
TESE DE DOUTORADO Nº 416

CONTROL OF DISCRETE EVENT SYSTEMS SUBJECT TO CYBER
ATTACKS

Michel Rodrigo das Chagas Alves

DATA DA DEFESA: 09/11/2022

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

MICHEL RODRIGO DAS CHAGAS ALVES

CONTROLE DE SISTEMAS A EVENTOS DISCRETOS

SUJEITOS A CYBER ATTACKS

Versão Final

Tese apresentada ao Programa de Pós-
-Graduação em Engenharia Elétrica da Escola
de Engenharia da Universidade Federal de
Minas Gerais como requisito parcial para a
obtenção do grau de Doutor em Engenharia
Elétrica.

Orientador: Profa. Dra. Patrícia Nascimento Pena & Profa.
Dra. Karen Rudie

Belo Horizonte

Maio de 2023

MICHEL RODRIGO DAS CHAGAS ALVES

CONTROL OF DISCRETE-EVENT SYSTEMS

SUBJECT TO CYBER ATTACKS

Final Version

Thesis presented to the Graduate Program in
Electrical Engineering of the Federal University
of Minas Gerais in partial fulfillment of the re-
quirements for the degree of Doctor in Electrical
Engineering.

Advisor: Profa. Dra. Patrícia Nascimento Pena & Profa. Dra.
Karen Rudie

Belo Horizonte

May 2023

 Alves, Michel Rodrigo das Chagas.
A474c Controle de sistemas a eventos discretos sujeitos a cyber attacks
 [recurso eletrônico] / Michel Rodrigo das Chagas Alves. – 2023.
 1 recurso online (145 f. : il., color.) : pdf.

 Orientadora: Patrícia Nascimento Pena.
 Coorientadora: Karen Rudie.

 Tese (doutorado) – Universidade Federal de Minas Gerais,
 Escola de Engenharia.

 Apêndices: f. 135-145.

 Bibliografia: f. 127-134.
 Exigências do sistema: Adobe Acrobat Reader.

 1. Engenharia elétrica – Teses. 2. Tecnologia da informação – Teses.
3. Informática – Teses. 4. Internet – Sistemas de segurança – Teses.
5. Software – Proteção – Teses. 6. Cybercrimes – Teses. 7. Vírus de
computador – Teses. I. Pena, Patrícia Nascimento. II. Rudie, Karen.
III. Universidade Federal de Minas Gerais. Escola de Engenharia.
IV. Título.

 CDU: 621.3(043)

 Ficha catalográfica elaborada pelo Bibliotecário Marcio Anderson de Andrade Gomes CRB/6 2812

 Biblioteca Prof. Mário Werneck, Escola de Engenharia da UFMG

12/05/2023 16:31 SEI/UFMG - 1869853 - Folha de Aprovação

https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2011045&infra_sistema… 1/2

UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

FOLHA DE APROVAÇÃO

"CONTROL OF DISCRETE EVENT SYSTEMS SUBJECT TO CYBER ATTACKS"

MICHEL RODRIGO DAS CHAGAS ALVES

 Tese de Doutorado subme�da à Banca Examinadora designada pelo Colegiado do Programa de
Pós-Graduação em Engenharia Elétrica da Escola de Engenharia da Universidade Federal de Minas Gerais,
como requisito para obtenção do grau de Doutor em Engenharia Elétrica. Aprovada em 09 de novembro
de 2022. Por:

Profa. Dr. Patrícia Nascimento Pena
DELT (UFMG) - Orientadora

Prof. Dr. Karen Rudie

Electrical and Computer Engineering (Queen's University)

Prof. Dr. Lilian Kawakami Carvalho
Departamento de Engenharia Elétrica (UFRJ)

Prof. Dr. Max Hering de Queiroz

Departamento de Automação e Sistemas (UFSC)

Prof. Dr. Ricardo Hiroshi Caldeira Takahashi
DMAT (UFMG)

Prof. Dr. Carlos Andrey Maia

DEE (UFMG)

Documento assinado eletronicamente por Patricia Nascimento Pena, Professora do Magistério
Superior, em 10/11/2022, às 15:02, conforme horário oficial de Brasília, com fundamento no art. 5º
do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Lilian Kawakami Carvalho, Usuária Externa, em
16/11/2022, às 13:42, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm

12/05/2023 16:31 SEI/UFMG - 1869853 - Folha de Aprovação

https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_web&acao_origem=arvore_visualizar&id_documento=2011045&infra_sistema… 2/2

Documento assinado eletronicamente por Karen Gail Rudie, Usuária Externa, em 16/11/2022, às
14:29, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de 13
de novembro de 2020.

Documento assinado eletronicamente por Carlos Andrey Maia, Professor do Magistério Superior,
em 22/11/2022, às 14:33, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Max Hering de Queiroz, Usuário Externo, em 02/12/2022,
às 08:03, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº 10.543, de
13 de novembro de 2020.

Documento assinado eletronicamente por Ricardo Hiroshi Caldeira Takahashi, Professor do
Magistério Superior, em 02/12/2022, às 15:05, conforme horário oficial de Brasília, com fundamento
no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

A auten�cidade deste documento pode ser conferida no site
h�ps://sei.ufmg.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código verificador 1869853 e
o código CRC A109C4FD.

Referência: Processo nº 23072.264674/2022-14 SEI nº 1869853

http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm
https://sei.ufmg.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Este trabalho é dedicado aos meus pais, por todo o apoio.

ix

Acknowledgments

First I would like to thank my parents, Maria Celeste and João Batista, for always sup-
porting me. I also thank my friends, my sister Aline and my dog Belize for all the support and
company they shared with me over the last years. Without them, this journey would not be
possible. Finally, I would like to express that I am very lucky to have two brilliant women as
my advisors, Patrícia and Karen.

xi

“La liberté commence où l’ignorance finit”
(Victor Hugo)

xiii

Resumo

O objeto de estudo dessa tese são os sistemas modelados como sistemas a eventos
discretos. O sistema é composto por vários subsistemas cujo comportamento é coordenado
pela ação de um controlador, que por sua vez é uma estrutura composta, dentre outros
elementos, pelos supervisores. Considera-se que tanto o controlador quanto cada um dos
subsistemas estão conectados a uma rede de comunicação e que estão sujeitos à ação de um
agente malicioso que pode modificar as mensagens enviadas e recebidas. Inicialmente são
apresentados resultados relativos a uma propriedade chamada P-observabilidade para um
conjunto de ataque, que garante, sob certas circunstâncias, a obtenção de um supervisor
que assegura que o comportamento desejado é sempre obtido, independentemente da ação
do agente malicioso. Em seguida, apresenta-se um novo modelo de ataque, que considera
diferentes ações que um atacante pode realizar num sistema real. Além disso, é definida uma
nova classe atacantes, chamados de persistentes. Adicionalmente, apresenta-se uma técnica
para o projeto dessa classe de atacantes, que têm o objetivo de realizar o ataque e ao mesmo
tempo permanecerem ocultos. Finalmente, os detalhes da implementação de um testbed para
técnicas de projeto de atacantes são apresentados.

Palavras-chave: Cyber ataques, sistemas a eventos discretos, ataque persistente, teoria de
controle supervisório

xv

Abstract

The objects of study of this thesis are systems modeled as discrete-event systems. The
system is composed of several subsystems whose behavior is coordinated by the action of a
controller, which in turn is a structure composed, among other elements, by supervisors. It is
considered that the controller and each of the subsystems are connected to a communication
network and that they are subject to the action of a malicious agent that is able to modify
the messages sent and received. Initially, results related to a property called P-observability
for an attack set are presented, which guarantees, under certain circumstances, obtaining a
supervisor that ensures that the desired behavior is always obtained, regardless of the action
of the malicious agent. Next, a new attack model is presented, which considers the different
types of actions an attacker is able to do in a real system. Additionally, a new class of attackers
is introduced, called persistent attackers. Moreover, new design technique for this class of
attackers is presented, which have the goal to perform the attack while remaining stealthy.
Finally, the details about the implementation of a testbed for attacker design techniques is
presented.

Keywords: Cyber-attacks, discrete-event systems, persistent attackers, supervisory con-
trol theory

xvii

List of Figures

3.1 Example of an automaton represented by its state transition diagram. 19
3.2 Feedback loop of supervisory control. 22
3.3 Feedback loop of supervisory control in the case of partial observation. 24
3.4 Input/Output interpretation of the feedback loop of supervisory control. 26
3.5 Control system architecture. 29

4.1 Closed loop controlled system under attacks. 32
4.2 Automaton of Example 3. 34
4.3 Automaton H of Example 4. 37
4.4 Automata of Example 5. 41
4.5 Automaton of Example 6. 43
4.6 Automaton of Example 7. 44
4.7 Automata of Example 8. 45
4.8 Automaton of Example 9. 46
4.9 Automaton of Example 10. 47
4.10 Automaton of Example 11. 48
4.11 Attack graph. 63
4.12 Automaton representing the attack graph of Fig. 4.11. 63
4.13 Modified automaton representing the computer network. 64
4.14 Automaton representing the desired language K. 65
4.15 Attack set A2 = {A{σ22,σ7,σ4,σ2}}. 66
4.16 Attack set A3 = {A{σ22,σ7}, A{σ4,σ2}}. 66
4.17 Attack set A4 = {A{σ22,σ4}, A{σ7,σ2}}. 67

5.1 System with IDS. The red circles represent the possible attack locations. 70
5.2 Possible actions of the attacker . 71
5.3 Simplified small factory with unity buffer. 74
5.4 Models and specification of the simplified small factory problem. 74
5.5 Automaton Gi of Example 14. 78
5.6 Automaton GA representing an attack function fA - Example 15 84
5.7 Automata of Example 16. 86

xix

5.8 Automata of Example 17. 87
5.9 Automata of Example 18. Construction of ΘG

Gi
by Alg. 8. 90

5.10 Automata of Example 19. Construction of ΘG
Gi

by Alg. 8. 91
5.11 Automata of Example 20. Construction of ΘN

Gi
by Alg. 9. 95

5.12 Automata of Example 21. Construction of ΘN
Gi

by Alg. 9. 96
5.13 Attack structure ΘGi = ΘG

Gi
||ΘN

Gi
of Example 22. 101

5.14 Non-exposing attack structure ΨGi of Example 22. 102
5.15 Relationship between languages. 102

6.1 NCS topologies . 109
6.2 NCS topologies. 110
6.3 Feedback loop of DES control. 110
6.4 Implemented control loop of SCT. 110
6.5 Proposed DES control architecture. 112
6.6 P&I diagram of the physical process. 114
6.7 Testbed architecture. 115
6.8 Physical implementation. 115
6.9 CAN module MCP2515. 117
6.10 Ethernet shield. 118
6.11 State data type representation. 119
6.12 Automaton class. 119
6.13 Supervisor class. 120
6.14 DES class. 120

A.1 Models of input and output valves. 135
A.2 Models of mixer and pump. 136
A.3 Temperature control plant . 136
A.4 Process automaton . 137
A.5 Specification E1 and Supervisor S1 . 138
A.6 Specification E2 and Supervisor S2 . 138
A.7 Specification E3 and Supervisor S3 . 139
A.8 Specification E4 and Supervisor S4 . 139
A.9 Specification E5 and Supervisor S5 . 140
A.10 Specification E6 and Supervisor S6 . 140
A.11 Specification E7 and Supervisor S7 . 141
A.12 Specification E8 and Supervisor S8 . 141
A.13 Specification E9 and Supervisor S9 . 141
A.14 Specification E10 and Supervisor S10 . 142

B.1 Schematic of the global controller node. 143

xx

B.2 Schematic of the node related to the temperature control and valves. 144
B.3 Schematic of the node related to the level sensor, mixer and pump. 145
B.4 Schematic of the generic node. 145

xxi

List of Tables

2.1 Summary of works on cyber security . 7

5.1 Sequence of strings that cause underflow in the buffer. 75
5.2 Passive mode over Gi of Fig. 5.5. 78
5.3 Delay mode over Gi of Fig. 5.5. 79
5.4 Forward mode over Gi of Fig. 5.5. 80

xxiii

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Text Organization . 3

2 Literature Review 5

3 Preliminaries 15
3.1 Language . 15
3.2 Automata . 18
3.3 Supervisory Control Theory . 21

3.3.1 Supervisory Control under partial observation 24
3.4 Implementation of DES control . 25

4 New test for P-observability for an attack set restricted to stealthy attackers 31
4.1 Attack Model . 31
4.2 P-Observability for an attack set . 35
4.3 New test for P-observability restricted to stealthy attackers 36
4.4 Algorithms . 58
4.5 Time complexity . 61
4.6 Case study . 62

5 Persistent attacks in Discrete-Event Systems 69

xxv

5.1 Problem formulation . 69
5.1.1 System setup . 69
5.1.2 Actions of the attacker . 71
5.1.3 Attack model . 73
5.1.4 Attack function represented as an automaton 82

5.2 Design method for a persistent attacker . 88
5.2.1 Plant estimator . 88
5.2.2 Network Estimator . 93
5.2.3 Non-exposing attack structure . 98
5.2.4 Complexity . 104

5.3 Discussion . 105

6 Implementation of a security testbed 107
6.1 System architecture . 108

6.1.1 DES control architecture . 109
6.2 Physical process . 113
6.3 Hardware . 114

6.3.1 Arduino boards . 116
6.3.2 Arduino Modules . 117

6.4 Software . 118
6.4.1 SCT library . 118
6.4.2 Communication . 121

6.5 Cyber-Attacks . 122
6.6 Discussion . 123

7 Conclusion 125
7.1 Future works . 126

Bibliography 127

Appendix A Models 135
A.1 Subsystems . 135
A.2 Specifications and supervisors . 137

Appendix B Schematics 143

xxvi

Chapter 1

Introduction

1.1 Motivation

The advances in computing, communication and related hardware technologies en-
abled the rapid development of cyber-physical systems (CPSs), which are an integration of
physical processes, ubiquitous computation, efficient communication and effective control.
Cost-saving and real-time deployment are the two dominant features of CPSs, which have
been considered as a core ingredient in the 4th Industrial Revolution (Ding et al., 2018).
Because devices and networks have vulnerabilities, their extensive use increases the sys-
tem’s overall vulnerabilities to cyber-attacks. The conventional network defenses, such as
firewalls, are not suitable to CPS, since they can introduce delays that may interfere with
the control logic (Lima et al., 2022). Thus, it is important to investigate security in this context.

The application fields are multidisciplinary and include aircraft transportation systems,
battlefield surveillance, chemical production, energy, food supply, healthcare, industrial
automation, manufacturing systems, maritime processes, mobile devices, robotics and trans-
portation (Lu, 2017). Furthermore, networked control systems, wireless sensor and actuator
networks and wireless industrial sensor networks are considered a subgroup of CPSs (Ding
et al., 2018; Leitão et al., 2016; Rasmussen et al., 2017).

Regardless of the application, one of the elemental tasks in a CPS is to decide which
actuators/sensors should be activated to perform a particular action or how to manage con-
trol/sampling actions properly. Due to physical constraints or technological limitations, data
from sensors or directed to actuators and other networked components may be transmitted
over networks without proper security protections. Many of these applications are safety
critical and continuously require reliable operation and monitoring, despite the potential
occurrence of cyber-attacks and thus the requirement for security measures handling such
incidents increases (Rashidinejad et al., 2019; Fritz and Zhang, 2018; Lu, 2017). In (Wang and

1

2 Chapter 1. Introduction

Yang, 2019a), a survey on the recent development of securing networked control systems is
presented, as well as some real incidents caused by attacks.

Within the area of Discrete-Event Systems (DES), especially in the context of supervisory
control, several works tackle the issue of protecting a system from malicious attacks. Normally,
the aim of an attacker is to cause damage to the system by leading it to an unsafe state or
to acquire critical information from it and there is no unified model that describes them all.
There are different aspects from which one can consider an attack, such as: attack location,
attacker action and defense strategy.

