvious choice for a hardware model for the purpose of demonstrat-

ing the implementation of DES control theory. Immediately, however, two problems

arise. The first problem involves the definition of the plant. It is unclear if the plant

should be equal to all definable behaviour—every sequence of every component of the

machine acting randomly, or if the plant should be defined as the legal specification—

which greatly reduces the usefulness of DES control theory. The second problem in-

volves generation of events. In a hardware example such as a pop vending machine,

it is clear that all inputs are uncontrollable events, and all outputs are controllable

events. There is also a clear causality relationship between inputs and outputs not

neatly captured by standard DES control theory. A näıve implementation might as-

sume that the plant should continuously and randomly generate controllable events

while the structure of the supervisor maintains the necessary causality relationship

200
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between inputs and outputs.

B.2 Circuit

The vending machine model was developed for the purpose of investigating what

issues may arise in the application of DES control theory to the design of a simple

machine and for the purpose of demonstrating interaction of the IDES software with

a real plant. A photo of the implementation is shown in Figure B.1.

Figure B.1: A photograph of the vending machine model.
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This hardware and several variations of it were used in investigation into the issues

and principles involved in implementation of DES control theory. It is composed of

two PIC16F84 microcontrollers, an LCD, some push buttons and some LEDs. The

switches and wiring to the left of the microcontrollers are necessary for programming

the chips and are not part of the circuit. Two microcontrollers are necessary in this

model because of the limited number of IO pins on the PIC16F84. The upper micro-

controller manages the LCD and functions as a slave unit to the lower microcontroller.

The master microcontroller delegates simple commands to the slave microcontroller,

allowing alternate views of this system as one of distributed control. The master

microcontroller is also connected to the COM1 port of a PC for integration with the

IDES software. A clean circuit diagram is provided in Figure B.2.

PIC16F84
(master)

+5v

osc

4 MHz

100Ω LEDs

10kΩ

RD

TD

10kΩ

+5v

Refill Machine
10kΩ

+5v

Insert Token

10kΩ

+5v

Request Pop

10kΩ

+5v

Reset

PIC16F84
(slave)

+5v

osc

4 MHz

+5v

4.7kΩ pot

LCD

14 1

Figure B.2: The circuit diagram for the vending machine model.
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The machine works as follows. The pushbuttons allow input from a human user.

The LCD allows output to the human user in the form of text messages such as the

current number of credits in the machine or whether or not a requested type of pop is

available. The LEDs represent pop in the vending machine. When they are lit, they

represent individual units of pop in the machine. The act of an LED becoming unlit

represents the delivery of a pop from the machine to a human user.

B.3 Model

This particular incarnation of the model functions according to the following specifi-

cation. The machine will accept only one form of currency, which we will call a token.

The machine will dispense only one form of pop which we will call pop. The machine

can contain zero, one, two, or three pops. A technician can refill the machine, bring-

ing the current number of pops to three. The machine has memory and keeps track

of the current number of credits. Credits are tokens that have been inserted into the

machine, but not spent. When a pop is dispensed by the machine, the current number

of credits is decremented by three unless the current number of credits was less than

three in which case the credit total is unchanged. This undesirable behaviour (pop

dispensed, but credits not decremented) is called lost pop. Finally, the machine can

be reset, which sets the current number of credits to zero and the current number of

pops to three.
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Symbol Description

T A token was accepted bringing the current credit total to at least the
cost of one pop.

P+ A pop was dispensed by the machine and the credit total was decre-
mented by three, resulting in a credit total greater than or equal to the
cost of one pop.

R The pop machine was refilled by the technician.
L A pop was dispensed even though the credit total was less than the

cost of one pop.
P A pop was dispensed by the machine and the credit total was decre-

mented by three, resulting in a credit total less than the cost of one
pop.

Table B.1: The event space of the plant.

Figure B.3 provides an abstract plant representation of the pop machine. This

plant has no knowledge of the exact number of credits in the machine and provides a

simple event-based view of the system. The event space of the plant is given in Table

B.1. This abstracted view of the machine follows from the structure of the program

on the microcontroller. The source code for the master microcontroller as given in

Listing C.1 shows that when certain logical events occur within the system it sends a

byte out the serial cable to the COM1 port of an attached PC. Specifically, it uses the

values 7, 8, 9, 10 and 11 to represent the five events within the plant. Consequently,

when the IDES software has the plant model of Figure B.3 loaded, and is connected

to the hardware model via the trace feature, then as events actually occur within the

plant (due to human interaction) the current highlighted state in the IDES software

updates appropriately.
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credits < 3
pops = 3

credits < 3
pops = 2

credits >= 3
pops = 3

credits >= 3
pops = 2

credits < 3
pops = 1

credits >= 3
pops = 1

credits < 3
pops = 0

credits >= 3
pops = 0

P+ P+ P+

T T T T

P P P

R

R

R

R

R
R

L L L

Figure B.3: The plant.

For a controllable event such as L, notification is sent to the PC before the event

occurs. If the PC does not echo the event code, the microcontroller assumes that the

event has been disabled and does not carry through with the event sequence. The

legal specification as shown in Figure B.4 is controllable with respect to the plant.