Regarding the attack location, it can happen in the communication channel from plant
to supervisor, called sensor attack or output attack (Su, 2018; Zhang et al., 2018; Meira-Goes
et al., 2019; Mohajerani et al., 2020), in the communication channel from supervisor to plant,
called actuator attack or input attack (Carvalho et al., 2016; Lin et al., 2019a, 2020), or in
both channels (Lima et al., 2019; Wang and Yang, 2019a).

Furthermore, there are three main types of actions that an attacker can use to tamper
with the communication: insertion, deletion or replacement of symbols. Concerning the
defense strategy, it includes design of resilient supervisors against attacks, as in (Meira-Goes
et al., 2021; Zhu et al., 2019a; Wang and Yang, 2019a; Lin et al., 2019b; Wakaiki et al., 2019),
among others, and approaches for detecting and preventing attacks, as presented in (Fritz and
Zhang, 2018; Li et al., 2020) and (Seatzu, 2018).

Moreover, some authors focus on studying the design methods for the attackers, using as
an argument that a good understanding about the adversaries can provide better insight on
how to defend against them (Lin and Su, 2020; Zhang et al., 2020; Mohajerani et al., 2020;
Zhang et al., 2018) and (Meira-Goes et al., 2017).

However, the literature that describes cyber-attacks in general, do not distinguish attacks
on different communications channels. Indeed, the communication channels are normally
not separated and the attacks often happen in the devices connected to the communication
network, instead of the network itself (Cao et al., 2020; Bhamare et al., 2020; Hemsley and
Fisher, 2018). This gap between the security-related approaches in the DES framework to the
general literature on cyber-attacks is an obstacle for the application of theoretical results in the
real world. This thesis proposes a DES attack model that is closer to real-world applications,
as well as a design technique for a special class of attackers, called persistent attackers. The
goal of a persistent attacker is to cause the production of off-specification products or to insert
small delays in a way that the attacker remains stealthy, even after its action. Furthermore,
a prototype of a networked DES control system was built to serve as a testbed for attack and

1.2. Contributions 3

defense techniques.

The next section summarizes the main contributions of this thesis.

1.2 Contributions

The goal of this thesis is to fill some gaps in the literature related to cyber-attacks in DES
control. The contributions are summarized next.

• Development of a new test and a visual interpretation for the P-observability for an attack
set property. The property is related to the ability of a supervisor to enforce, under some
conditions, the desired behavior of the system even when a malicious agent is acting.

• Development of an attack model, that describes attacks in the network interface of the
devices and considers that an attacker can insert events to the device observation or to
the network and can erase events from the device observation and from the network.

• Description of a new class of attacker, called persistent attacker. Such attackers have the
goal to cause the production of off-specification products or to introduce small delays in
the process. Furthermore, a persistent attacker wants to remain hidden even after its
action, so it can act more than once.

• Development of a design technique for persistent attackers, aiming to improve the knowl-
edge about the attackers which will, ultimately, help with the creation of defense strate-
gies. This thesis only covers the attacker’s design process.

• Development of a testbed for attack and defense strategies and that can capture real-
world attacks. The testbed is a prototype of a networked DES control system and offers
access to incoming and outgoing communication of all devices in the network, which
allows one to implement and evaluate attack and defense techniques. Additionally, an
implementation scheme for a networked DES control system was proposed and the details
shared in an online repository.

Next, the structure of this document is described.

1.3 Text Organization

This text is organized as follows. In Chapter 2 a review of the pertinent literature on
cyber-attacks is presented. Chapter 3 presents the basic concepts of discrete-event systems
modeled by languages and automata (Sections 3.1 and 3.2, respectively), as well as the main

4 Chapter 1. Introduction

concepts of supervisory control theory (Section 3.3) and some details about implementation of
DES control (Section 3.4).

The first results of this thesis are presented in Chapter 4, Firstly, the attack model
and the property P-observability for an attack set are presented, (Sections 4.1 and 4.2,
respectively). Then, the new test for P-observability for an attack set is presented (Section
4.3), followed by algorithms that allows one to verify the property in a computational tool
(Section 4.4) and their complexity analysis (Section 4.5). The chapter ends by presenting a
case study (Section 4.6).

Chapter 5 presents the results related to persistent attackers. In Section 5.1, the proposed
attack model is presented and in Section 5.2 a technique for design of persistent attacks is
described. The chapter ends with some discussion about the results (Section 5.3).

The details about the implementation of the testbed are presented in Chapter 6. The
chapter describes the proposed system architecture (Section 6.1), the physical process under
control (Section 6.2), the hardware (Section 6.3) and software (Section 6.4) developed to
implement the testbed and some details about how to implement cyber-attacks in it (Section
6.5). Then, some discussion is presented (Section 6.6).

Finally, Chapter 7 presents the conclusions of this thesis and directions for future work
(Section 7.1).

Chapter 2

Literature Review

Cyber Physical Systems feature heavily in Industry 4.0, since they are able to integrate
the physical and virtual worlds by providing real-time data processing services (Lu, 2017). A
CPS consists of a physical system and a cyber system. It is the result of the integration of
physical processing, sensing, computation, communication and control. More specifically, a
CPS allows a physical system to be equipped with a virtual system as a monitor, enabling data
collected from the physical world to be analyzed in the virtual world such that decisions can be
made to affect the course of the physical world. Therefore, a CPS enables integration, sharing
and collaboration of information, as well as real-time monitoring and global optimization of
systems (Duo et al., 2022).

The integration of systems and technologies in CPS tends to be complex and diverse,
making it a compatible and open system, which unfortunately provides a platform for malicious
agents to exploit CPS vulnerabilities and may result in numerous security issues. One of the
most ubiquitous problems is cyber-attacks, which can degrade system performance, or even
cause catastrophic consequences. Due to the impact that can be caused by cyber-attacks on
CPS, this subject has been receiving much attention over the last years. There are different
surveys on the topic available in the literature (Duo et al., 2022; Ding et al., 2021; Zhang et al.,
2021; Tan et al., 2020; Cao et al., 2020; Singh et al., 2020; Dibaji et al., 2019; Rashidinejad
et al., 2019; Mahmoud et al., 2019; Giraldo et al., 2018; Ding et al., 2018).

In (Cao et al., 2020), the authors classify attacks on CPS in three different types: a)
attacks on the execution layer, which is comprised of devices as sensors and actuators; b)
attacks on the data transmission layer and; c) attacks on the application control layer. The
authors also point out that most of the research described in the literature on cyber-attacks
focuses on attacks at the execution layer and data transmission layer. This does not follow
the literature that describes real cases of cyber-attacks on control systems such as (Shareef,
2022; Bhamare et al., 2020; Slowik, 2020; Prinsloo et al., 2019; Wang and Yang, 2019b; Ginter,

5

6 Chapter 2. Literature Review

Andrew, 2018; Jang-Jaccard and Nepal, 2014; Cárdenas et al., 2011), which describes mostly
attacks on the execution layer and on the application control layer.

According to Shareef (2022), a ransomware attack targeted the largest and most
important oil pipeline in the United States, bringing the facility to a complete halt for a
few days. This caused an acute fuel shortage, causing the fuel prices to increase drastically.
The attack was executed by hackers that gained entry into the company’s network through
a dormant virtual private network (VPN) account that had remote access to the company’s
computer network. The company had to pay a ransom to the hacker group in exchange for the
decryption tool to restore its computer network.

In a generic attack on an industrial control system, described by Ginter, Andrew (2018),
an organized crime syndicate targets known vulnerabilities in Internet-exposed services and
gain access to the ICS network. Then, the attackers download and analyze control system
configuration files. They then reprogram a single PLC, causing it to misoperate a single,
vital, piece of physical equipment, while reporting to the plant HMI that the equipment is
operating normally. The equipment wears out prematurely, in a season of high demand for the
plant’s commodity output, e.g., gasoline. The plant shuts down for emergency repairs, of this
apparently random equipment failure. The same attack occurs at two nearby plants. Once the
equipment has failed, the perpetrators erase all evidence of their presence from the affected
plants’ ICS networks. Prices of the affected commodity spike on commodities markets. When
plant production at all plants returns to normal, commodity prices return to normal. This
attack is repeated in the next season of high demand.

In contrast to the examples given, most of the literature on cyber-attacks on control
systems, in the context of continuous-time systems, as in (Pan et al., 2022; Pang et al.,
2021; Tahoun and Arafa, 2021; Wang and Yang, 2019a), among others, or in the context of
discrete-event systems, as will be seen next, describes attacks on the data transmission layer.
It is important to highlight that the literature on cyber-attacks actually describes cases of
attacks on the data transmission layer. The converse is not common, namely, attacks on
control or the execution layer reported by the literature that describes research on security
against cyber-attacks on control systems. This is a gap this thesis intends to reduce. Table
2.1 summarizes the different approaches on cyber security found in the literature and how the
results presented in this thesis compare with other works.

An overview of the different approaches applied to the supervisory control of DES
under attacks is provided by Rashidinejad et al. (2019). The work proposes a framework
for classifying the approaches under different aspects and associates to them works found in
the literature, with the aim to identify possible gaps on the subject. Firstly, the attacks are

7

Table 2.1: Summary of works on cyber security

Work

Literature on
security of

control systems

Attack
location Strategy

DES CT CA S A D Def AD O
This thesis
(Shareef, 2022), (Slowik, 2020), (Prinsloo
et al., 2019), (Ginter, Andrew, 2018), (Hem-
sley and Fisher, 2018)
(Meira-Goes et al., 2017), (Meira-Góes et al.,
2020), (Mohajerani et al., 2020), (Zhang
et al., 2018), (Zhang et al., 2020)
(Alves et al., 2022c)
(Alves et al., 2022a), (Chen et al., 2022),
(Gao et al., 2019), (Li et al., 2020), (Meira-
Goes et al., 2019), (Meira-Goes et al., 2021),
(Su, 2018), (Wakaiki et al., 2019), (You et al.,
2022)
(Khoumsi, 2019), (Lin et al., 2019b), (Lin
and Su, 2020), (Wang and Pajic, 2019a)
(Alves et al., 2022b)
(Zhu et al., 2019b)
(Fritz and Zhang, 2018), (Fritz et al., 2019),
(Lima et al., 2017), (Lima et al., 2018), (Lima
et al., 2019), (Lima et al., 2022), (Lima et al.,
2022), (Lin et al., 2019a), (Wang and Yang,
2019a), (Wang et al., 2021), (Wang et al.,
2020), (Zhang et al., 2021), (Zhang and Feng,
2020), (Zhou et al., 2020), (Carvalho et al.,
2018)
(Lin et al., 2020)
(Carvalho et al., 2016), (Zhu et al., 2019a)
(Cárdenas et al., 2011)
(Pan et al., 2022)
(Orojloo and Azgomi, 2019), (Pang et al.,
2021), (Tahoun and Arafa, 2021), (Weer-
akkody et al., 2017)

Legend:
DES: discrete-event systems
CT: continuous-time
CA: literature on cyber attacks in general
S: sensor channel
A: actuator channel
D: device
Def: defense
AD: attack design
O: other

8 Chapter 2. Literature Review

classified as active or passive. In an active attack, the attacker’s goal is to cause damage to the
system, while in a passive attack, the goal is to learn secrets about the system. The attacks
can be also classified according to the attack location, which may occur in the observation
channel, in the control channel or in both. Furthermore, they can be classified regarding the
way in which they modify information, i.e., by deletion, insertion or replacement. The last
aspect is the security mechanism. The defense strategies can be mainly classified as detection
and/or prevention and synthesis of resilient supervisors. Finally, they indicate some directions
for future research, such as actuator disablement attack and replacement attack and attacks
with delay/disordering impact and supervisor obfuscation

The problem of attacks in the supervisory control context was addressed by Carvalho
et al. (2016), where they consider an attack scenario where the attacker has infiltrated a set of
vulnerable actuators, and where the attacker overrides the control actions from the supervisor.
Attack detection is formulated as a fault diagnosis problem and the proposed defense strategy
is to disable all controllable events once the attack is detected. The condition for the system to
be able to detect and stop the attack before it is successful is characterized and called AE-safe
controllability. These results are improved in (Carvalho et al., 2018), in which the authors
extended the analysis by considering attacks in the sensor channel as well. Furthermore,
the AE-safe controllability property is extended to a more generic property called GF-safe
controllability, which is a property that the system has to satisfy in order to the damage to be
prevented, regardless of the type of the attack.

The authors of (Lima et al., 2017) also improve the work of (Carvalho et al., 2016)
proposing a defense strategy that detects intrusions and prevents damage caused by man-in-
the-middle1 attacks in the sensor and/or control communication channels in supervisory control
systems. This is done by an Intrusion Detection Module that observes the traces seen by the
supervisor and disables all controllable events, after the attack is detected. The new condition
for the system, that allows the proposed defense strategy, is called NA-safe controllability.
Later improvements are presented in (Lima et al., 2018), where the security module does not
disable all controllable events once the attack is detected. Only the events that may lead the
system to an unsafe region are disabled. Then, Lima et al. (2019) improves the previous results
by providing an algorithm that verifies the NA-safe controllability property, as well as an
implementation method for the security module. In a more recent work, the authors propose
a new defense strategy that prevents damages in the system caused by man-in-the-middle
attacks (Lima et al., 2022). For this, a security supervisor is proposed to disable controllable
events when there is a risk or reaching unsafe states. The security supervisor operates together

1A man-in-the-middle attack is a type of cyber attack in which the attacker secretly intercepts and relays
messages between two parties who believe they are communicating directly with each other. The attack is a
type of eavesdropping in which the attacker intercepts and then controls the entire conversation.

9

with the existing supervisor.

In (Alves et al., 2019), a supervisory control architecture is considered, where the
communication between plant and supervisor is made through a network that can have
multiple channels subject to communication delays, that can cause changes in the order of
observations, and intermittent loss of observations. Necessary and sufficient conditions for
the existence of a robust supervisor that is able to operate even under intermittent loss of
observations and also enforces a specification language are provided, as well as a method
to obtain it. In the same context, in (Alves et al., 2020), a methodology to construct an
equivalent untimed automaton model that takes into account all possible effects of delays and
loss of observations is presented. It is assumed that the minimal activation times of the plant
transitions and maximum observation delay since the event occurrence until its observation by
the supervisor are known. Additionally, based on the untimed model, a supervisory control
problem of Networked Discrete-Event Systems with Timing Structure is formulated and its
solution is proposed, as well as an implementation scheme. In the context of diagnosis,
the authors of (Alves et al., 2022c) consider a networked discrete-event system (NDES)
subject to denial-of-service (DoS) and deception attacks that flood some communications
channels with fake packets causing delays and loss of observations and insertion of fake
observations. Then, they propose an automaton model for NDES subject to such attacks that
represents the adverse effects of DoS-D attacks on the observations of local diagnosers. Finally,
they introduce a new codiagnosability definition called DoS-D-robust codiagnosability, and
present a necessary and sufficient condition for a language to be DoS-D-robustly codiagnosable.

The authors of (Li et al., 2020) address the problem of detection and prevention of cyber-
attacks where the supervisor communicates with the plant via network channels. Random
control delays may occur in such a networked system, in addition to a cyber-attacker targeting
the vulnerable actuators. The attacker can corrupt the control input of the supervisor, and
aims to drive the plant to unsafe states. Approaches to model the closed-loop system subject
to control delays and attacks are proposed. The notion of AE-safe controllability in the
networked control system is defined. It describes the ability to prevent the plant from reaching
unsafe states after attacks are detected. A method for testing AE-safe controllability is also
presented.

The authors of (Wang and Pajic, 2019b) use finite state transducers (FSTs), which are
an extended definition of finite state automata, to model the attacks. Using this formalism,
a wide class of attacks can be modeled. Three types of attacks are considered: attacks in
the observation channel, attacks in the control channel and attacks in both channels. For
each type, a controllability condition is presented along with synthesizing algorithms for
attack-resilient supervisors. This work is extended in (Wang and Pajic, 2019a), where the

10 Chapter 2. Literature Review

problem of computing the maximal controllable sub-language (MCSL) of a desired language is
solved. A desired language is called controllable if there exists a security-aware supervisor that
ensures that the restricted language executed by the plant for any possible attack behavior is
the desired one. Such supervisor is said to be attack-resilient. Then, a design algorithm for an
attack-resilient supervisor is presented.

In (Lin et al., 2019b), the authors investigate the security approach of synthesizing
resilient supervisors against combined actuator and sensor attacks. A constraint-based
approach for the bounded synthesis of resilient supervisors is developed by reducing it to the
Quantified Boolean Formula Problem. The synthesis is bounded by the model’s size of the
supervisor and attacker.

In (Zhu et al., 2019a), the authors address the problem of supervisor obfuscation against
actuator enablement attack. A method to obfuscate a supervisor, that is, to make it resilient
against actuator enablement attack in such a way that the behavior of the original closed-loop
system is preserved, is proposed. The approach involves a combination of two basic ideas: 1)
the formulation of the problem of computing behavior-preserving supervisors as the problem of
computing separate finite state automata under controllability and observability constraints,
and 2) the use of a previous proposed technique for the verification of attackability, with a
normality assumption imposed on both the actuator attackers and supervisors.

The authors of (Wakaiki et al., 2019) consider a multi-adversary version of the su-
pervisory control control problem for DES. Each adversary corrupts in a different way the
observations available to the supervisor and has the purpose of leading the system to an unsafe
or undesirable state. It is assumed that only one adversary is acting although the information
about which one is not known. The goal of the paper is to propose a design method for a
supervisor that enforces a specific language in spite of the opponent’s actions and without
knowing which adversary it is playing against. It is shown that this problem has a solution if
and only if the desired language is controllable, in the classical sense, and observable in a novel
sense, that takes the adversaries into account. This new observability property is defined and
called P-observability for an attack set. The authors also show that testing the existence of a
supervisor and building the supervisor can be done using tools developed for the classical DES
supervisory control problem, by considering a family of automata with modified output maps.
In (Alves et al., 2022a), which is a paper resulting from this thesis, a visual interpretation for
the P-observability for an attack set is proposed, as well as a test that verifies the property itself.

The problem of attack detection in the framework of partially observable discrete-event
systems modeled by automata is tackled by Gao et al. (2019). Using the attack model of
(Wakaiki et al., 2019), the authors assume that the observation produced by a plant can be

11

corrupted by an intruder which, through one or more attack dictionaries, can change events
into different strings. The problem addressed is that of detecting if a plant has been attacked
and, if such is the case, of identifying the nature of the attack, i.e., which attack dictionaries
have been used. It is shown that the problem of attack detection can be reduced to a classical
problem of state estimation or fault diagnosis for a new structure which describes the behavior
of the plant under attack.

The work of Fritz and Zhang (2018) presents a method for detection of attacks in
CPSs, modeled by Petri nets, which are another formalism to describe DESs. The attacks
considered are the covert attack and replay attack. The first is a sophisticated attack, where
an attacker has complete knowledge of the system model and access to the inputs and outputs.
The attacker changes the actuator signals to achieve an attack goal and while remaining
stealthy. The second is an attack of two stages. First, sensor data generated by the plant is
gathered by the attacker. This data is then replayed into the network, rendering attacks on
the actuator signals invisible. In order to make an attack’s detection possible, a scheme that
uses a permutation matrix in the communication channel is proposed. This idea is similar to
encryption methods, but the computational effort is lower. Lastly, a detection module that is
based on the idea of fault detection is presented.

In (Fritz et al., 2019) the authors introduce a detection method called time guard detec-
tion. Industrial control systems (ICS) are considered, in particular, at the PLC (programmable
logic controller) level and process level. The attacks considered can hide manipulations in the
logical level of the PLC, but are visible and detectable in the temporal level. The proposed
method allows detection of targeted manipulations on the ICS, which results in a temporal
change of the production process. The application of the time guard detection is possible for
systems where all sensors and actuator channels or only part of them are vulnerable to attacks,
i.e., can be observed and changed.

In (Zhang et al., 2018) and (Zhang and Feng, 2020), a plant is considered which generates
a sequence of events and such a sequence is observed by an operator through an observation
mask. The sensor readings may be altered by an intruder, which can insert or erase events,
and whose goal is to make the operator think that the plant is in a safe state while in reality
it is in an unsafe one. In addition, the intruder is required to be stealthy, i.e., the operator
should not be able to detect that the system is under attack. The goal of the paper is to
provide a systematic approach to determine if a stealthy potentially harmful attack function
exists. If such is the case, the system is not robust to attacks in the considered setting. For
this, a structure called attacker observer that describes all possible attack strings that can
be generated by the attacker is proposed. Moreover, a structure called operator observer is
also presented, which describes all possible observations an observer can make, considering the

12 Chapter 2. Literature Review

attacks and including the ones that can reveal the attacker’s presence. Finally, a structure
called unbounded attack is obtained by the composition of both observers. Using this structure,
an attacker can choose which action to take while remaining stealthy. An extended version of
the previous work was presented in (Zhang et al., 2021), where the authors consider a more
specific problem statement and algorithms are provided. The same authors also proposed the
application of similar methods in systems modeled by Petri nets (Zhang et al., 2020; Wang
et al., 2021). Also in the context of Petri nets, the authors of (You et al., 2022) propose a
method for design of liveness-enforcing supervisors under attacks on the sensor channel.

In (Mohajerani et al., 2020), the synthesis of successful sensor deception attack functions
in supervisory control using abstraction methods to reduce computational complexity is
investigated. In sensor deception attacks, an attacker is able to intercept sensor signals
and feeds incorrect information to the supervisor with the intent on causing damage to the
supervised system. The attacker is successful if its attack causes damage to the system and
it is not identified by an intrusion detection module. The authors present results that enable
the existence test and the synthesis method of successful sensor deception attack functions
to be realized using abstractions, in order to reduce the computational effort in solving these
problems.

The problem of synthesizing an attack strategy for a given controlled system in the
context of supervisory control is studied by (Meira-Goes et al., 2017). The proposed model
captures a class of deception attacks, where the attacker has the ability to modify a subset
of sensor readings and mislead the supervisor, with the goal of inducing the system into an
undesirable state. A new type of a bipartite transition structure is also introduced, called
Insertion-Deletion Attack structure (IDA), to capture the game-like interaction between the
supervisor and the environment, which includes the system and attacker. This structure is a
discrete transition system that embeds information about all possible actions of the attacker
that keeps it stealthy, and all states, some of which are possibly unsafe, that become reachable
as a result of those actions. A procedure for the construction of the IDA is presented as
well as the characterization of successful stealthy attacks, i.e., attacks that avoid detection
from the supervisor and cause damage to the system. The work of (Meira-Goes et al., 2019)
addresses the problem of synthesizing a supervisor that is robust against a large class of
edit attacks on the sensor readings. It is formulated and solved using a methodology that
is based on the solution of a partially observed supervisory control problem with arbitrary
control patterns. Results on the existence of a supremal robust supervisor are also provided.
Later, in (Meira-Góes et al., 2020), the authors present a new model for deception attacks on
CPS, based on the IDA structure, and present a method for synthesizing attackers. The dual
problem, which is the synthesis of robust supervisors against deception attackers is addressed
in (Meira-Goes et al., 2021) and relaxes some conditions presented in (Meira-Goes et al., 2019).

13

In (Su, 2018) one special type of attack is investigated, where an attacker can arbitrarily
alter sensor readings after intercepting them from a target system, aiming to trick a given
supervisor to issue improper control commands. This type of attack can drive the system to
an undesirable state. Firstly, the cyber-attack problem is considered from an attacker’s point
of view, and it is formulated as an attack-with-bounded-sensor-reading-alterations (ABSRA)
problem. Then it is shown that the supremal ABSRA exists and can be computed, as long
as the plant model and the supervisor model are regular, i.e., representable by finite-state
automata. Upon the synthesis of the supremal ABSRA, a synthesis algorithm is also presented,
which computes a supervisor that is ABSRA-robust in the sense that any ABSRA will either
be detectable or inflict no damage to the system. Based on the attack model proposed in
(Su, 2018), the authors of (Chen et al., 2022) propose the definitions of attackable strong
detectability and attackable weak detectability, in the context of sensor attacks, as well as
necessary and sufficient conditions for the verification of the proposed properties.

In (Lin et al., 2019a), the problem of covert actuator attacker synthesis is addressed. It is
assumed that the actuator attacker partially observes the execution of the closed-loop system
and is able to modify each control command issued by the supervisor on a specified attackable
subset of controllable events. The authors present a characterization for the existence of a
successful attacker and prove the existence of the supremal successful attacker, when both the
supervisor and the attacker are normal. Moreover, they present an algorithm to synthesize
the supremal successful normal attackers. Further investigation of this problem is done in
(Lin et al., 2020), where the authors provide straightforward but in general exponential-time
reductions from the covert actuator attacker synthesis problems to the Ramadge-Wonham
supervisor synthesis problems. Thus, they claim that it is possible to use the many techniques
and tools already developed for solving the supervisor synthesis problem to solve the covert
actuator attacker synthesis problem for free. In particular, it is shown that, if the attacker
cannot attack unobservable events to the supervisor, then the reductions can be carried out in
polynomial time.

The authors of (Zhu et al., 2019b) study the problem of supervisory control of networked
discrete-event systems with communication delays and channels that are subject to message
loss. Both the observation and control communication channels are represented by finite
automata under the assumption that all communication delays are bounded. By a transforma-
tion of the plant and specification, they show that it is possible to reduce networked supervisor
synthesis to supervisor synthesis in the standard Ramadge-Wonham framework.

According to (Wang et al., 2020), when unsafe behaviors cannot be prevented with
certainty, mitigation strategies are limited. The work proposes the use of a probabilistic

14 Chapter 2. Literature Review

discrete-event system (PDES) framework to incorporate a likelihood measure for unsafe
behavior in the attack models presented in (Carvalho et al., 2018). The least-unsafe supervisor
problem is introduced to minimize this unsafe likelihood measure and improve existing attack
mitigation techniques.

The authors of (Zhou et al., 2020) propose a technique to encrypt the signals in a network,
using a matrix notation of automata, in the context of supervisory control. An encryption
framework based on the matrix notation of automata is proposed, making it suitable for
homomorphic encryption schemes over integers, which are emerging in the cryptography area.

In (Weerakkody et al., 2017), the problem of securely designing a decentralized control
system to prevent a special class of integrity attacks known as perfect attacks is considered,
where an attacker can manipulate the state without affecting the measurements of the system.
The goal considered was the design of systems which are not perfectly attackable while
simultaneously minimizing communication in the system. Such a design ensures deterministic
detection of attacks.

In (Khoumsi, 2019), the problem of sensor and actuator attacks is firstly studied with
a defense viewpoint, where methods to detect attacks and avoid failures, and determine
conditions of attack detectability and failure avoidability are developed. Then, the attacker’s
viewpoint is also studied, where a strategy for the attacker to be undetectable is proposed.

The next chapter presents the main concepts on discrete-event systems.

Chapter 3

Preliminaries

When the state space of a system is naturally described by a discrete set and state-
transition dynamics are driven by discrete events, then these events may be associated to the
transitions. Such systems are called discrete-event systems.

An event can be associated with a specific action taken, or a spontaneous occurrence
or even with several conditions which are all met at a given point of time. An event occurs
instantaneously and causes transitions from one state to another. This state transition
mechanism is called event-driven.

There are many mathematical tools used to describe the behavior of a discrete-event
system. In this work, languages and automata are employed. This section aims to present the
concepts that are relevant for a good understanding of the content of the next chapters. For
a more detailed overview, the reader is referred to (Wonham and Cai, 2019) and (Cassandras
and Lafortune, 2007).

3.1 Language

A finite set of symbols Σ is associated to the physical events of a DES. It is common
practice to call the elements of Σ as events as well. The set Σ is also called an alphabet and
sequences of elements of Σ can be called words, strings or traces. A string with no event is
called the empty string and is denoted by ε. The length of a string is the number of events
contained in it, counting multiple occurrences of the same event. If s is a string, we denote its
length by |s|. By convention, |ε| = 0.

A formal way to study the behavior of a DES is based on the theory of languages. It
specifies all possible sequences of events that the DES is capable of processing. A language
defined over an event set Σ is a set of finite-length strings formed with events in Σ. The most

15

16 Chapter 3. Preliminaries

basic operation while building strings is the concatenation. The concatenation uv of strings
u and v is the new string consisting of the events in u immediately followed by the events in
v. If s = uv, then it is said that u is a prefix of s, denoted by u ≤ s, while v is a suffix of s.
The empty string ε is the identity element of concatenation, which means uε = εu = u for any
string u.

The set Σ∗ , defined by

Σ∗ :=
∞⋃
i=0

Σi,

with Σ0 = {ε}, and Σi being a language formed by all strings of length i that can be
constructed with elements in Σ, is the infinite set of all finite strings of elements in Σ, including
the empty string ε. The ∗ operation is called Kleene-closure. Any language over an event set Σ

is therefore a subset of Σ∗. As languages are sets, all the usual operations such as union, inter-
section and difference are applicable to them. Next, some other useful operations are presented.

Let A,B ⊆ Σ∗, then the concatenation AB of languages A and B is

AB := {s ∈ Σ∗|(s = ab) ∧ (a ∈ A) ∧ (b ∈ B)}.

In words, a string is in AB if it can be written as the concatenation of a string in A with
a string in B. Now, let L ⊆ Σ∗, then the prefix-closure of L, denoted by L is

L := {s ∈ Σ∗|(∃t ∈ Σ∗)[st ∈ L]}.

The prefix-closure of L consists of all prefixes of all strings in L. The language L is said
to be prefix-closed if L = L.

The operation Kleene-closure can also be applied over a language L ⊆ Σ∗, as follows:

L∗ :=
∞⋃
i=0

Li.

By convention L0 = {ε} and Li is formed by the concatenation of L with itself a number
of times given by i. An element of L∗ is formed by the concatenation of a finite number of
elements of L, including the concatenation of zero elements.

Another type of operation performed on strings and languages is the so-called natural
projection or simply projection, from a set of events Σ to a smaller set of events Σo, where
Σo ⊆ Σ. This operation is denoted by P and a subscript can be added to specify the sets
involved in the operation when dealing with multiple sets. The projection P : Σ∗ → Σ∗o is

3.1. Language 17

defined recursively as follows:

P (ε) := ε

P (σ) :=

σ if σ ∈ Σo

ε if σ ∈ Σ \ Σo

P (sσ) := P (s)P (σ) for s ∈ Σ∗, σ ∈ Σ.

Basically, the projection operation takes a string formed from the larger set Σ and erases
events in it that do not belong to the smaller event set Σo. The corresponding inverse map
P−1 : Σ∗o → 2Σ∗ is defined as

P−1(t) := {s ∈ Σ∗|P (s) = t},

where the notation 2A, with A being a set, is the set of all subsets of A. Given a string of
events in the smaller event set Σo, the inverse projection P−1 returns the set of the strings
formed by events from the larger event set Σ that project, with P , to the given string.

Both the projection P and the inverse projection P−1 are extended to languages by
applying them to all the strings in the language. For L ⊆ Σ∗,

P (L) := {t ∈ Σ∗i |(∃s ∈ L)[P (s) = t]}

and for Li ⊆ Σ∗i ,

P−1(Li) := {s ∈ Σ∗|(∃t ∈ Li)[P (s) = t]}.

Some useful properties of projections and inverse projections are given next (Cassandras
and Lafortune, 2007).

1. P [P−1(L)] = L

L ⊆ P−1[P (L)].

2. P (A ∪B) = P (A) ∪ P (B)

P (A ∩B) ⊆ P (A) ∩ P (B).

3. P−1(A ∪B) = P−1(A) ∪ P−1(B)

P−1(A ∩B) = P−1(A) ∩ P−1(B).

4. P (AB) = P (A)P (B)

P−1(AB) = P−1(A)P−1(B).

18 Chapter 3. Preliminaries

In the next subsection, automata are introduced. If a language can be represented by
a finite-state automaton, then this language is said to be regular. Otherwise, it is said to be
non-regular. In what follows, only regular languages are considered.