This means it can serve as an implicit supervisor. Consequently, when the IDES

software has the legal model of Figure B.4 loaded, and is connected to the hardware

model via the trace feature, then as events actually occur within the plant (due to

human interaction) and the highlight moves within the legal model, the L event is

prevented from occurring because it is not found in the model and therefore not

echoed back to the microcontroller. This means that when the credits are less than

three and a human user presses the Request Pop button in the controlled mode,

the number of pops are not decremented (lost pop is disabled); whereas, they would
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be decremented in the uncontrolled mode.

credits < 3
pops = 3

credits < 3
pops = 2

credits >= 3
pops = 3

credits >= 3
pops = 2

credits < 3
pops = 1

credits >= 3
pops = 1

credits < 3
pops = 0

credits >= 3
pops = 0

P+ P+ P+

T T T T

P P P

R

R

R

R

R
R

Figure B.4: The legal language.

This model therefore functions as a real implementation of DES control theory and

demonstrates the effectiveness of the IDES software as a tool both for understanding

a plant’s behaviour (trace in the uncontrolled mode) and functioning as a supervisor

(trace in the controlled mode). Of course, this system is somewhat contrived and

it is clear that the separation of the plant logic (in the microcontrollers) and the

supervisor logic (on the PC) is considerably more work than an integrated solution

where the microcontrollers are programmed with correct logic and do not require the

aid of an external decision-making entity.

The source code for the master and slave microcontrollers are given in Listings

C.1, C.2, C.3 and C.4. The most interesting logic is contained in the source code

for the master in Listing C.1. This is written in assembly language and contains all
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the logic for encapsulating the plant model and interfacing with the IDES software

on a PC. The other three listings contain the source code for the slave unit and are

written in C. The C was compiled using the PICC LITE compiler and three simple

files delay.c, delay.h, and pic.h were omitted.
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Listing B.1 PIC16F84 assembly language code for the master microcontroller.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; notes ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; - interrupt flags are set when the interrupt condition occurs, regardless of the interrupt enable

; bit; therefore, clear the flags before you enable the interrupts.

; - in order to access the TRIS registers, bank 1 must be selected

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; directives ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

LIST P=16F84

INCLUDE "p16f84.inc"

ERRORLEVEL -224 ; supress irrelevant error messages

__CONFIG _PWRTE_ON & _XT_OSC & _WDT_OFF ; choose the configuration fuses

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; equates ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

START_ADDRESS EQU h’0000’ ; where the program starts after a reset

ISR_ADDRESS EQU h’0004’ ; where the machine goes when an interrupt is serviced

PC_PORT EQU h’0005’ ; PORTA, the rs232 lines for pic-pc communication are here

PC_TD EQU d’2’

PC_RD EQU d’3’

MC_PORT EQU h’0006’ ; PORTB, the rs232 lines for pic-pic communication are here

MC_TD EQU d’4’

MC_RD EQU d’5’

LED_PORT EQU h’0006’ ; PORTB, the port where the pop led indicators are connected

LED EQU d’0’

NON_LEDS EQU b’11111000’ ; the pins on the LED_PORT that aren’t for LEDs

TOKEN_PORT EQU h’0005’ ; PORTA, the port where the "Insert Token" button is connected

TOKEN EQU d’1’

POP_PORT EQU h’0005’ ; PORTA, the port where the "Request Pop" button is connected

POP EQU d’0’

RFILL_PORT EQU h’0006’ ; PORTB, the port where the "Refill Pop" button is connected

RFILL EQU d’3’

FLAG_T_R EQU d’0’ ; 0th bit of flags :: 0 -> use transmit isr :: 1 -> use receive isr

FLAG_PC_MC EQU d’1’ ; 1th bit of flags :: 0 -> use PC channel :: 1 -> use MC channel

FLAG_TOKEN EQU d’2’ ; 2th bit of flags :: last known state of token button (1=unpushed)

FLAG_POP EQU d’3’ ; 3th bit of flags :: last known state of pop button (1=unpushed)

FLAG_RFILL EQU d’4’ ; 4th bit of flags :: last known state of refill button (1=unpushed)

OP_CLEAR EQU d’0’ ; LCD opcodes

OP_LOGO EQU d’1’

OP_DISPENSE EQU d’2’

OP_TOKENS EQU d’3’
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OP_TOKEN_POP EQU d’4’

OP_TOKEN_MAX EQU d’5’

OP_ERROR EQU d’6’

OP_REFILL EQU d’7’ ; pc code, machine refilled

OP_SUFFICIENT EQU d’8’ ; pc code, there is now enough cash for a pop

OP_POP EQU d’9’ ; pc code, pop delivered, not enough cash for another

OP_POP_PLUS EQU d’10’ ; pc code, pop delivered, remains enough cash for another

OP_LOST EQU d’11’ ; pc code, pop delivered, but not paid for

OP_RESET EQU d’255’ ; pc code, hard reset

NULL EQU d’0’

MAX_TOKENS EQU d’6’ ; the total #of current credits the machine is willing to accept

POP_COST EQU d’3’ ; the number of tokens required for a pop

FULL_STATE EQU b’00000111’ ; the state of the pops variable when the machine is full

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; data ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

CBLOCK h’0C’ ; set up general registers starting at address 12

counter ; a general counting register

big_count ; a second general counting register

huge_count ; a third general counting register

character ; holds a character either sent or received by the rs232 protocol

char_count ; keeps track of which bit should be sent next in the rs232 protocol

temp_char ; for rs232 sends, allows send without destroying value in character

flags ; flags for various control decisions

temp ; a general temp register

w_temp ; to save state of W while in an isr

status_temp ; to save state of STATUS while in an isr

tokens ; total number of credits

pops ; pop bit flags xxxxx111, 1 implies pop is in machine and led is lit

ENDC

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; start ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG START_ADDRESS ; the fixed start address

goto initialization

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; interrupt service routine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG ISR_ADDRESS ; the fixed interrupt vector

movwf w_temp ; save the machine state

swapf STATUS, W

movwf status_temp

btfss flags, FLAG_T_R ; decide which isr handler to use

call rs232_transmit

btfsc flags, FLAG_T_R

call rs232_receive

bcf INTCON, T0IF ; clear TOIF to prevent infinite interrupt loop

swapf status_temp, W ; restore the machine state

movwf STATUS

swapf w_temp, F
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swapf w_temp, W

retfie ; this automatically sets GIE

; (which was automatically cleared when the interrupt occurred)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; rs232 transmit isr subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rs232_transmit movlw d’161’ ; every time the interrupt occurs,