3.2 Automata

A regular language can be represented by a finite automaton, which can be deterministic
or nondeterministic. The definition of a deterministic finite-state automaton is given by Def.
1.

Definition 1 (Deterministic Finite-State Automaton). A Deterministic Finite-State Automa-
ton, or DFA, denoted by G, is a tuple

G = (Q,Σ, δ, q0, Qm)

where

Q is the finite set of states;

Σ is the finite set of events;

δ : Q × Σ → Q is the transition function. A transition δ(q1, σ) = q2, with q1, q2 ∈ Q

and σ ∈ Σ, means that there is a transition labeled by event σ from state q1 to state q2.
Normally, δ is a partial function;

q0 is the initial state;

Qm ⊆ Q is the set of marked states.

♦

Remark 1. The selection of which states are in the set Qm is a modeling issue that depends
on the problem of interest. The marked states represent that the system has completed some
operation or some task. When this is not relevant to the problem under study, we can refer to
the automaton G as a tuple G = (Q,Σ, δ, q0) if we are not interested in the marked states or if
all states are understood to be marked. �

The automaton is deterministic because from any state there can only exists one outgoing
transition with a given event label. If multiple transitions were allowed on the same event label,
the automaton would be called a nondeterministic finite automaton. An automaton can be also
represented by its state transition diagram, as shown in Figure 3.1. Each state is represented
by a circle, while the double circle represents the marked states. An arrow connecting two
states represents a transition. The label of the transitions is the event that triggers them. The

3.2. Automata 19

0 1 2

c
a

b

c

Figure 3.1: Example of an automaton represented by its state transition diagram.

alphabet Σ is the set of all transition’s labels. The initial state is indicated by an arrow that
doesn’t connect two states.

Example 1. For the automaton of Figure 3.1, G = (Q,Σ, δ, q0, Qm), with Q = {0, 1, 2},
Σ = {a, b, c}, q0 = 0, Qm = {0} and δ(0, c) = 0, δ(0, a) = 1, δ(1, c) = 2 and δ(1, b) = 0.

�

The operation of an automaton starts at the initial state q0 and upon the occurrence of an
event σ such that δ(q0, σ) is defined, it will make the transition to state δ(q0, σ). This process
continues based on the transitions for which δ is defined. The notation δ(q, σ)!, for q ∈ Q and
σ ∈ Σ, is used to indicate that δ(q, σ) is defined.

Remark 2. Sometimes it is more convenient to represent the transition function as a set ∆.
For each q, q′ ∈ Q and σ ∈ Σ such that q′ = δ(q, σ), then (q, σ, q′) ∈ ∆. It is assumed that any
changes in the transition function δ or in the set ∆, automatically changes the other. �

Remark 3. Another useful map when dealing with automata is the map Γ : Q → 2Σ, which
is called the feasible event function. Thus, Γ(q), for q ∈ Q, is the set of all events σ ∈ Σ for
which δ(q, σ) is defined and it is called the feasible event set of G at state q. �

The transition function δ can be extended from domain Q × Σ to domain Q × Σ∗, as
follows:

δ(q, ε) := q;

δ(q, sσ) := δ(δ(q, s), σ) for s ∈ Σ∗ and σ ∈ Σ.

Each automaton G defines a generated language and a marked language. The language gener-
ated by G is

L(G) := {s ∈ Σ∗|δ(q0, s)!} (3.1)

while the language marked by G is

Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm}. (3.2)

The language L(G) represents all the directed paths that can be followed along the state
transition diagram, starting at the initial state. The string corresponding to a path is the

20 Chapter 3. Preliminaries

concatenation of the event labels of the transitions composing the path. The second language
represented by G, Lm(G), is the subset of L(G) consisting only of the strings s for which
δ(q0, s) ∈ Qm, that is, these strings correspond to paths that end at a marked state.

If an automaton G has a state which cannot be reached by any sequence of event from
the initial state, then the state is called non-accessible. The operation Ac(G) removes all
non-accessible states from G, as well as their associated transitions. This operation does not
affect the generated and marked languages of G. If G = Ac(G), then G is said to be accessible.

On the other hand, if G has a non-marked state from which it is not possible to reach
any other marked state, then this state is called not coaccessible. The operation CoAc(G)

removes all not coaccessible states fo G. This operation does not affect the marked language,
but can reduce the generated language. If G = CoAc(G), the automaton is called coaccessible
and in this case, L(G) = Lm(G).

When the accessible part of an automaton is not coaccessible, it is called blocking. If an
automaton G is accessible and coacessible, then G is said to be trim. The Trim operation is
defined as

Trim(G) := CoAc[Ac(G)] = Ac[CoAc(G)]

Let G be an automaton, Σ its event set and consider a set Σi ⊂ Σ. The projections from Σ∗

to Σ∗i , P (L(G)) and P (Lm(G)) can be obtained from G by replacing all transitions labels in
Σ \ Σi by ε. This may result in a nondeterministic automaton that generates and marks the
desired languages. A method for transforming a nondeterministic automaton in a deterministic
one can be found in (Hopcroft et al., 2006, Section 2.3.5).

For the inverse projection, P be the projection from Σ∗ to Σ∗i . An automaton that
generates P−1(L(G)) and marks P−1(Lm(G)) can be obtained by adding self-loops for all the
events in Σ \ Σi at all the states of G.

In general, when modeling systems composed of interacting components, the event set of
each component includes private events that pertain to its own internal behavior and common
events that are shared with other automata and capture the coupling among the respective
system components. The standard way of building models of entire systems from models of
individual system components is by parallel composition. The parallel composition of automata
G1 and G2 is the automaton

G1||G2 = Ac(Q1 ×Q2,Σ1 ∪ Σ2, δ, (q01, q02), Qm1 ×Qm2)

3.3. Supervisory Control Theory 21

where

δ((q1, q2), σ) :=

(δ1(q1, σ), δ2(q2, σ)) if δ1(q1, σ)! ∧ δ2(q2, σ)!

(δ1(q1, σ), q2) if δ1(q1, σ)! ∧ σ 6∈ Σ2

(q1, δ2(q2, σ)) if δ2(q2, σ)! ∧ σ 6∈ Σ1

undefined otherwise

In the parallel composition, a shared event σ, that is, an event that belongs to Σ1 ∩ Σ2,
can be executed if the two automata can execute it simultaneously. This makes the au-
tomata to synchronize on the shared events. The private events, i.e., the ones that belong to
(Σ1\Σ2)∪(Σ2\Σ1), do not have any restriction and can be executed whenever they are possible.

3.3 Supervisory Control Theory

Assume that a given DES is modeled by automaton G, where Σ is the event set of G. It
is said that G models the uncontrolled behavior or the open-loop behavior. The premise is that
some of the states in G must be avoided, as they represent unsafe or blocking states. This is
achieved when the system is under control, which restricts the behavior of the system to a
subset of Lm(G). The controller is called a supervisor, denoted by S.

In this context, the set Σ is partitioned into two subsets

Σ = Σc∪̇Σuc

where

Σc is the set of controllable events: these events can be prevented from happening, or
disabled, by the action of a supervisor S;

Σuc is the set of uncontrollable events: these events cannot be prevented from happening
by the action of a supervisor S.

In general, uncontrollable events are associated with changes in sensor readings, as
opposed to the controllable events, that are associated with control actions, as the command
to an actuator.

Assume that all the events in Σ executed by G are observed by supervisor S. Thus, in
Figure 3.2, s is the string executed so far by G and s is entirely seen by S. The transition
function of G can be controlled by S in the sense that the controllable events of G can be
dynamically enabled or disabled by S. Formally, a supervisor S is a function S : L(G) → 2Σ.
For each s ∈ L(G) generated so far by G, under the control of S, S(s) is the set of enabled

22 Chapter 3. Preliminaries

events that G can execute at its current state δ(q0, s).

Supervisor

Plant

S(s) s

Figure 3.2: Feedback loop of supervisory control.

The supervisor S is said to be admissible if, for all s ∈ L(G), Σuc ⊆ S(s), which means
that S is not allowed to disable an uncontrollable event. From now on, only admissible
supervisors will be considered.

The set S(s) is called control action at s, while S is the control policy. The system under
control is represented by S/G and its generated language is given by

i. ε ∈ L(S/G);

ii. If s ∈ L(S/G), σ ∈ S(s) such that sσ ∈ L(G), then sσ ∈ L(S/G);

iii. No other strings belong to L(S/G).

The marked language is defined as

Lm(S/G) := L(S/G) ∩ Lm(G).

It is clear that L(S/G) ⊆ L(G) and it is prefix-closed by definition. Also, Lm(S/G)

consists of the marked strings of G that survive under control of S. The notion of blocking of
a DES S/G is formalized in Definition 2.

Definition 2 (Blocking in a controlled system). The DES S/G is blocking if

L(S/G) 6= Lm(S/G)

and nonblocking when
L(S/G) = Lm(S/G)

♦

If the DES S/G is blocking, we also say that the supervisor S is blocking. On the other
hand, if S/G is nonblocking, then we say that S is nonblocking.

3.3. Supervisory Control Theory 23

The subset of L(G) that represents the behavior one wants to restrict the system to is
usually represented by an automaton H, that marks a language K, i.e., K = Lm(H). There
are numerous ways to obtain the automaton H, such as to take automaton G and remove
from it some of the states (and its associated transitions) that are states to be avoided. The
language K is normally known as the desired language and the goal of the control design is to
obtain a supervisor S such that L(S/G) = K ⊆ L(G)

The main requirement for the existence of a supervisor is known as the controllability
property, presented in Definition 3.

Definition 3 (Controllability). Consider a DES G whose event set is partitioned as Σ =

Σc∪̇Σuc. Let K ⊆ L(G), K 6= ∅, be a desired language. The language K is said to be controllable
with respect to L(G) and Σuc if

KΣuc ∩ L(G) ⊆ K.

♦

In other words, a language K ⊆ L(G) is controllable with respect to L(G) if for all
s ∈ K, for all σ ∈ Σuc, if sσ ∈ L(G), it implies that sσ ∈ K. For a string s ∈ L(G) and an
event σ ∈ Σ, s ∈ K but sσ 6∈ K, it means that the supervisor should disable event σ after s. If
K is controllable with respect to L(G), then the supervisor will never disable an uncontrollable
event. In other words, if an event cannot be prevented from happening, then it should be legal.

A supervisor S can be represented as an automaton, which is called a realization of S,
denoted as S. In order to build an automaton realization of S it suffices to build an automaton
that marks the language Lm(S/G).

When K is not controllable with respect to L(G), it is possible to say that there exists
an unique maximal, i.e., a supremal controllable sublanguage, denoted by sup C(K,L(G)).
Thus, if K is not controllable, the supremal controllable sublanguage contained in K preserves
the restrictions imposed by K and can be seen as an optimal and minimally restrictive
approximation of K. If the automata G and H have, respectively, l and k states, then the
calculation of sup C(K,L(G)) has polynomial complexity in l and k. However the number
of states of H and G grows exponentially on the number of subsystems Gi, that compose
the global system G. The process of obtaining the supervisor S = sup C(K,L(G)), is called
monolithic synthesis, since only one supervisor is obtained.

24 Chapter 3. Preliminaries

3.3.1 Supervisory Control under partial observation

Sometimes, a DES has events that occur in the system modeled by the automaton but are
not seen, or observed, by an outside observer of the system behavior. This lack of observability
can be due to the absence of a sensor to record the occurrence of the event, for example. Such
events are characterized as unobservable, while the events that are always seen are said to be
observable. Thus the event set Σ of G can be partitioned into the subsets

Σ = Σo∪̇Σuo,

where Σo and Σuo are the sets of observable and unobservable events, respectively. Such
DES are referred to as being partially-observed. The closed loop for control under partial
observation is shown in Fig. 3.3 and includes a natural projection P between the plant and
the supervisor. The presence of unobservable events in a DES imposes some limitations on
the controlled behaviors that can be achieved by the action of a supervisor. An additional
condition for a desired language to have in order to be possible to obtain a supervisor that
enforces it is called observability and is presented in Definition 4.

Supervisor

PPlant

S(P (s))

s

P (s)

Figure 3.3: Feedback loop of supervisory control in the case of partial observation.

Definition 4 (Observability (Lin and Wonham, 1988)). Let K and L(G) be languages defined
over event set Σ, with K ⊆ L(G). Also, let P : Σ∗ → Σ∗o be a natural projection and Σc the set
of controllable events. The language K is said to be observable with respect to L(G), Σo and
Σc if for all s ∈ K and for all σ ∈ Σc,

(sσ 6∈ K) and (sσ ∈ L(G)) =⇒ P−1(P (s))σ ∩K = ∅.

♦

The term P−1(P (s))σ ∩ K identifies all strings in K that have the same projection as
s and can be continued within K with event σ. If this set is not empty, namely, if K is not
observable, this means that K contains two strings, s and s′, such that P (s) = P (s′), and
where sσ 6∈ K while s′σ ∈ K. In other words, if a supervisor cannot differentiate between two
strings, then these strings should require the same control action. An alternative way to define

3.4. Implementation of DES control 25

observability is given next (Lin and Wonham, 1988).

A prefix-closed language K ⊆ L(G) is observable with respect to L(G) if

ker P ⊆ actK⊂L(G), (3.3)

where ker P denotes the relation on Σ∗ defined by

ker P := {(w,w′) ∈ Σ∗ × Σ∗|P (w) = P (w′)} (3.4)

and actK⊂L(G) is the binary relation on Σ∗ defined by

actK⊂L(G) :={(w,w′) ∈ Σ∗ × Σ∗|

(w,w′ ∈ K)(6 ∃σ ∈ Σ)[wσ ∈ K ∧ w′σ ∈ L \K] ∨ [wσ ∈ L \K ∧ w′σ ∈ K]}.
(3.5)

The relation actK⊂L(G) has all pairs of strings w,w′ ∈ K such that the new strings wσ and
w′σ are either both in K or both in L(G)\K, for all σ ∈ Σ. Thus a language is P -observable if
for any two strings that result in the same observation, the control action required after these
strings has to be consistent, i.e., an event should be enabled after both strings or disabled after
both of them. In (Wakaiki et al., 2019), the authors refer to the concept of observability with
respect to a natural projection P and L(G) as P-observability with respect to L(G).

The next section presents a literature review on implementation of DES control.

3.4 Implementation of DES control

Since this thesis focuses on attacks on systems and one of the goals is to have a model
that can capture real-world attacks, in addition to a prototype of a DES control system
to be used as a testbed, a brief review of how researchers have implemented supervisory
control on hardware and software and what issues arise in moving from mathematical
modeling to implementation is given here. As will be seen next, many authors have iden-
tified issues that had to be dealt with when implementing DES control. These issues were
also taken into account during the development of the testbed, which is described on Chapter 6.

One of the first works that addressed the problem of implementing the supervisory
control theory (SCT) on manufacturing systems is (Balemi et al., 1993). The authors start
by identifying the inconsistency of the assumption that the plant in the SCT generates events
with real systems that produces responses as a consequence of commands received. In this
sense, the plant can be seen as a process with input and output. The controllable events can be
associated with the input while the uncontrollable ones with the plant output. Furthermore,

26 Chapter 3. Preliminaries

inputs are referred to as commands and outputs as responses. In this setup, both plant and
supervisor generate events. Commands are generated by the supervisor while the responses are
generated by the plants. The dynamics of the closed-loop system are described as follows. Let
the plant and supervisor be understood as finite-state constructs. Out of the commands and
responses from its current state, the supervisor schedules the commands to be transmitted to
the plant. The plant schedules the responses from its internal state. Both plant and supervisor
processes can be thought as competing for the first occurrence of one of the events they trigger.
Both plant and supervisor behave like active scheduling units, while in the original model only
the plant has that authority.

Balemi et al. (1993) propose a procedure for design of controllers, which are input-output
supervisors. They also identify different types of responses produced by a plant, as well as
different types of commands produced by controllers. The plant is not readily available as a
logical plant model. It needs to be brought from the physical level where we deal with voltages
and bits to a logical level that is suitable for a behavioral language specification. To accomplish
this, they introduce the concept of interface, which is a component that is responsible to map
the physical plant with its hardware, sensor and actuator routines into the logical plant. Under
these assumptions, the feedback loop of SCT can be represented as in Fig. 3.4.