; load TMR0 with 161, so the count is 161-256

; (i.e., 95 steps = 95us)

; recall that the isr latency and preceeding code consumes time

movwf TMR0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rt_start_bit movlw d’10’ ; check if this is the start bit

subwf char_count, W ; result is stored in W, status register is modified

btfss STATUS, Z ; zero bit is zero only when result is NOT zero

goto rt_end_bit

movf character, W

movwf temp_char

btfsc flags, FLAG_PC_MC ; choose channel, start bit is a one

goto $+3

bsf PC_PORT, PC_TD

goto $+2

bsf MC_PORT, MC_TD

goto rt_done

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rt_end_bit movlw d’1’ ; check if this is the end bit

subwf char_count, W ; result is stored in W, status register is modified

btfss STATUS, Z ; zero bit is zero only when result is NOT zero

goto rt_data_bit

btfsc flags, FLAG_PC_MC ; choose channel, end bit is a zero

goto $+3

bcf PC_PORT, PC_TD

goto $+2

bcf MC_PORT, MC_TD

goto rt_done

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rt_data_bit btfsc temp_char, 0 ; for data bits, write the negative of the current bit

; of character onto the TD pin

goto rt_clear_bit

rt_set_bit btfsc flags, FLAG_PC_MC ; choose channel

goto $+3

bsf PC_PORT, PC_TD

goto $+2

bsf MC_PORT, MC_TD

goto rt_rotate_bit
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rt_clear_bit btfsc flags, FLAG_PC_MC ; choose channel

goto $+3

bcf PC_PORT, PC_TD

goto $+2

bcf MC_PORT, MC_TD

rt_rotate_bit rrf temp_char, F ; advance to the next bit

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rt_done decfsz char_count, F ; if all bits have been sent, disable the timer0 interrupt

goto $+2

bcf INTCON, T0IE

return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; rs232 receive isr subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rs232_receive movlw d’161’ ; every time the interrupt occurs,

; load TMR0 with 161, so the count is 161-256

; (i.e., 95 steps = 95us)

; recall that the isr latency and preceeding code consumes time

movwf TMR0

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rd_end_bit movlw d’1’ ; check if this is the end bit

subwf char_count, W ; result is stored in W, status register is modified

btfsc STATUS, Z ; zero bit is zero only when result is NOT zero

goto rd_done ; do nothing for the end bit

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rd_data_bit rrf character, F ; advance to the next bit

btfsc flags, FLAG_PC_MC ; choose channel

goto $+4

btfsc PC_PORT, PC_RD ; write the negative of the current bit

; on the RD pin into the character register

goto rd_clear_bit

goto rd_set_bit

btfsc MC_PORT, MC_RD ; write the negative of the current bit

; on the RD pin into the character register

goto rd_clear_bit

goto rd_set_bit

rd_set_bit bsf character, 7

goto $+2

rd_clear_bit bcf character, 7

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rd_done decfsz char_count, F ; if all bits have been received, disable the timer0 interrupt

goto $+2

bcf INTCON, T0IE

return
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; rs232 transmit initializer ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

send_char bcf flags, FLAG_T_R

movlw d’10’ ; set count_char = #of bits to be sent in the rs232 protocol

movwf char_count

bsf INTCON, T0IF ; we wish to start the interrupt sequence right away

bsf INTCON, T0IE ; enable the timer overflow interrupt

dead_send btfsc INTCON, T0IE ; dead loop until the transaction is complete

goto dead_send ; and the isr routine has disabled T0IE

movlw h’0f’ ; kill some time just to be safe

movwf counter

decfsz counter, F

goto $-1

return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; rs232 receive initializer ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

get_char btfsc flags, FLAG_PC_MC ; choose channel

goto gc_mc_poll

gc_pc_poll btfss PC_PORT, PC_RD ; poll for the start bit

goto gc_pc_poll

goto $+3

gc_mc_poll btfss MC_PORT, MC_RD ; poll for the start bit

goto gc_mc_poll

bsf flags, FLAG_T_R

movlw d’9’ ; set count_char = #of to be received in the rs232 protocol

movwf char_count

movlw d’146’ ; load TMR0 with 146, so the count is 146-256 (i.e. 110us)

movwf TMR0

bcf INTCON, T0IF ; because it may already be set

bsf INTCON, T0IE ; enable the timer overflow interrupt

dead_get btfsc INTCON, T0IE ; dead loop until the transaction is complete

goto dead_get ; and the isr routine has disabled T0IE

return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; initialization ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

initialization bsf STATUS, RP0 ; select bank 1

movlw b’00001011’ ; specify the io mask for PORTA (1=input, 0=output)

movwf TRISA

movlw b’00101000’ ; specify the io mask for PORTB (1=input, 0=output)
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movwf TRISB

movlw b’00001000’ ; initialize the option register

movwf OPTION_REG ; (TMR0 based on internal clock with 1:1 prescalar)

bcf STATUS, RP0 ; select bank 0

movlw b’00000000’ ; start with the interrupt control register zeroed

movwf INTCON ; (everything disabled)

clrf PORTA ; start with zero in PORTA (note TD pin must = 0)

clrf PORTB ; start with zero in PORTB

bsf flags, FLAG_TOKEN ; last known state of the token button is un-pushed = 1

bsf flags, FLAG_POP ; last known state of the pop button is un-pushed = 1

bsf flags, FLAG_RFILL ; last known state of the refill button is un-pushed = 1

clrf tokens ; start with zero tokens in the system

movlw FULL_STATE ; initialize the machine to be full of pops

movwf pops

iorwf LED_PORT, F

bsf INTCON, GIE ; globally enable interrupts

call short_wait ; for the benefit of the rs232 start bit

movlw OP_LOGO ; notify mc of the reset event

movwf character

bsf flags, FLAG_PC_MC

call send_char ; mc opcode

call send_char ; mc null data

movlw OP_RESET ; notify pc of the reset event

movwf character

bcf flags, FLAG_PC_MC

call send_char ; pc opcode

call busy_wait ; for the benefit of the slave startup screen

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; main ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

main nop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

token_test btfsc flags, FLAG_TOKEN ; test the last known state

goto tt_unpushed

goto tt_pushed

tt_unpushed btfss TOKEN_PORT, TOKEN ; last known state was un-pushed (i.e. 1)

bcf flags, FLAG_TOKEN ; update last know state

goto tt_done

tt_pushed btfss TOKEN_PORT, TOKEN ; last known state was pushed (i.e. 0)

goto tt_done

bsf flags, FLAG_TOKEN ; update last known state

call insert_token
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tt_done nop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

pop_test btfsc flags, FLAG_POP ; test the last known state

goto pt_unpushed

goto pt_pushed

pt_unpushed btfss POP_PORT, POP ; last known state was un-pushed (i.e. 1)

bcf flags, FLAG_POP ; update last know state

goto pt_done

pt_pushed btfss POP_PORT, POP ; last known state was pushed (i.e. 0)

goto pt_done

bsf flags, FLAG_POP ; update last know state

call request_pop

pt_done nop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

fill_test btfsc flags, FLAG_RFILL ; test the last known state

goto ft_unpushed

goto ft_pushed

ft_unpushed btfss RFILL_PORT, RFILL ; last known state was un-pushed (i.e. 1)

bcf flags, FLAG_RFILL ; update last know state

goto ft_done

ft_pushed btfss RFILL_PORT, RFILL ; last known state was pushed (i.e. 0)

goto ft_done

bsf flags, FLAG_RFILL ; update last known state

call rfill_pop

ft_done nop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

goto main

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; insert token routine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

insert_token movlw MAX_TOKENS ; test if we are willing to accept more tokens

subwf tokens, W

btfsc STATUS, Z ; zero bit is zero only when result is NOT zero

goto done_token ; when at max, just ignore the input

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

incf tokens, F ; increment the number of tokens

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

bsf flags, FLAG_PC_MC ; notify the mc of the new total

movlw OP_TOKENS

movwf character

call send_char ; mc opcode

movf tokens, W

movwf character
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call send_char ; mc data

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

movlw POP_COST ; test if we just crossed the cost threshold

subwf tokens, W

btfss STATUS, Z ; zero bit is zero only when result is NOT zero

goto done_token ; when at max, just ignore the input

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

bcf flags, FLAG_PC_MC ; notify the pc that there are now enough tokens to buy a pop.

movlw OP_SUFFICIENT

movwf character

call send_char

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

done_token return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; request_pop routine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

request_pop btfss pops, 0 ; test if there are any pops in the machine (0th bit last pop)

goto done_pop ; when there are not enough pops, simply ignore the request

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

movlw POP_COST ; test if there are enough tokens to purchase a pop

subwf tokens, W

btfss STATUS, C ; carry bit is a one only when the result is non-negative

goto lost_pop ; when there are not enough tokens, generate the lost pop event

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rrf pops, F ; remove the pop

movlw NON_LEDS

iorwf pops, W

andwf LED_PORT, F

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

movlw POP_COST ; pay for pop

subwf tokens, F

movlw OP_TOKENS ; tell the mc to display new token total

movwf character

bsf flags, FLAG_PC_MC

call send_char ; mc opcode

movf tokens, W

movwf character

call send_char ; mc data

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

movlw POP_COST ; test if there remains enough credits to buy another pop

subwf tokens, W

btfss STATUS, C ; carry bit is a one only when the result is non-negative

goto below_pop
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above_pop movlw OP_POP_PLUS ; tell the pc that a pop has just been delivered,

movwf character ; and there are enough credits for another

bcf flags, FLAG_PC_MC

call send_char ; pc opcode

goto done_pop

below_pop movlw OP_POP ; tell the pc that a pop has just been delivered,

movwf character ; and there are not enough credits for another

bcf flags, FLAG_PC_MC

call send_char ; pc opcode

goto done_pop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

lost_pop movlw OP_LOST ; tell the pc that a pop has just been delivered, but not paid

movwf character

bcf flags, FLAG_PC_MC

call send_char ; pc opcode

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

call get_char

movlw OP_LOST

subwf character, W

btfss STATUS, Z ; zero bit is zero only when result is NOT zero

goto done_pop ; only remove the pop if the controller allows this event

rrf pops, F ; remove the pop

movlw NON_LEDS

iorwf pops, W

andwf LED_PORT, F

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

done_pop return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; rfill_pop routine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rfill_pop movlw FULL_STATE ; set the machine to be full of pops

movwf pops

iorwf LED_PORT, F

movlw OP_REFILL ; tell the pc that a pop has just been delivered

movwf character

bcf flags, FLAG_PC_MC

call send_char ; pc opcode

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; simple busy wait routine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

busy_wait movlw d’3’

movwf huge_count

movlw h’ff’

movwf big_count

movlw h’ff’
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movwf counter

decfsz counter, F

goto $-1

decfsz big_count, F

goto $-5

decfsz huge_count, F

goto $-9

return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; short busy wait routine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

short_wait movlw h’ff’

movwf big_count

movlw h’ff’

movwf counter

decfsz counter, F

goto $-1

decfsz big_count, F

goto $-5

return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

end ; end of program
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Listing B.2 C language code for the slave microcontroller (main.c)