Controller

Plant

Σc Σuc

Figure 3.4: Input/Output interpretation of the feedback loop of supervisory control.

Some of the problems that arise from the implementation of supervisory control in Pro-
grammable Logic Controllers (PLC) were addressed in (Fabian and Hellgren, 1998). The au-
thors identify the problems as:

• Events and signals: a PLC handles boolean valued signals, that are defined at all mo-
ments. In contrast, events only exist momentarily. Also, multiple signals can have their
values changed within the duration of a single PLC scan, which can be interpreted as
a simultaneous occurrence of events, which contradicts one of the basic assumptions of
the DES theory. A property called interleave insensitivity is proposed and captures the
requirement of the supervisor to generate the same event independently of the order in
which events occur in the plant. With this property, the problem of simultaneous events
can be remedied.

3.4. Implementation of DES control 27

• Causality: it regards the problem of defining who generates what. As pointed out by
Balemi et al. (1993), events in manufacturing systems are not generated spontaneously,
but only as responses to given commands. Thus, the PLC generates the commands and the
plants generates the responses which can be associated to controllable and uncontrollable
events, respectively.

• Choice: the control action of the supervisor is a set of enabled events. However, only one
command can be sent to the plant at a time, or otherwise other problems may arise. The
problem of finding the best choice can be solved by scheduling techniques, for example
(Pena et al., 2022; Alves et al., 2021).

• Inexact synchronization: this problem occurs when the plant generates an event while
the PLC is computing the output and the new event generated by the plant invalidates
it. To avoid this problem, a property called delay insensitive language was proposed by
Balemi et al. (1993) and if met by a language, it assures that a controllable event is not
preempted by an uncontrollable one.

The authors also give some programming directives that will avoid most of the aforemen-
tioned problems.

In (Dietrich et al., 2002), the authors tackle the problem of implementing supervisory
control over a system. In manufacturing systems, to implement a controller which actually
starts the machines it is not always sufficient to disable controllable events. Sometimes, the
controller also has to choose exactly one event among the set of enabled ones. This is the
case where controllable events chosen by the controller are interpreted as commands for the
plant. In such a context, a problem that often arises is that the implemented controller may
be blocking even if the given system is nonblocking. The authors start by defining a special
supervisor, called an implementation, enabling at most one controllable event at a time. They
also provide three system properties that, when met, guarantee that every implementation of
the DES is nonblocking. The properties are:

• Termination: a terminating DES cannot have an infinite sequence consisting only of
controllable events, otherwise, the system will block. In a terminating DES, after the
occurrence of controllable events, the system will eventually stabilize, that is, will reach
a state in which only uncontrollable events are possible;

• Confluence: this property ensures that independently of the choices taken, all implemen-
tation will reach states, by means of controllable events only, with the same future;

• Nonblocking under Control: it is a stronger definition of nonblocking. It states that
for every string in the system, there exists a controllable continuation. A controllable

28 Chapter 3. Preliminaries

continuation is one in which uncontrollable events occur only if no controllable events are
enabled.

In (De Queiroz and Cury, 2002) the authors propose a three-level structure for the
implementation of supervisory control. A set of supervisors is obtained by the local modular
approach (De Queiroz and Cury, 2000), followed by the application of the supervisor reduction
technique (Vaz and Wonham, 1986), aiming to obtain small automata. The authors claim that
this three-level structure is different from others in the literature since the supervisors can be
implemented exactly as they are obtained.

Each state of the reduced supervisors has a control action defined as the disablement of
a set of events. In basic terms, the implementation then consists of executing the automata for
the supervisors in parallel, according to the events read from the real system, and of sending
disabling signals to the plant, according to the current state of the automata.

However, the plant model used for supervisor synthesis is an abstraction of the real sys-
tem behavior. Events representing commands launch operational procedures that update the
control system output signals according to the devices’ internal control logic. Uncontrollable
events do not correspond directly to input signals and model logical events (as the end of an
operation) generated by operational procedures. Thus, the control system has also to act as
an interface between the abstract model and the real input/output signals.

To avoid the composition of the automata, a control system is proposed to be programmed
in a three-level hierarchy, as shown in Fig. 3.5. The set of reduced local modular supervisors is
implemented in the top level of the control system exactly as they are conceived. The program
updates the active states of the supervisors according to their transition structures and to the
events in the Product System level. A feedback map associates the active states to a set of
disabling signals that control the Product System.

Since the supervisor automata may not have complete information of the plant behavior,
their automata are implemented concurrently in the Product System level. The main function
of this level is to execute commands by means of accepted controllable transitions. A controlled
transition is considered accepted if its preceding state is active and the supervisors do not
disable it. When multiple transitions in the Product System are accepted at the same time,
the program needs to make a choice based on a priority scheme or to pass this degree of
freedom to a higher level of decision.

The Operational Procedures level works as an interface between the theoretical Product
System and the Real System. In this level, the program interprets the abstract commands

3.4. Implementation of DES control 29

Figure 3.5: Control system architecture. From (De Queiroz and Cury, 2002).

from the Product System as logical procedures that guide the operation of each particular
subsystem. These low-level procedures generate the control system output signals and read the
input signals, supplying the Product System with logical responses that reflect the occurrence
of uncontrollable events.

The three-level architecture is further investigated in (Vieira et al., 2006), where the
authors present an approach to implement it in a PLC. Referring to Fig. 3.5, the Modular
Supervisor level is composed of a set of local supervisors; the Product System by a set of
structures named product system modules, each one associated with a real subsystem; the
Operational Procedure level is composed of a set of structures named operational procedures.
Generally, one operational procedure is uniquely associated with each event in the whole set of
events; one disabling signal and one command are uniquely associated with each controllable
event. One response is uniquely associated with each uncontrollable event.

In (Vieira et al., 2017), still based on the three-level implementation architecture, the
authors distinguish two classes of problems while applying control in an industrial system.
The first one is controlling each individual subsystem considering its own sensors, actuators
and specialized controllers to perform sequences of activities. For this class of problems, there
are well known solutions based on, among other type of devices, PLCs. The second class
of problem is coordinating the concurrent operation of these subsystems to produce what is
requested as efficiently as possible while guaranteeing the integrity and system’s safety. The
SCT is a formal approach particularly suited to this class of problem. In their work, the
authors present a detailed method that allows a designer to systematically convert the results
obtained from SCT to coordinate the concurrent operation of subsystems in a PLC application
program.

Chapter 4

New test for P-observability for an
attack set restricted to stealthy
attackers

This chapter presents the first result of this thesis, which is the development of a test for
a variation of a property called P-observability for an attack set. The results presented in this
chapter are an improved version of the results published in (Alves et al., 2022a). The property
P-observability for an attack set was introduced in (Wakaiki et al., 2019), in the context of
supervisory control under partial observation and under the influence of cyber-attacks. Section
4.1 presents the attack model, while Section 4.2 presents the definition of P-observability
for an attack set. Section 4.3 presents the main result of this chapter. Section 4.4 presents
the related algorithms, while Section 4.5 discuss their time complexity. Finally, Section 4.6
presents a case study.

4.1 Attack Model

In this section, attackers whose goal is to prevent the supervisor from achieving the
desired language K = L(S/G) ⊆ L(G), which is prefix-closed, are considered. The attack
model considered in here is different from the one considered in (Wakaiki et al., 2019). In this
work, stealthy attackers are considered. A stealthy attacker chooses its actions in a way that
whatever move the attacker does at this moment, will not be revealed immediately after that
action that the attacker has attacked. Note that the attacker may be revealed in the future.
In Wakaiki et al. (2019), this restriction does not exist. The attackers have full observation of
the communication channel between plant and supervisor and can corrupt the string of output
symbols P (w), w ∈ Σ∗ in multiple ways, by erasing and/or inserting specific output symbols
that are symbols sent from the plant to the supervisor, as an outcome of sensor readings. Also,

31

32
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

it is assumed that the supervisor sends a new control action to the plant whenever it receives
new information.

Figure 4.1 represents a closed-loop controlled system under attack. The plant executes
the string w ∈ L(G), but only the string P (w) can be observed by the supervisor, because of
the partial observation. Nevertheless, an attacker placed in the communication channel from
the plant to the supervisor can corrupt the string P (w) changing it to string y ∈ Σ∗o. Upon
reception of string y, the supervisor will then issue the control action S(y). Depending on how
the attacker chooses to modify P (w), it can induce the supervisor to issue a control action
that will make the plant reach an undesirable state. Next it is characterized how the attacker
can modify P (w).

Supervisor

Plant P

AttackS(y)

w

P (w)

y ∈ Aα(P (w)) ∩ L(G)

Figure 4.1: Closed loop controlled system under attacks (Adapted from Wakaiki et al. (2019)).

Given a set of symbols α1⊆ Σv ⊆ Σo in the observation alphabet, where Σv is the set of
vulnerable events, the map R¬α : Σ → (Σ \ α) ∪ {ε} is called α-removal observation map and
is defined as

R¬α(t) :=

ε t ∈ α

t t 6∈ α
(4.1)

and can be extended to a map defined for strings of output symbols in the same way as a natural
projection P . Note that the α-removal observation map is similar to a natural projection. An
observation attack is a set-valued map Aα : Σ∗o → 2Σ∗

o that assigns to each string u ∈ Σ∗o the
set of all strings v ∈ Σ∗o that can be obtained from u by an arbitrary number of insertions or
deletions of symbols in α ⊆ Σv. It is given by

Aα(u) := {v ∈ Σ∗o|R¬α(u) = R¬α(v)}. (4.2)

1In order to maintain consistency with the original attack model, proposed in (Wakaiki et al., 2019), in this
work, the symbol α denotes a set.

4.1. Attack Model 33

If α = ∅, then A∅ corresponds to the absence of attack.

Thus, instead of receiving the string P (w), the supervisor receives one string among the
set Aα(P (w)). The map Aα is called an observation attack or simply attacker and the map
AαP : Σ∗ → 2Σ∗

o obtained by the composition AαP := Aα ◦ P the corresponding attacked
observation map. In other words, the map AαP (w) results in all strings that can be formed
with the manipulation of events in α ⊆ Σo, by inserting events into or erasing events from the
observation P (w). The goal of the attacker is, by changing the observation string, to make
the supervisor accept a string that is not in K or to reject a string that is in K. The attack
can be also be interpreted as a factor that increases the supervisor’s uncertainty about which
state the plant is really in.

The next example shows the application of the attacked observation map over a simple
string, for two different scenarios.

Example 2. Let Σo = {a, b, c} and u = abc. For α1 = {a}, Aα1(u) = {a}∗b{a}∗c{a}∗, and for
α2 = {a, b}, Aα2(u) = {a, b}∗c{a, b}∗. �

The reader can observe, from Example 2, that the map Aα is similar to an inverse
projection. Nevertheless, there are two main differences. The first one is the fact that the
domain and codomain of map Aα are defined over the same set, while in the inverse projection,
the domain is defined over a set that can be smaller than the codomain. The second difference
is related to the fact that the map Aα can describe the effect of erasing events, in addition to
the effect of adding events, whereas the inverse projection can only insert events.

At this point, it is important to emphasize the dynamics of the system. The plant
doesn’t send to the supervisor the events in string w all at once. At the initial state, w = ε,
since nothing was executed in the plant yet. If there was no attack, then the supervisor would
receive P (ε) = ε and then issue the control action S(ε). The plant would execute an event
σ ∈ S(ε), meaning now that w = σ. The supervisor would see the observation P (σ), issue the
control action S(P (σ)) and the process repeats indefinitely. In other words, the string w is
executed event by event. Although the map Aα is able to insert or erase any event σ ∈ α along
the string w, the insertions or erasures will only happen at the end of the string. Inserting
or erasing an event at the beginning of the string is not possible, as it would mean that the
attacker modified an event that is in the past.

When the attack is considered, as w = ε at the initial state, there will be nothing for
the attacker to intercept. At this moment, the attacker can insert any event in α, including
none, and send it to the supervisor. To illustrate, suppose that σ1 ∈ α was inserted by the
attacker. Upon reception of σ1, the supervisor updates its state and issue the control action

34
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

S(σ1). Observe that the plant is still at the initial state, but the supervisor “thinks” it has
executed σ1. The plant can now execute an event σ2 ∈ S(σ1), if δ(q0, σ2)!, which generates the
observation P (σ2). The attacker can intercept this observation and erase it if σ2 ∈ α, and/or
insert another event σ3 ∈ α, or even let the observation remain untouched.

In a sense, the attacker achieves its goal of making the supervisor accept a string that is
not in K or to reject a string that is in K, by desynchronizing the plant and the supervisor.
Furthermore, if w ∈ K was executed in the plant until now, then it is assumed that the
attacker has knowledge about the system and will not insert an event σ ∈ α in the observation
if P (w)σ 6∈ K, since that would easily reveal the attackers presence if an intrusion detection
system were in place. This is illustrated in the next example.

Example 3. Consider the automaton H of Fig. 4.2 and a language K such that L(H) = K,
where Σv = {u, x}. If w = ε, σ = u and σ′ = a, then P (w)σ = u ∈ K, P (w)σ′ = a ∈ K

but P (w)σσ′ = ua 6∈ K. In other words, if an attacker inserts event u into the supervisor’s
observation at the initial state, the supervisor will update its state estimate to state 3. Then,
upon the occurrence of event a, which is not vulnerable and is feasible at the plant’s current
state, the supervisor would see a string (i.e., ua) that is not in K. Thus, the attacker’s presence
would be revealed.

0 1 2

3

4 5

a

u

x

a

b

b

Figure 4.2: Automaton of Example 3.

�

Even when the plant and the supervisor are desynchronized as a consequence of insertion
or erasure of events, the system keeps working, unless the attacker is successful, i.e., it makes
the plant reach an undesirable state.

A more interesting scenario consists of multiple attackers, instead of only one.
These multiple attackers are represented by an attack set, denoted by A, such that
A = {Aα1 , Aα2 , . . . , AαM}, where αi ⊆ Σv ⊆ Σo, for i = 1, . . . ,M .

4.2. P-Observability for an attack set 35

It is assumed that only one of the attackers in an attack set A is acting, but the
information about which one is not available. Thus, all possible scenarios have to be considered
when trying to protect the system from the attacks.

The authors of (Wakaiki et al., 2019) present two conditions for a desired language K
that will allow the design of a supervisor that can enforce it, regardless of which attacker in
the attack set A is acting. The language K must be 1) controllable with respect to L(G) and
2) P -observable for the attack set A.

The P -observability for an attack set is an extended version of the classical P-observability
and is detailed in the next section.

4.2 P-Observability for an attack set

A prefix-closed language K ⊆ L(G) is P -observable for an attack set A, if

RA,A ⊂ actK⊂L (4.3)

where the relation RA,A contains all pairs of strings that may result in attacked observation
maps AP and AP with a common string of output symbols, i.e.,

RA,A := {(w,w′) ∈ Σ∗ × Σ∗|AP (w) ∩ AP (w′) 6= ∅} (4.4)

and actK⊂L is defined in (3.5).

Thus, P-observability for an attack set is related to the supervisor’s ability to always
be able to differentiate strings that require different control actions. In the remainder of this
work, unless said otherwise, the term “P-observability” and “P-observability for an attack set”
will be used as equivalents.

The work in which the P-observability for an attack set was first introduced also presents
a result that gives the conditions for the existence of a supervisor that, regardless of which
attacker Aα ∈ A is acting, can enforce a desired language K. These conditions are summarized
in the following theorem.

Theorem 1 ((Wakaiki et al., 2019)). For every nonempty prefix-closed set K ⊂ L(G) and
every attack set A:

i. there exists a solution f to the supervision of K under the attack set A if and only if K
is controllable and P-observable for A;

36
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

ii. if K is controllable and P -observable for A, the map f :
⋃
Aα∈AAαP (L(G))→ Σ defined

by

f(y) := Σuc ∪ {σ ∈ Σc|∃w ∈ K,Aα ∈ A s.t. [y ∈ AαP (w), wσ ∈ K]},

∀y ∈
⋃

Aα∈A
AαP (L(G))

(4.5)

is a solution to the supervision of K under the attack set A.