#include <pic.h>

#include "delay.c"

#include "lcd.c"

#include "rs232.c"

__CONFIG(WDTDIS & XT & UNPROTECT);

/**********************************************************************************************

* Print the total tokens to the LCD.

*/

void print_tokens(unsigned char tokens)

{

unsigned char high_digit;

unsigned char low_digit;

high_digit = tokens/10;

low_digit = tokens-(high_digit*10);

lcd_overwrite_string("Total Tokens: ");

lcd_write_char(high_digit + 0x30);

lcd_write_char(low_digit + 0x30);

}

/**********************************************************************************************

* Main Loop.

* Initailze the system while displaying "Resetting: ..." on the LCD.

* After the initialization delay, display the custom logo on the LCD.

* Loop, listening for command/data byte pairs and executing accordingly.

*

* command 0 -> Clear the LCD

* command 1 -> Draw the logo on the LCD

* command 2 -> Display pop attempt message

* command 3 -> Display tokens total (from received data)

* command 4 -> Display pop delivered message

* command 5 -> Display token rejected message

*/

main(void)

{

unsigned char command;

unsigned char data;

TRISA = 0b00001000;

TRISB = 0b00000000;

rs232_initialize(); // initalize the devices

lcd_initialize();

lcd_overwrite_string("Resetting: "); // initalization delay and prompt

delay_ms(250);

lcd_write_char(’.’);

delay_ms(250);

lcd_write_char(’.’);

delay_ms(250);

lcd_write_char(’.’);

delay_ms(250);
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lcd_draw_logo(); // draw the startup logo

while(1==1)

{

command = rs232_get_char(); // receive a command byte

data = rs232_get_char(); // receive a data byte

if (command == 0) { lcd_clear_and_home(); } // clear the LCD

if (command == 1) { lcd_draw_logo(); } // Draw the logo on the LCD

else if (command == 2) // Display pop attempt message

{

lcd_overwrite_string("Now attempting");

lcd_write_string_at_second_line("to deliver pop.");

}

else if (command == 3) { print_tokens(data); } // Display tokens total (from received data)

else if (command == 4) // Display pop delivered message

{

print_tokens(data);

lcd_write_string_at_second_line("Pop Delivered!");

}

else if (command == 5) // Display token rejected message

{

print_tokens(data);

lcd_write_string_at_second_line("Token Rejected!");

}

else // Display an error message and loop infinitely

{

lcd_overwrite_string("Fatal Error:");

lcd_write_string_at_second_line("Requires Reset.");

while(1==1) { continue; }

}

}

}
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Listing B.3 C language code for the slave microcontroller (lcd.c)

static bit LCD_RS @ ((unsigned)&PORTB*8+4); // Register select

static bit LCD_EN @ ((unsigned)&PORTB*8+5); // Enable

#define LCD_STROBE ((LCD_EN = 1),(LCD_EN=0))

/**********************************************************************************************

* Write one byte to the LCD.

*/

void lcd_write_byte(unsigned char c)

{

PORTB = (PORTB & 0xF0) | (c >> 4);

LCD_STROBE;

PORTB = (PORTB & 0xF0) | (c & 0x0F);

LCD_STROBE;

delay_us(40);

}

/**********************************************************************************************

* Clear and home the LCD.

*/

void lcd_clear_and_home(void)

{

LCD_RS = 0; // control

lcd_write_byte(0x01);

delay_ms(2);

}

/**********************************************************************************************

* Go to the specified position.

*/

void lcd_goto(unsigned char pos)

{

LCD_RS = 0; // control

lcd_write_byte(0x80+pos);

}

/**********************************************************************************************

* Write one char to the LCD.

*/

void lcd_write_char(char c)

{

LCD_RS = 1; // characters

lcd_write_byte(c);

}

/**********************************************************************************************

* Write a string of chars to the LCD.

*/

void lcd_write_string(const char * s)

{

LCD_RS = 1; // characters

while(*s)

{ lcd_write_byte(*s++); }

}
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/**********************************************************************************************

* Clear and home the LCD,

* then write a string of chars to the LCD.

*/

void lcd_overwrite_string(const char * s)

{

lcd_clear_and_home();

LCD_RS = 1; // characters

while(*s)

{ lcd_write_byte(*s++); }

}

/**********************************************************************************************

* Write a string of chars to the LCD

* starting at the beginning of the second line of the display.

*/

void lcd_write_string_at_second_line(const char * s)

{

lcd_goto(64);

LCD_RS = 1; // characters

while(*s)

{ lcd_write_byte(*s++); }

}

/**********************************************************************************************

* Load the custom characters into cgram.

* Also performs Clear and Home.