�

The fact that controllability of K is a necessary condition for the existence of a supervisor
is to be expected. Regarding the P -observability for an attack set A, if this condition does not
hold, it is possible to find two attacks Aαi , Aαj ∈ A that would result in the same observation
y ∈ Σ∗o for two distinct strings w1, w2 ∈ K, and w1 would transition to an element in K and
w2 to an element outside K, or vice-versa. This means that, upon observing y, the supervisor
cannot decide which control action to take. Contrarily, if K is controllable and P-observable for
the attack set A, then there exists a supervisor that enforcesK and such policy is given by (4.5).

The next theorem shows how the test for P -observability for an attack set A can be done
by reducing it to a classical observability test.

Theorem 2 ((Wakaiki et al., 2019)). For every nonempty prefix-closed set K ⊆ L(G) and attack
set A = {Aα1 , Aα2 , . . . , AαM} consisting of M ≥ 1 observation attacks, K is P -observable for
the set of attacks A if and only if K is (R¬α ◦P)-observable (in the classical sense, i.e., without
attacks) for every set α := αi ∪ αj, ∀i, j ∈ {1, 2, . . . ,M}. �

Theorem 2 states that P -observability for an attack set A can be tested by picking every
possible pair of two attackers Aαi , Aαj and checking if regular observability is obtained if the
symbols affected by the two attackers are removed from the observation. The authors claim
that, using the test for classical observability presented in (Cassandras and Lafortune, 2007,
Section 3.7.3), P-observability for an attack set can be tested with time complexity O(M5),
where M = |A|. However, this complexity was obtained from a very specific attack set and a
generalization was not provided.

4.3 New test for P-observability restricted to stealthy

attackers

This section presents a new test for P -observability for an attack set when the attackers
are required to be stealthy. Rather than executing multiple tests of classical observability,

4.3. New test for P-observability restricted to stealthy attackers 37

the proposed test checks P -observability for an attack set itself. The test is applied over an
automaton that implements a desired language K.

Before presenting the new test, some definitions are introduced. Firstly, how the attacks
can be interpreted visually is shown, through an example.

Example 4. Consider a system whose representation is the automaton H of Fig. 4.3, where
Σo = {u, x, y, z, e}, Σv = {u, x, y, z} and A = {A∅, A{u,x}, A{y,z}}.

0 1 2 3

4 5

u y

x

z

e

f

Figure 4.3: Automaton H of Example 4. The rectangles with dashed-dotted (green), dotted
(red) and dashed (blue) borders represent the effect of the attackers A∅, A{u,x} and A{y,z},
respectively.

Attacker A∅ represents the absence of attack. This means that the only cause of confusion
about which state the system is at is due to the partial observation. This is represented by the
dashed-dotted rectangle involving states 4 and 5. Now consider attacker A{u,x}. If an observer
sees string y = u, it cannot be sure if the system is really at state 1 or at state 0 or at state
4. This is because event u may never have happened and was inserted by the attacker or event
u has happened and was not modified by the attacker or events u and x have happened but
x was erased by the attacker. Thus, state 0 can be confused with state 1 and state 1 can be
confused with state 4, which is represented by the dotted rectangles encircling states 0 and 1 and
also 1 and 4. In addition, as event f is unobservable, the observer can confuse states 4 and
5, which is represented by the dotted rectangle surrounding these states. The same reasoning
can be applied to find the dashed rectangles around states 1 and 2, 2 and 3 and again 4 and 5,
regarding attacker A{y,z}. Independently of which attacker is considered, an observer can always
confuse a state q with itself. The visual representation for such cases was omitted. �

An attack can increase the uncertainty for an observer about which state the plant is
in, by manipulating the symbols in the observation. This uncertainty can be represented as a
relation of pairs of states and each attacker induces a different one. In the previous example,
each pair of states involved by a rectangle is composed of states that can be confused with each
other, which is due to the attack or to the partial observation. Thus, each rectangle gives rise to
a pair of states in the relation of states that can be confused with each other and with respect
to an attacker, where the pair order is given by the transition connecting both states. One can
easily conclude that if the pairs (q1, q) and (q, q2) are in the relation, for (q1, σ, q), (q, σ

′, q2) ∈ ∆,

38
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

then the pair (q1, q2) should also be, since the attacker can insert or erase both events. In other
words, this relation is transitive. The following definition formalizes a binary relation on the
set of states of an automaton induced by an attacker. Henceforward, this relation, denoted by
Πα, will be called the relation of indistinguishable states with respect to attacker Aα ∈ A.

Definition 5 (Indistinguishable states with respect to attacker Aα). For a given attacker
Aα ∈ A and automaton G, the relation Πα ⊆ Q×Q defined as

Πα := {(q, q′) ∈ Q×Q|(∀wv ∈ L(G))[δ(q0, w) = q ∧ δ(q0, wv) = q′ ∧ v ∈ (α ∪ Σuo)
∗]} (4.6)

is the relation of indistinguishable states with respect to attacker Aα. ♦

According to Def 5, the relation Πα has all pairs of states (q, q′) such that state q′

is reachable from state q with events in α, the events that attacker Aα can manipulate, or
with events in Σuo. This definition was inspired by (Wang et al., 2007), where the pairs of
indistinguishable states arise due only to partial observation.

Definitions 6 and 7 formalize other possible ways obtain new pairs of indistinguishable
states. These definitions are very similar. The first one considers pairs of states that are
connected by vulnerable events (pairs of states obtained in the relation according to Def. 5).

Definition 6 (Indistinguishable states due to a common state). The relation “Π(Πα) ⊆ Q×Q
defined as“Π(Πα) = {(q1, q2), (q2, q1) ∈ Q×Q|(∃q ∈ Q)(q 6= q1 ∧ q 6= q2)[(q, q1), (q, q2) ∈ Πα]} ∪ Πα,

(4.7)

is the relation of indistinguishable states due to a common state. ♦

The second one is later used when new pairs of indistinguishable states that are not
directly connected via vulnerable events are created. Because now the states do not necessarily
need to be connected by vulnerable events, sometimes non-vulnerable events help to make them
distinguishable and thus, these states should not be combined.

Definition 7 (Indistinguishable states due to a common state after continuations). Let G be
an automaton and Obs(G) = (X,Σo \ Σv, δ

′, x0) its observer, obtained after the removal of all
unobservable and vulnerable events. The relation “Π′(ΠA) ⊆ Q×Q defined as“Π′(ΠA) = {(q1, q2), (q2, q1) ∈ Q×Q|(∃q ∈ Q)(q 6= q1 ∧ q 6= q2)(∃x ∈ X such that q1, q2 ∈ x)

[(q, q1), (q, q2) ∈ ΠA]} ∪ Π,

(4.8)

4.3. New test for P-observability restricted to stealthy attackers 39

is the relation of indistinguishable states due to a common state after continuations. ♦

In Definitions 6 and 7, whenever there is a state q that is indistinguishable with states
q1 and q2 (i.e., both q and q1 are related and q and q2 are related), then q1 and q2 are also
related. This means that, upon observation of a string that leads to state q, the actual current
state can be q, q1 or q2. Definition 7 requires an additional condition: the pairs are combined
only if both q1 and q2 does not belong to the set QDS.

Two states that cannot be reached from each other can also be indistinguishable. This
happens when they are reached from a pair of indistinguishable states with continuations that
have the same projection when erasing vulnerable and unobservable events. In other words, the
uncertainty about the current state propagates to a new pair that is reached with continuations
that have the same projection. This is captured by the following definition.

Definition 8 (Indistinguishable states due to identical observable continuations). For a given
automaton G and a relation of pairs of indistinguishable states Π, the map Π→ : (Q × Q) →
(Q×Q) defined as

Π→(Πα) := {(q, q′) ∈ Q×Q|(∃u, v ∈ (Σo \ α)∗)(∃(q1, q2) ∈ Πα)[PΣ→Σo\α(u) = PΣ→Σo\α(v)]

[q = δ(q1, u) ∧ q′ = δ(q2, v)]}
(4.9)

is the relation of indistinguishable states due to identical observable continuations. The operator
PΣ→Σo\α(u) is the natural projection of a given string u from alphabet Σ to Σo \ α. ♦

According to Def. 8, if a pair of states (q1, q2) belongs to a relation of indistinguishable
states Πα and if there exists strings u, v ∈ (Σo \ Σv)

∗ such that δ(q1, u) = q, δ(q2, v) = q′ and,
in addition, PΣ→Σo\α(u) = PΣ→Σo\α(v), then (q, q′) ∈ Π→(Πα). Note that Πα ⊆ Π→(Πα), since
u = ε ∈ (Σo \ Σv)

∗ and v = ε ∈ (Σo \ Σv)
∗ are always a possible continuation from a pair of

indistinguishable states.

Another way to form new pairs of indistinguishable states is by considering that two
attackers can cooperate with each other, even though they are not allowed to do so. This
hypothetical assumption is useful because if two attackers acting cooperatively can make a pair
of states indistinguishable, then it means that they can produce (by adding or removing events)
a common observation starting from two different strings, which can potentially violate the
P -observability for an attack set. For example, in Fig 4.3, states 0 and 2 are indistinguishable.
To understand this, consider that string u was observed. This observation could have been the
result of the insertion of event u at the initial state by attacker A{u,x} or the result of the erasure
of event y by attacker A{y,z} after the occurrence of string uy. Another example can be given
with respect to states 2 and 4. If string u is observed, then there is no way to know if string

40
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

ux happened and x was erased by attacker A{u,x} or string uy happened and y was erased by
attacker A{y,z}. More formally, the way two attackers can cooperate is formalized in Definition 9.

The following definition captures the relation of indistinguishable states after pairwise
combined attacks, which is the second way two attackers can cooperate with each other.

Definition 9 (Indistinguishable states due to transitivity). The relation Π◦A ⊆ Q×Q defined
as

Π◦A = {(q1, q2), (q2, q1) ∈ Q×Q|(q1, q), (q, q2) ∈ ΠA}

where ΠA is the relation of indistinguishable states considering all the attackers in the attack
set A. ♦

In Def. 9, if (q1, q) and (q, q2) are pairs of indistinguishable states due to the action of
two attackers, then the pairs (q1, q2) and (q2, q1) are also indistinguishable. Thus if a string
that leads to state q is observed, then it is not possible to be sure if the current state is q1, q or
q2. Note that for each pair (q1, q2) ∈ ΠA, then the symmetric pair (q2, q1) will also be added to
Π◦A, since (q1, q1), (q1, q2) ∈ ΠA.

Using Definitions 5-9, one can find all possible pairs of indistinguishable states with respect
to an attack set A. The procedure is summarized in the next algorithm.

Algorithm 1: Indistinguishable states with respect to attack set A.
Input: H = (QH ,Σ, δH , qH0),A
Result: Π2

A
1 foreach Aα ∈ A do
2 Obtain “Π(Πα)

3 Π′α ← Π→(“Π(Πα))

4 ΠA ←
⋃
Aα∈AΠ′α

5 Π2
A ← Π◦A ∪ “Π′(ΠA)

6 return Π2
A

The next examples highlight some characteristics of Alg. 1. Example 5 considers the case
of an attack set A composed by three attackers, one of which represents the absence of the
attack.

Example 5. Consider the automaton H shown in Fig. 4.4(a), where Σv = {u, x, y, z},
Σuo = {n} and A = {A∅, A{u,z}, A{x,y}}. The red arrow represents a disablement. In order to
find the relation of indistinguishable states Π2

A, Alg. 1 can be applied.

4.3. New test for P-observability restricted to stealthy attackers 41

0 1 2 3 4

5

6

7 8

a u x y

z e

b

n b

b

(a) Automaton H

0 1 2 3 4

5

6

7 8

a u x y

z e

b

n b

b

(b) lines 1-3

0 1 2 3 4

5

6

7 8

a u x y

z e

b

n b

b

(c) line 4

Figure 4.4: Automata of Example 5.

After the execution of lines 1-3, the relations Πα obtained are:

Π′∅ = {(5, 7)} ∪ {(q, q)|0 ≤ q ≤ 8}

Π′{u,z} = {(1, 2), (1, 5), (1, 7), (2, 5), (2, 7), (5, 7)} ∪ {(q, q)|0 ≤ q ≤ 8}

Π′{x,y} = {(2, 3), (2, 4), (3, 4), (5, 7)} ∪ {(q, q)|0 ≤ q ≤ 8}

A visual representation of these relations can be seen in Fig. 4.4(b), where rectangles around
related pairs (q, q) are omitted to reduce clutter.

The next step takes the union of all relations Π′α, resulting in the relation ΠA, which can be
visually represented as in Fig. 4.4(c).

ΠA = {(1, 2), (1, 5), (1, 7), (2, 3), (2, 4), (2, 5), (2, 7), (3, 4), (5, 7)} ∪ {(q, q)|0 ≤ q ≤ 8}

By looking at Fig. 4.4(b), one can see that the pairs (3, 5) and (5, 3) must be added to Π2
A since

states 2 and 5 are in the same red (dotted) rectangle and states 2 and 3 are in the same blue
(dashed) rectangle, i.e., (5, 2) and (2, 3) are in ΠA. Similar reasoning can be used to explain why

42
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

the other pairs in Π2
A were added. Then, in line 5, the relations Π◦A and “Π′(ΠA) are obtained:

Π◦A = {(1, 3), (1, 4), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (7, 1), (7, 2), (7, 5)} ∪ ΠA.“Π′(ΠA) = {(1, 7), (2, 5), (3, 4), (3, 5), (3, 7), (4, 3), (4, 5), (4, 7), (5, 2), (5, 3), (5, 4), (5, 7),

(7, 1), (7, 3), (7, 4), (7, 5)} ∪ ΠA.

Note that for this example, the observer states are X = {{0}, {1, 2, 3, 4, 5, 7}, {4}, {6}, {6, 8}}.
Finally, the relation Π2

A is obtained:

Π2
A = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 7), (2, 1), (2, 3), (2, 4), (2, 5), (2, 7), (3, 1), (3, 2), (3, 4),

(3, 5), (3, 7), (4, 1), (4, 2), (4, 3), (4, 5), (4, 7), (5, 1), (5, 2), (5, 3), (5, 4), (5, 7), (7, 1), (7, 2),

(7, 3), (7, 4), (7, 5)} ∪ {(q, q)|0 ≤ q ≤ 8}

Note that, although states 4 and 7 are indistinguishable and there are continuations that have
the same projection when erasing vulnerable and unobservable events from both of them, which
reaches states 6 and 8, the pairs (6, 8) and (8, 6) are not added to Π2

A. This happens because
if string auxyb is observed, there is no way the string auznb could be the one that actually
happened, since it would require the cooperation of two attackers (attacker A{u,z} would have
to erase z and then attacker A{x,y} would have to insert x and y) and an assumption of the
problem is that only one attacker attacks.

�

Example 6 shows a case where two states become indistinguishable not because they are
connected through a transition labeled with a vulnerable or non-observable event, but because
those states can be reached from states that are already indistinguishable via continuations
that have the same projection when erasing vulnerable and unobservable events. Such pair
of states can be further combined in order to represent the hypothetical cooperation between
attackers.

Example 6. Consider the automaton H shown in Fig. 4.5, where Σv = {u, x} and
A = {A{u}, A{x}}. The red arrow represents a disablement. In order to find the relation of
indistinguishable states Π2

A, Alg. 1 can be applied.

After the execution of lines 1-3 of Alg. 1, the relations Π′α obtained are as follows. For the
relation Π′{u}, pairs (0, 4) and (4, 0) were added in line 2 of Alg. 1 while pairs (1, 5) and (5, 1)

were added in line 3 of Alg. 1.

Π′{u} = {(0, 4), (1, 5)} ∪ {(q, q)|0 ≤ q ≤ 5}

Π′{x} = {(1, 2)} ∪ {(q, q)|0 ≤ q ≤ 5}

4.3. New test for P-observability restricted to stealthy attackers 43

0 1 2

4 5

3
a

u

a

x b

b

Figure 4.5: Automaton of Example 6.

The next step takes the union of all relations Π′α, resulting in the relation ΠA.

ΠA = {(0, 4), (1, 2), (1, 5)} ∪ {(q, q)|0 ≤ q ≤ 5}

Then, in line 5, the relations Π◦A and “Π′(ΠA) are obtained:

Π◦A = {(2, 1), (4, 0), (5, 1)} ∪ ΠA.“Π′(ΠA) = {(2, 5), (5, 2)} ∪ ΠA

Note that for this example, the observer states are X = {{0, 4}, {1, 2, 5}, {3}}. Finally, the
relation Π2

A is obtained:

Π2
A = {(0, 4), (1, 2), (1, 5), (2, 1), (2, 5), (4, 0), (5, 1), (5, 2)} ∪ {(q, q)|0 ≤ q ≤ 5}

For this example, note that states 2 and 5 are indistinguishable. Upon the observation of string
a, it is not possible to know if the current state is really state 1, or if string ax happened and
x was erased by attacker A{x} or if string ua happened and attacker A{u} erased event u. �

The next example presents a case where two states are indistinguishable and there are
continuations that have the same projection when erasing vulnerable and unobservable events
from both of them and yet, the states reached by this identical continuation are not indistin-
guishable.

Example 7. Consider the automaton H shown in Fig. 4.6, where Σv = {u, x} and
A = {A{u}, A{x}}. The red arrow represents a disablement. In order to find the relation of
indistinguishable states Π2

A, Alg. 1 can be applied.

After the execution of lines 1-3, the relations Π′α obtained are:

Π′{u} = {(0, 3)} ∪ {(q, q)|0 ≤ q ≤ 5}

Π′{x} = {(3, 4)} ∪ {(q, q)|0 ≤ q ≤ 5}

44
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

0 1 2

3

4 5

a

u

x

a

b

b

Figure 4.6: Automaton of Example 7.

The next step takes the union of all relations Π′α, resulting in the relation ΠA.

ΠA = {(0, 3), (3, 4)} ∪ {(q, q)|0 ≤ q ≤ 5}

Then, in line 5, the relations Π◦A and “Π′(ΠA) are obtained:

Π◦A = {(3, 0), (4, 3)} ∪ ΠA“Π′(ΠA) = ΠA.

Note that for this example, the observer states are X = {{0, 3, 4}, {1, 5}, {2}}. Finally, the
relation Π2

A is obtained:

Π2
A = {(0, 3), (0, 4), (3, 0), (3, 4), (4, 0), (4, 3)} ∪ {(q, q)|0 ≤ q ≤ 5}

Note that in this example, although there exists an identical continuation starting from a pair
of indistinguishable states, 0 and 4, states 1 and 5 are not indistinguishable. This is because
the pair (0, 4) was generated in the relation Π◦A, which does not take continuations that have
the same projection into account. This is justified by the fact that the attackers are considered
to be stealthy, which means that the attacker A{u} will not insert or delete event u, because if
either a or x happens next, the string observed will not be in L(H), revealing the attacker’s
presence. �

The next example presents a case where the set QDS is not empty. This fact will have
impact on relation “ΠA.
Example 8. Consider the automaton H shown in Fig. 4.7, where Σv = {u, x} and
A = {A{u}, A{x}}. The red arrow represents a disablement. In order to find the relation of
indistinguishable states Π2

A, Alg. 1 can be applied.

4.3. New test for P-observability restricted to stealthy attackers 45

0

1

2

3

4

5

6

7

8

a

c

x

u
b

b

b

b

d

d

(a) Automaton H

0

1

2

3

4

5

6

7

8

a

c

x

u
b

b

b

b

d

d

(b) lines 1-3

Figure 4.7: Automata of Example 8.

After the execution of lines 1-3, the relations Π′α obtained are:

Π′{u} = {(1, 2), (5, 7)} ∪ {(q, q)|0 ≤ q ≤ 8}

Π′{x} = {(3, 4), (5, 6)} ∪ {(q, q)|0 ≤ q ≤ 8}

The next step takes the union of all relations Π′α, resulting in the relation ΠA.

ΠA = {(1, 2), (3, 4), (5, 6), (5, 7)} ∪ {(q, q)|0 ≤ q ≤ 8}

In line 5 the relations Π◦A and “Π′(ΠA) are obtained:

Π◦A = {(2, 1), (4, 3), (6, 5), (7, 5)} ∪ ΠA“Π′(ΠA) = ΠA

Note that for this example, the observer states are X = {{0}, {1, 2}, {3, 4}, {5, 6}, {5, 7}, {8}}.
Since states 7 and 6 does not belong to the same state in the observer, then the pairs (5, 6) and
(5, 7) are not going to be combined. As a result,

Π2
A = {(1, 2), (2, 1), (3, 4), (4, 3), (5, 6), (5, 7), (6, 5), (7, 5)} ∪ {(q, q)|0 ≤ q ≤ 8}

�

The next example shows a case where pairs of states are created by Def. 6, at line 2 of
Alg. 1.

46
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

Example 9. Consider the automaton H shown in Fig. 4.8, where Σv = {u, x, y}, and
A = {A{u,x}, A{y}}. The red arrow represents a disablement. In order to find the relation of
indistinguishable states Π2

A, Alg. 1 can be applied.

0 1 2 3 4

5 6

a u

x

c y

c

b

b

Figure 4.8: Automaton of Example 9.

After the execution of lines 1-3 of Alg. 1, the relations Π′α obtained are:

Π′{u,x} = {(1, 2), (1, 5), (2, 5), (3, 6), (5, 2), (6, 3)} ∪ {(q, q)|0 ≤ q ≤ 6}

Π′{y} = {(3, 4)} ∪ {(q, q)|0 ≤ q ≤ 6}

The pairs (2, 5) and (5, 2) were obtained in “Π(Π{u,x}) (line 2). Then, because states 2 and
5 have continuations that have the same projection when erasing vulnerable and unobservable
events, the pairs (3, 6) and (6, 3) are obtained in Π→(“Π(Π{u,x})) (line 3). The next step takes
the union of all relations Π′α, resulting in the relation ΠA.

ΠA = {(1, 2), (1, 5), (2, 5), (3, 4), (3, 6), (5, 1), (5, 2), (6, 3)} ∪ {(q, q)|0 ≤ q ≤ 6}

In line 5 the relations Π◦A and “Π′(ΠA) are obtained:

Π◦A = {(1, 5), (2, 1), (2, 5), (3, 6), (4, 3), (4, 6), (5, 1), (5, 2), (6, 3), (6, 4)} ∪ ΠA“Π′(ΠA) = {(1, 2), (2, 1), (2, 5), (4, 6), (5, 2), (6, 4)} ∪ ΠA

Note that for this example, the observer states are X = {{0}, {1, 2, 5}, {3, 4, 6}}. Then, the
relation Π2

A is obtained:

Π2
A = {(1, 2), (1, 5), (2, 1), (2, 5), (3, 4), (3, 6), (4, 3), (4, 6), (5, 1), (5, 2), (6, 3), (6, 4)}

∪{(q, q)|0 ≤ q ≤ 6}

Thus, if string axc is observed, it is not possible to be sure which one among axc, auc or aucy
really happened. �

The next example shows a case where the attack set is composed by two attackers.

4.3. New test for P-observability restricted to stealthy attackers 47

Example 10. Consider the automaton H shown in Fig. 4.9, where Σv = {u, x, y, z} and
A = {A{u,x}, A{y,z}}. The red arrow represents a disablement. In order to find the relation of
indistinguishable states Π2

A, Alg. 1 can be applied.

0 1 2 3

54 6

a

b

x y

zu

c

c

Figure 4.9: Automaton of Example 10.

After the execution of lines 1-3 of Alg. 1, the relations Π′α obtained are:

Π′{u,x} = {(1, 2), (4, 2)} ∪ {(q, q)|0 ≤ q ≤ 6}

Π′{y,z} = {(2, 3), (2, 5), (3, 5), (5, 3)} ∪ {(q, q)|0 ≤ q ≤ 6}

The next step takes the union of all relations Π′α, resulting in the relation ΠA.

ΠA = {(1, 2), (2, 3), (2, 5), (3, 5), (4, 2), (5, 3)} ∪ {(q, q)|0 ≤ q ≤ 6}

In line 5 the relations Π◦A and “Π′(ΠA) are obtained:

Π◦A = {(1, 3), (1, 5), (2, 1), (2, 4), (3, 1), (3, 2), (3, 4), (4, 3), (4, 5), (5, 1), (5, 2), (5, 4)} ∪ ΠA“Π′(ΠA) = ΠA

Note that for this example, the observer states are X = {{0}, {1, 2, 3, 5}, {2, 3, 4, 5}, {6}}. The
pairs (1, 4) and (4, 1) are not going to be added to the relation of indistinguishable states. The
reason is that if string ax is observed, even though the attacker can erase event x and insert u,
the resulting string au is not in L(H). This would reveal the presence of an attacker and hence
is ruled out by the assumption that attackers are stealthy. On the other hand, the pairs (2, 3)

and (2, 5) are going to be combined, resulting in (5, 3) and (3, 5) being added to the relation of
indistinguishable states. The addition of the pairs (3, 5) and (5, 3) in Π2

A reflects the fact that
when bu is observed, it is not possible to know which one among the strings b, bu, buy and buz
really happened. Thus,

Π2
A = {(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 2), (3, 5), (4, 2), (4, 3), (4, 5), (5, 2), (5, 3)}

∪{(q, q)|0 ≤ q ≤ 6}

�

48
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

The next example shows a case that has continuations that have the same projection
when erasing vulnerable and unobservable events.

Example 11. Consider the automaton H shown in Fig. 4.10, where Σv = {u, x} and
A = {A{u,x}}. The red arrow represents a disablement. In order to find the relation of
indistinguishable states Π2

A, Alg. 1 can be applied.

0 1 2 3

54 6 7

u

x

a x

a u c

c

Figure 4.10: Automaton of Example 11.

After the execution of lines 1-3 of Alg. 1, the relations Π′α obtained are:

Π′{u,x} = {(0, 1), (0, 4), (1, 4), (2, 3), (2, 5), (2, 6), (3, 5), (3, 6), (4, 1), (5, 2), (5, 3), (5, 6), (6, 2), (6, 3)}

∪{(q, q)|0 ≤ q ≤ 7}

The next step takes the union of all relations Π′α, resulting in the relation ΠA. Since there is
only one attacker, then

ΠA = Π′{u,x}

In line 5 the relations Π◦A and “Π′(ΠA) are obtained:

Π◦A = {(1, 0), (3, 2), (4, 0), (6, 5)} ∪ ΠA“Π′(ΠA) = ΠA

Note that for this example, the observer states are X = {{0, 1, 4}, {2, 3, 5, 6}, {7}}. Thus,

Π2
A = {(0, 1), (0, 4), (1, 0), (1, 4), (2, 3), (2, 5), (2, 6), (3, 2), (3, 5), (3, 6), (4, 0), (4, 1), (5, 2), (5, 3),

(5, 6), (6, 2), (6, 3), (6, 5)} ∪ {(q, q)|0 ≤ q ≤ 7}

Notice that upon observation of string uax it is not possible to know which string among ua,
uax, xa and xau really happened. Also notice that this only happens because events u and x
can be tampered by the same attacker.

�

4.3. New test for P-observability restricted to stealthy attackers 49

Next, some useful lemmas are presented. They will be used later to prove the main result.

Lemma 1. Let G = (Q,Σ, δ, q0) be an automaton, q, q′ ∈ Q be states such that (q, q′) ∈ Πα,
obtained at line 2 of Alg. 1, for some attacker Aα ∈ A and P : Σ∗ → Σ∗uo be a natural projection.
Then, for all strings w ∈ L(G) and v ∈ w(α ∪ Σuo)

∗, such that δ(q0, w) = q and δ(q0, v) = q′,
it holds that

1) v ∈ P−1(AαP (w));

2) w ∈ P−1(AαP (v)).

�

Proof of Lemma 1. Since v ∈ w(α ∪ Σuo)
∗, to show that v ∈ P−1(AαP (w)), it suffices to show

that w(α ∪Σuo)
∗ ⊆ P−1(AαP (w)). The string w can be written as w = σ1σ2 . . . σn, σi ∈ Σ, for

i = 1, 2, . . . , n. Then P (w) = P (σ1)P (σ2) . . . P (σn). To obtain Aα(P (σ1) . . . P (σn)), it is nec-
essary to remove all events in α from P (σ1) . . . P (σn), resulting in R¬α(P (σ1)) . . . R¬α(P (σn)).
The next step is to find all strings that are equal to R¬α(P (σ1)) . . . R¬α(P (σn)) if the events in
α were also removed, i.e., α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗. Thus,

P−1(AαP (w)) = P−1(Aα(P (w)))

= P−1(Aα(P (σ1)P (σ2) . . . P (σn)))

= P−1(α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗). (4.10)

In addition, P (w)α∗ = P (σ1)P (σ2) . . . P (σn)α∗ ⊆ α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗. Then
it is possible to say that

P (w)α∗ ⊆α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗

P−1(P (w)α∗) ⊆P−1(α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗). (4.11)

Taking the left side of (4.11),

P−1(P (w)α∗) = P−1(P (w))P−1(α∗) (4.12)

and as w ∈ P−1P (w), (α ∪ Σuo)
∗ ⊆ P−1(α∗), then

w(α ∪ Σuo)
∗ ⊆ P−1(P (w))P−1(α∗). (4.13)

As v ∈ w(α ∪ Σuo)
∗, then it follows from (4.13) that v ∈ P−1(P (w)) P−1(α∗). From (4.12),

v ∈ P−1(P (w)α∗) and, from (4.11), v ∈ P−1(α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗). Finally,
(4.10) allows one to say that v ∈ P−1(AαP (w)), proving 1).

50
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

For the second part, if v ∈ w(α ∪ Σuo)
∗ and v ∈ L(G), then v = ws, for some s ∈ (α ∪ Σuo)

∗

such that ws ∈ L(G). The strings w and s can be written as w = σ1σ2 . . . σn, with σi ∈ Σ,
for i = 1, 2, . . . n and s = γ1γ2 . . . γm, with γj ∈ (α ∪ Σuo), for j = 1, 2, . . .m. Thus, v can be
written as v = σ1σ2 . . . σnγ1γ2 . . . γm. Applying the natural projection, one obtains

P (v) = P (σ1σ2 . . . σnγ1γ2 . . . γm)

= P (σ1)P (σ2) . . . P (σn)P (γ1)P (γ2) . . . P (γm). (4.14)

Now, the map Aα is applied over (4.14):

Aα(P (v)) = Aα(P (σ1) . . . P (σn)P (γ1) . . . P (γm)). (4.15)

To obtain Aα(P (σ1) . . . P (σn)P (γ1) . . . P (γm)), firstly all events in
α are removed from P (σ1) . . . P (σn)P (γ1) . . . P (γm), resulting in
R¬α(P (σ1)) . . . R¬α(P (σn))R¬α(P (γ1)) . . . R¬α(P (γm)). For each P (γj), there are two
possibilities: i)γj ∈ Σuo and P (γj) = ε and; ii)γj ∈ α and P (γj) = γj ∈ α. Either way, if the
events in α are removed, it results in R¬α(P (σ1)) . . . R¬α(P (σn)). The next step is to find the
strings that are equal to R¬α(P (σ1)) . . . R¬α(P (σn)) if the events in α were also removed, i.e.,
α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗. Thus, it is possible to write (4.15) as

Aα(P (v)) = α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗. (4.16)

As P (w) = P (σ1) . . . P (σn), then P (w) is an element of α∗R¬α(P (σ1))α∗ . . . α∗R¬α(P (σn))α∗,
which allows one to say that P (w) ∈ Aα(P (v)) = AαP (v). Applying the inverse projection
on both sides, P−1(P (w)) ⊆ P−1(AαP (v)). Also, w ∈ P−1(P (w)), allowing one to say that
w ∈ P−1(AαP (v)). This proves 2).