*/

void lcd_load_custom_characters(void)

{

LCD_RS = 0; // control

lcd_write_byte(0b01000000); // cgram address #0

LCD_RS = 1; // characters

// pattern is xxxbbbbb

// arrow right

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000010);

lcd_write_byte(0b00011111);

lcd_write_byte(0b00000010);

lcd_write_byte(0b00000100);

// arrow left

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00001000);

lcd_write_byte(0b00011111);

lcd_write_byte(0b00001000);

lcd_write_byte(0b00000100);

// arrow up

lcd_write_byte(0b00000100);

lcd_write_byte(0b00001110);

lcd_write_byte(0b00010101);

lcd_write_byte(0b00000100);
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lcd_write_byte(0b00001100);

lcd_write_byte(0b00011000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

// node

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00001110);

lcd_write_byte(0b00010001);

lcd_write_byte(0b00010001);

lcd_write_byte(0b00010001);

lcd_write_byte(0b00001110);

// marked node

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00001110);

lcd_write_byte(0b00010001);

lcd_write_byte(0b00010101);

lcd_write_byte(0b00010001);

lcd_write_byte(0b00001110);

// line

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00011111);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

// corner bottom left

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000110);

lcd_write_byte(0b00000011);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

// corner bottom right

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00000100);

lcd_write_byte(0b00001100);

lcd_write_byte(0b00011000);

lcd_write_byte(0b00000000);

lcd_write_byte(0b00000000);

lcd_clear_and_home();

}

/**********************************************************************************************

* Initialize the LCD.

*/
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void lcd_initialize(void)

{

LCD_RS = 0; // control

delay_us(100);

lcd_write_byte(0x28); // 4 bit mode, 1/16 duty (2 lines), 5x8 dots

lcd_write_byte(0x0C); // display on, blink off, cursor off

//lcd_write_byte(0x0F); // display on, blink on, cursor on

lcd_write_byte(0x06); // entry mode

lcd_load_custom_characters();

}

/**********************************************************************************************

* Display a pattern of custom characters from cgram.

* Also performs Clear and Home.

*/

void lcd_draw_logo(void)

{

// 0 = arrow right 1 = arrow left 2 = arrow up 3 = node

// 4 = marked node 5 = line 6 = corner bottom left 7 = corner bottom right

lcd_clear_and_home();

lcd_write_char(0);

lcd_write_char(3);

lcd_write_char(5);

lcd_write_char(5);

lcd_write_char(5);

lcd_write_char(0);

lcd_write_char(3);

lcd_write_char(0);

lcd_write_char(3);

lcd_write_char(5);

lcd_write_char(5);

lcd_write_char(0);

lcd_write_char(3);

lcd_write_char(5);

lcd_write_char(5);

lcd_write_char(3);

lcd_goto(64);

lcd_write_char(’ ’);

lcd_write_char(6);

lcd_write_char(5);

lcd_write_char(0);

lcd_write_char(3);

lcd_write_char(5);

lcd_write_char(2);

lcd_write_char(’ ’);

lcd_write_char(6);

lcd_write_char(0);

lcd_write_char(4);

lcd_write_char(1);

lcd_write_char(7);

lcd_write_char(4);

lcd_write_char(1);

lcd_write_char(7);

}
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Listing B.4 C language code for the slave microcontroller (rs232.c)

static volatile bit RS232_TD @ (unsigned)&PORTA*8+2;

static volatile bit RS232_RD @ (unsigned)&PORTA*8+3;

/**********************************************************************************************

* Initialize the transmit pin,

* by ensuring it is low for an entire message cycle.

*/

void rs232_initialize()

{

RS232_TD = 0;

delay_ms(1);

}

/**********************************************************************************************

* Send a single char out the transmit pin.

*/

void rs232_send_char(unsigned char c)

{

c = ~c;

RS232_TD = 1; // start bit

delay_us(100);

RS232_TD = (c & 1); // 8 data bits

c = c >> 1;

delay_us(98);

RS232_TD = (c & 1);

c = c >> 1;

delay_us(98);

RS232_TD = (c & 1);

c = c >> 1;

delay_us(98);

RS232_TD = (c & 1);

c = c >> 1;

delay_us(98);

RS232_TD = (c & 1);

c = c >> 1;

delay_us(98);

RS232_TD = (c & 1);

c = c >> 1;

delay_us(98);

RS232_TD = (c & 1);

c = c >> 1;

delay_us(98);

RS232_TD = (c & 1);

c = c >> 1;

delay_us(98);
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RS232_TD = 0; // stop bit

delay_us(100);

}

/**********************************************************************************************

* Send a string of chars out the transmit pin.

*/

void rs232_send_string(const char * s)

{

while(*s)

{ rs232_send_char(*s++); }

}

/**********************************************************************************************

* Get a single char from the receive pin.

*/

unsigned char rs232_get_char()

{

unsigned char c = 0;

while (RS232_RD == 0) { continue; } // start bit

delay_us(150);

if (RS232_RD == 0) { c = c | 0b00000001; } // 8 data bits

delay_us(97);

if (RS232_RD == 0) { c = c | 0b00000010; }

delay_us(97);

if (RS232_RD == 0) { c = c | 0b00000100; }

delay_us(97);

if (RS232_RD == 0) { c = c | 0b00001000; }

delay_us(97);

if (RS232_RD == 0) { c = c | 0b00010000; }

delay_us(97);

if (RS232_RD == 0) { c = c | 0b00100000; }

delay_us(97);

if (RS232_RD == 0) { c = c | 0b01000000; }

delay_us(97);

if (RS232_RD == 0) { c = c | 0b10000000; }

delay_us(97);

delay_us(100); // stop bit

return c;

}
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Listing C.1 An implementation in PIC16F84 assembly code of the portion of the
control solution for an abstract vending machine that can be automatically generated
from DES control theory.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; equates ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

TOKEN_EVENT EQU d’0’ ; offset of token in the sdata array

POP_EVENT EQU d’1’ ; offset of pop in the sdata array

REFILL_EVENT EQU d’2’ ; offset of refill in the sdata array

ENABLED EQU d’0’ ; zero indicates enablement

DISABLED EQU h’f’ ; fifteen indicates disablement

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; data ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

CBLOCK h’0C’ ; set up general registers starting at address 12

event ; an event that is about to occur in the plant

decision ; the enablement decision of the supervisor

sstate ; the state of the supervisor

temp ; a general temp register

ENDC

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; initialization ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

org h’0000’

;... ; do general initialization

clrf sstate ; initial supervisor state is zero

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; main ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

main call doToken

call doPop

call doRefill

goto main

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; event routines ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

doToken ;... ; test the sensor

goto token_exit ; if the event hasn’t been initiated then quit

movlw TOKEN_EVENT

movwf event

call supervisor ; ask the supervisor

btfsc decision, 0

goto token_no

token_yes ;... ; do the work for the yes case

goto token_exit

token_no ;... ; do the work for the no case

token_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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doPop ;... ; test the sensor

goto pop_exit ; if the event hasn’t been initiated then quit

movlw POP_EVENT

movwf event

call supervisor ; ask the supervisor

btfsc decision, 0

goto pop_no

pop_yes ;... ; do the work for the yes case

goto pop_exit

pop_no ;... ; do the work for the no case

pop_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

doRefill ;... ; test the sensor

goto refill_exit ; if the event hasn’t been initiated then quit

movlw REFILL_EVENT

movwf event

call supervisor ; notify the supervisor

refill_yes ;... ; do the work

refill_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; supervisor subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; input: assumes event = event currently being initiated

;; i.e. TOKEN_EVENT, POP_EVENT or REFILL_EVENT

;; output: sets decision = ENABLED or DISABLED

;; also updates its state accordingly (in sstate)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

supervisor movf sstate, W ; used determine which data to fetch from the sdata array

movwf temp

movlw sdata ; the start of the sdata array

movf sstate, F ; in state zero we want to skip the loop

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto $+4

addlw d’3’ ; adds to W the # to skip ahead to get the data for the current state

decfsz temp, F

goto $-2

addwf event, W ; adds to W the # to skip ahead to get the data for the current event

movwf FSR ; the address of the next_state data (INDF will now access the correct data)

movlw DISABLED

subwf INDF, W ; test if the transition is disabled

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto disable

enable movf INDF, W ; update the next state

movwf sstate

movlw ENABLED ; mark as enabled

movwf decision

goto ssExit
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disable movlw DISABLED ; mark as disabled

movwf decision

ssExit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; supervisor data (h’f’ indicates disablement) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

sdata dw h’1’, h’f’, h’0’ ; outgoing (token, pop, refill) from state 0

dw h’2’, h’f’, h’1’ ; outgoing (token, pop, refill) from state 1

dw h’f’, h’3’, h’2’ ; outgoing (token, pop, refill) from state 2

dw h’4’, h’f’, h’0’ ; outgoing (token, pop, refill) from state 3

dw h’5’, h’f’, h’1’ ; outgoing (token, pop, refill) from state 4

dw h’f’, h’6’, h’2’ ; outgoing (token, pop, refill) from state 5

dw h’7’, h’f’, h’0’ ; outgoing (token, pop, refill) from state 6

dw h’8’, h’f’, h’1’ ; outgoing (token, pop, refill) from state 7

dw h’f’, h’9’, h’2’ ; outgoing (token, pop, refill) from state 8

dw h’f’, h’f’, h’0’ ; outgoing (token, pop, refill) from state 9

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

end ; end of program
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Listing C.2 An alternative implementation using distributed control theory.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; equates ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

TOKEN_EVENT EQU d’0’ ; offset of token in the sdata array

POP_EVENT EQU d’1’ ; offset of pop in the sdata array

REFILL_EVENT EQU d’2’ ; offset of refill in the sdata array

ENABLED EQU d’0’ ; zero indicates enablement

DISABLED EQU h’f’ ; fifteen indicates disablement

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; data ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

CBLOCK h’0C’ ; set up general registers starting at address 12

event ; an event that is about to occur in the plant

decision ; the enablement decision of the last asked supervisor

s1state ; the state of the supervisor1

s2state ; the state of the supervisor2

n1state ; the next state for supervisor1 if no one else disables the event

n2state ; the next state for supervisor2 if no one else disables the event

temp ; a general temp register

ENDC

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; initialization ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

org h’0000’

;... ; do general initialization

clrf s1state ; initial supervisor state is zero

clrf s2state ; initial supervisor state is zero

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; main ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

main call doToken

call doPop

call doRefill

goto main

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; event routines ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

doToken ;... ; test the sensor

goto token_exit ; if the event hasn’t been initiated then quit

movlw TOKEN_EVENT

movwf event

call supervisor1 ; if any supervisor disables then take the no branch

btfsc decision, 0

goto token_no

call supervisor2 ; if any supervisor disables then take the no branch

btfsc decision, 0

goto token_no



APPENDIX C. ABSTRACT VENDING MACHINE 231

token_yes call super_commit

;... ; do the work for the yes case

goto token_exit

token_no ;... ; do the work for the no case

token_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

doPop ;... ; test the sensor

goto pop_exit ; if the event hasn’t been initiated then quit

movlw POP_EVENT

movwf event

call supervisor1 ; if any supervisor disables then take the no branch

btfsc decision, 0

goto pop_no

call supervisor2 ; if any supervisor disables then take the no branch

btfsc decision, 0

goto pop_no

pop_yes call super_commit

;... ; do the work for the yes case

goto pop_exit

pop_no ;... ; do the work for the no case

pop_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

doRefill ;... ; test the sensor

goto refill_exit ; if the event hasn’t been initiated then quit

movlw REFILL_EVENT

movwf event

call supervisor1 ; all supervisors must be notified

call supervisor2

call super_commit

refill_yes ;... ; do the work

refill_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; supervisor1 subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; input: assumes event = event currently being initiated

;; i.e. TOKEN_EVENT, POP_EVENT or REFILL_EVENT

;; output: sets decision = ENABLED or DISABLED

;; also updates its state accordingly (in s1state)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

supervisor1 movf s1state, W ; used determine which data to fetch from the s1data array

movwf temp

movlw s1data ; the start of the s1data array

movf s1state, F ; in state zero we want to skip the loop

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto $+4

addlw d’3’ ; adds to W the # to skip ahead to get the data for the current state



APPENDIX C. ABSTRACT VENDING MACHINE 232

decfsz temp, F

goto $-2

addwf event, W ; adds to W the # to skip ahead to get the data for the current event

movwf FSR ; the address of the next_state data (INDF will now access the correct data)

movlw DISABLED

subwf INDF, W ; test if the transition is disabled

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto s1Disable

s1Enable movf INDF, W ; update the next state

movwf n1state

movlw ENABLED ; mark as enabled

movwf decision

goto s1Exit

s1Disable movlw DISABLED ; mark as disabled

movwf decision

s1Exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; supervisor2 subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; input: assumes event = event currently being initiated

;; i.e. TOKEN_EVENT, POP_EVENT or REFILL_EVENT

;; output: sets decision = ENABLED or DISABLED

;; also updates its state accordingly (in s2state)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

supervisor2 movf s2state, W ; used determine which data to fetch from the s2data array

movwf temp

movlw s2data ; the start of the s2data array

movf s2state, F ; in state zero we want to skip the loop

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto $+4

addlw d’3’ ; adds to W the # to skip ahead to get the data for the current state

decfsz temp, F

goto $-2

addwf event, W ; adds to W the # to skip ahead to get the data for the current event

movwf FSR ; the address of the next_state data (INDF will now access the correct data)

movlw DISABLED

subwf INDF, W ; test if the transition is disabled

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto s2Disable

s2Enable movf INDF, W ; update the next state

movwf n2state

movlw ENABLED ; mark as enabled

movwf decision

goto s2Exit

s2Disable movlw DISABLED ; mark as disabled

movwf decision

s2Exit return
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; commit all supervisors to the computed change of state ;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

super_commit movf n1state, W

movwf s1state

movf n2state, W

movwf s2state

return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; supervisor data (h’f’ indicates disablement) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

s1data dw h’1’, h’f’, h’0’ ; outgoing (token, pop, refill) from state 0

dw h’2’, h’f’, h’1’ ; outgoing (token, pop, refill) from state 1

dw h’f’, h’0’, h’2’ ; outgoing (token, pop, refill) from state 2

s2data dw h’0’, h’1’, h’0’ ; outgoing (token, pop, refill) from state 0

dw h’1’, h’2’, h’0’ ; outgoing (token, pop, refill) from state 1

dw h’2’, h’3’, h’0’ ; outgoing (token, pop, refill) from state 2

dw h’f’, h’f’, h’0’ ; outgoing (token, pop, refill) from state 3

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

end ; end of program
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Listing C.3 An ad hoc solution functionally equivalent to the solutions automati-
cally generated by DES control theory.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; equates ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MAX_POP EQU d’3’ ; The maximum number of pop the machine can contain

POP_COST EQU d’2’ ; The cost of a pop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; data ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

CBLOCK h’0C’ ; set up general registers starting at address 12

tokens ; the current number of un-spent tokens

pops ; the current number of available pop

temp ; a general temp register

ENDC

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; initialization ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

org h’0000’

;... ; do general initialization

clrf tokens ; start with no un-spent tokens

movlw MAX_POP ; start with full pop

movwf pops

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; main ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

main call doToken

call doPop

call doRefill

goto main

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; event routines ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

doToken ;... ; test the sensor

goto token_exit ; if the event hasn’t been initiated then quit

rule_2_1 movf pops, F ; don’t accept tokens when pops is zero

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto token_no

rule_1_2 movlw POP_COST ; don’t accept more than POP_COST tokens

subwf tokens, W

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto token_no

token_yes incf tokens ; update the system variables

;... ; do the work for the yes case

goto token_exit

token_no ;... ; do the work for the no case

token_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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doPop ;... ; test the sensor

goto pop_exit ; if the event hasn’t been initiated then quit

rule_2_2 movf pops, F ; don’t deliver pop when pops is zero

btfsc STATUS, Z ; zero bit is clear only when result is NOT zero

goto pop_no

rule_1_1 movlw POP_COST ; don’t deliver pop unless tokens = POP_COST

subwf tokens, W

btfss STATUS, Z ; zero bit is clear only when result is NOT zero

goto pop_no

pop_yes clrf tokens ; update the system variables

decf pops

;... ; do the work for the yes case

goto pop_exit

pop_no ;... ; do the work for the no case

pop_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

doRefill ;... ; test the sensor

goto refill_exit ; if the event hasn’t been initiated then quit

movlw MAX_POP ; update the system variables

movwf pops

refill_exit return

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; end ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

end ; end of program