Lemma 1 can be interpreted as follows. If (q, q′) ∈ Πα, for some attacker Aα ∈ A, q, q′ ∈ Q
and strings v, w ∈ L(G) such that δ(q0, w) = q and δ(q0, v) = q′, then v ∈ P−1(AαP (w)) means
that v is obtained from w after the insertion of some events, while w ∈ P−1(AαP (v)) means
that w is obtained from v after the deletion of some events.

The next two lemmas are used in the main result’s proof. The first one shows that for every
pair (q1, q2) ∈ Π2

A, then there exists a common observation w ∈ P−1(AαiP (w1) ∩ AαjP (w2)) ∩
L(G), with δ(q0, w1) = q1 and δ(q0, w2) = q2. The second one shows the opposite direction, that
is, whenever it is possible to find a common observation w ∈ P−1(AαiP (w1)∩AαjP (w2))∩L(G),
this is captured by the inclusion of the pair (q1, q2) into the relation Π2

A.

Lemma 2. Let G = (Q,Σ, δ, q0) be an automaton, q1, q2 ∈ Q be states such that (q1, q2) ∈ Π2
A,

obtained after the execution of Alg. 1, w1, w2 ∈ L(G) be strings such that q1 = δ(q0, w1), q2 =

4.3. New test for P-observability restricted to stealthy attackers 51

δ(q0, w2) and P : Σ∗ → Σ∗uo be a natural projection. Then, there exist attackers Aαi , Aαj ∈ A
such that P−1(AαiP (w1) ∩ AαjP (w2)) ∩ L(G) 6= ∅. �

Proof of Lemma 2. There are multiple ways in which a pair (q1, q2) is formed during the exe-
cution of Alg. 1. These different ways will be shown in the following cases.

Case 1. For any pair of states (q1, q2) obtained at line 2 of Alg. 1, the pair can be obtained
in one of the two following ways:

a) The pair was obtained by Def. 5. Then it is true that (q1, q2) ∈ Παi , for some
attacker Aαi ∈ A. Using Lemma 1, it is possible to write w1 ∈ P−1(AαiP (w2)).
Because it is always true that w1 ∈ P−1(AαiP (w1)), it is possible to conclude that
P−1(AαiP (w1))∩P−1(AαiP (w2))∩L(G) = P−1(AαiP (w1)∩AαiP (w2))∩L(G) 6= ∅.

b) The pair was obtained by Def. 6. In this case, ∃q ∈ Q, such that
(q, q1), (q, q2) ∈ Παi . According to Lemma 1, it is then possible to write
w1 ∈ P−1(AαiP (w)), with δ(q0, w) = q. The same reasoning allows one to
write w2 ∈ P−1(AαjP (w)). Again according to Lemma 1, it is also true that
w ∈ P−1(AαiP (w1)) and w ∈ P−1(AαiP (w2)). Thus, it is possible to conclude that
P−1(AαiP (w1))∩P−1(AαjP (w2))∩L(G) = P−1(AαiP (w1)∩AαjP (w2))∩L(G) 6= ∅.

Case 2. The pair (q1, q2) is obtained by the relation Π→(“Π(Παi)), at line 3 of Alg. 1.
According to Def. 8, for every pair (q1, q2) ∈ Π→(“Π(Παi)), the strings w1 and w2 can be
written as w1 = w′1u and w2 = w′2v, with u, v ∈ (Σo \ αi)∗. Consequently, the states
q′1 and q′2, such that δ(q0, w

′
1) = q′1 and δ(q0, w

′
2) = q′2, form a pair (q′1, q

′
2) ∈ “Π(Παi).

There are two possibilities; there exists a state q′ ∈ Q such that: 1)(q′, q′1), (q′, q′2) ∈ Παi

and q′ 6= q′1 and q′ 6= q′2; 2) q′ = q′1 or q′ = q′2 and either (q′1, q
′
1) and (q′1, q

′
2) or (q′2, q

′
2)

and (q′2, q
′
1) are in Παi Let w′ be the string leading to state q′, i.e., δ(q0, w

′) = q′. For
the first possibility, since (q′, q′1), (q′, q′2) ∈ Παi , then according to Def. 5, it must be the
case that w′1 ∈ w′(αi ∪ Σuo)

∗ and w′2 ∈ w′(αi ∪ Σuo)
∗. Using Lemma 1, it is possible to

say that w′ ∈ P−1(AαiP (w′1)) and w′ ∈ P−1(AαiP (w′2)). Still using Lemma 1, it is also
possible to say that w′1 ∈ P−1(AαiP (w′)). In other words, it is possible to say that w′1 is
an attacked version of w′. The same reasoning allows one to conclude that w′ is also an
attacked version of w′2. Thus, it is possible to say that w′1 is an attacked version of w′2 and
vice-versa. For the second possibility, as (q′1, q

′
2) or (q′2, q

′
1) belongs to Παi , then according

to Def. 5, it must be the case that w′1 ∈ w′2(αi ∪Σuo)
∗ or w′2 ∈ w′1(αi ∪Σuo)

∗. Either way,
using Lemma 1, it is possible to say that w′1 ∈ P−1(AαiP (w′1)) and w′1 ∈ P−1(AαiP (w′2)).
Thus, considering the two possibilities, it is possible to write

P (w′1) ∈ AαiP (w′1) ∩ AαiP (w′2), (4.17)

52
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

Additionally, applying the attack map over the continuations u and v, one obtains:

AαiP (u) = α∗iR¬αi(u)α∗i

AαiP (v) = α∗iR¬αi(v)α∗i

Since PΣ→Σo\α(u) = PΣ→Σo\α(v), then R¬αi(u) = R¬αi(v), which means that AαiP (u) =

AαiP (v). Starting from (4.17) and since AαiP (w′1)u ⊆ AαiP (w′1u), then

P (w′1) ∈ AαiP (w′1) ∩ AαiP (w′2)

P (w′1)u ∈ AαiP (w′1)u ∩ AαiP (w′2)u

P (w′1u) ∈ AαiP (w′1u) ∩ AαiP (w′2u)

P (w′1u) ∈ AαiP (w′1u) ∩ AαiP (w′2v)

P (w1) ∈ AαiP (w1) ∩ AαiP (w2) (4.18)

w1 ∈ P−1(AαiP (w1) ∩ AαiP (w2)).

As w1 is a string such that w1 ∈ L(G), then it is possible to say that P−1(AαiP (w1) ∩
AαiP (w2)) ∩ L(G) 6= ∅.

Case 3. At line 4, ΠA is redefined as the union of all relations Πα obtained in lines 1-3
and no new pairs are created. Thus, it is still possible to say that P−1(AαiP (w1)) ∩
P−1(AαiP (w2))∩L(G) = P−1(AαiP (w1)∩AαiP (w2))∩L(G) 6= ∅ for a pair (q1, q2) ∈ ΠA.

Case 4. Lastly, at line 5, the relations Π◦A and “Π′(ΠA) are obtained and Π2
A is defined

as Π2
A = Π◦A ∪ “Π′(ΠA). For each new pair (q1, q2) added by Π◦A, according to Def. 9,

there exists q such that (q1, q), (q, q2) ∈ ΠA. For every pair (q1, q) ∈ ΠA, it is true that
(q1, q) belongs to Π′αi , for some attacker Aαi ∈ A. According to Case 2, for δ(q0, w) = q,
w ∈ P−1(AαiP (w) ∩ AαiP (w1)) ∩ L(G). The same reasoning can be applied to the pair
(q, q2), resulting in w ∈ P−1(AαiP (w) ∩ AαjP (w2)) ∩ L(G).

When the pair (q1, q2) is created by “Π′(ΠA), then there exists q such that
(q, q1), (q, q2) ∈ ΠA, q 6= q1 and q 6= q2. For every pair (q, q1) ∈ ΠA, it is true
that (q, q1) belongs to Π′αi , for some attacker Aαi ∈ A. According to Case 2, for
δ(q0, w) = q, w ∈ P−1(AαiP (w)∩AαiP (w1))∩L(G). The same reasoning can be applied
to the pair (q, q2), resulting in w ∈ P−1(AαjP (w) ∩ AαjP (w2)) ∩ L(G).

Thus, w ∈ P−1(AαiP (w) ∩ AαiP (w1) ∩ AαjP (w2)) ∩ L(G) and w ∈ P−1(AαiP (w1) ∩
AαjP (w2)) ∩ L(G) 6= ∅.

4.3. New test for P-observability restricted to stealthy attackers 53

Since in all cases it is possible to say that P−1(AαiP (w1) ∩AαjP (w2)) ∩ L(G) 6= ∅, this proves
the lemma.

Lemma 2 can be interpreted as follows. If (q1, q2) ∈ Π2
A obtained by the execution of Alg.

1, then it is possible to say that there exists a common string w that can be the result of the
attack over strings w1 and w2 by two attackers. Note that the attackers can actually be the
same. In other words, once w is observed, it is not possible to know which string among w,w1

and w2 really happened.

The next lemma shows that if two strings can generate a common observation because of
the action of the attackers, then the states reached by these strings form a pair in the relation
Π2
A.

Lemma 3. Consider the strings w1, w2 ∈ L(G) such that δ(q0, w1) = q1 and δ(q0, w2) = q2. If
P−1(AαiP (w1) ∩ AαjP (w2)) ∩ L(G) 6= ∅, then (q1, q2) ∈ Π2

A, where Π2
A is the relation obtained

by the execution of Alg. 1. �

Proof of Lemma 3. Let w be a string such that w ∈ P−1(AαiP (w1) ∩ AαjP (w2)) ∩ L(G) and
q ∈ Q be a state such that δ(q0, w) = q. Also, w ∈ P−1(AαiP (w1) ∩ AαjP (w2)) ∩ L(G) =

P−1(AαiP (w1)) ∩ P−1(AαjP (w2)) ∩ L(G) and w ∈ P−1(AαiP (w1)) and w ∈ P−1(AαjP (w2)).
Since w is an attacked version of w1, it is also true that w1 is an attacked version of w, i.e.,
w1 ∈ P−1(AαiP (w)). The same is true regarding w and w2, i.e., w2 ∈ P−1(AαjP (w)).

Since w and w1 can both be written as w = w′u and w1 = w′1v, respectively, with
u, v ∈ (Σo \ αi)∗ and PΣ→Σo\α(u) = PΣ→Σo\α(v) being the longest common indistinguish-
able suffix (and note that the longest common indistinguishable suffix u and v may be
equal to ε if the strings do not share a common suffix), then, it is now possible to write
w′ ∈ P−1(AαiP (w′1)) and w′1 ∈ P−1(AαiP (w′)). Consider a string s such that w′ ∈ s(αi ∪Σuo)

∗

and w′1 ∈ s(αi ∪ Σuo)
∗. Then, it is possible to say that w′ ∈ s(αi ∪ Σuo)

∗ ⊆ P−1(AαiP (s)) or
w′1 ∈ s(αi ∪ Σuo)

∗ ⊆ P−1(AαiP (s)). Using Def. 5, it is possible to write that (qs, q
′) ∈ Παi

and (qs, q
′
1) ∈ Παi , where δ(q0, w

′) = q′, δ(q0, w
′
1) = q′1 and δ(q0, s) = qs. The next step in Alg.

1 is to obtain the relation “Π(Παi). According to Def. 6, the pairs (q′, q′1) and (q′1, q
′) will be

added to “Π(Παi) if qs 6= q′ and qs 6= q′1. Otherwise the pairs (qs, q
′) and (qs, q

′
1) are already

in Παi (and consequently, in “ΠA(Παi)). Note that if qs ∈ QDS, then q′ and q′1 are also in
QDS, since they are connected by vulnerable and unobservable events. At line 3, the relation
Π′αi = Π→(“Π(Παi)) is obtained. If qs 6= q′ and qs 6= q′1, then the pairs (q, q1) and (q1, q) are
added to the relation Π′αi . Otherwise, the pairs (q, q) and (q, q1) are added to the relation Π′αi
(the pair (q, q) is already in “Π(Παi)).

54
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

Applying the same reasoning of the last paragraph to strings w and w2, it is possible to
conclude that either the pairs (q, q2) and (q2, q) or (q, q) and (q, q2) belong to Π′αj , obtained at
line 3 of Alg. 1.

In line 4 of Alg. 1, all the relations Π′α are merged into the relation ΠA. At line 5, the relations
Π◦A and “Π′(ΠA) are obtained. Next, a contradiction is employed to show that there is a state
x ∈ X in the observer of G such that q1, q2 ∈ x.

Assume that q1 ∈ x1, q2 ∈ x2 and x1 6= x2. Since (q, q1) and (q, q2) are in ΠA, it means
that q ∈ x1 and q ∈ x2. To be possible for q1 and q2 to be at different states in the observer, it
means that there is a non-vulnerable event that distinguish them. However, if that is the case,
then either (q, q1) or (q, q2) will not be in ΠA, which is a contradiction. Thus, it is possible to
conclude that x1 = x2.

If q 6= q1 and q 6= q2, then the pairs (q1, q2) and (q2, q1) will be added to Π2
A by “Π′(ΠA).

However, if q = q1 or q = q2, then the pairs (q1, q2) and (q2, q1) will be added to Π2
A by Π◦A.

Thus, it is possible to conclude (q1, q2) ∈ Π2
A.

Lemma 3 can be interpreted as follows. If two attackers can act over strings w1 and w2

producing a common observation w, then this fact is captured by the inclusion of the pair
(q1, q2) in the relation Π2

A.

The requirement of P-observability for an attack set is only relevant when dealing with
strings w,w′ ∈ K that can generate the same observation after the attack and such that there
exists an event σ ∈ Σ such that wσ ∈ K and w′σ ∈ L(G) \K or w′σ ∈ K and wσ ∈ L(G) \K.
When wσ ∈ L(G) \K or w′σ ∈ L(G) \K, it means that event σ should be disabled after w or
w′, respectively. In the same way, when wσ ∈ K or w′σ ∈ K, it means that event σ should be
enabled after w or w′, respectively. Let ξ : Q→ 2Σ be a map defined as

ξ(q) := {σ ∈ Σ|(∃w ∈ L(G))[δ(q0, w) = q ∧ wσ ∈ K]} (4.19)

that gives, for a state q ∈ Q, the set of enabled events at state q. Also, let the map φ : Q→ 2Σ

defined as

φ(q) := {σ ∈ Σ|(∃w ∈ L(G))[δ(q0, w) = q ∧ wσ ∈ L(G) \K]} (4.20)

be the map that gives, for a given state q ∈ Q, the set of disabled events at state q. Inspired by
(Su and Wonham, 2004), where the authors present a binary relation of pairs of states that are
consistent with respect to their control action and to their marking, the following definition is
introduced.

4.3. New test for P-observability restricted to stealthy attackers 55

Definition 10 (Relation of control inconsistent states). The binary relation I ⊆ Q×Q defined
by

I := {(q1, q2) ∈ Q×Q|ξ(q1) ∩ φ(q2) 6= ∅ ∨ ξ(q2) ∩ φ(q1) 6= ∅} (4.21)

is the relation of control inconsistent states. ♦

In words, according to Definition 10, a pair of states is in the relation of control
inconsistent states I if the control action at these two states are conflicting. It is important
to notice that the relation I is not transitive but is symmetric. For testing P-observability for
an attack set, it is not necessary to consider all pairs of strings w,w′ ∈ K, but only the pairs
such that their control action is conflicting. In other words, only the states that are control
inconsistent need to be considered. Next, Proposition 1 shows the relationship between the
relations I and actK⊆L.

Proposition 1. Let G = (Q,Σ, δ, q0) be an automaton, K be a desired language and I be the
relation of control inconsistent states obtained according to Def. 10. Then, a pair (q1, q2) is in
I only and only if (w1, w2) 6∈ actK⊆L, where w1 and w2 are strings such that δ(q0, w1) = q1 and
δ(q0, w2) = q2. �

Proof of Proposition 1. (⇒) The proof will be conducted by contradiction. Suppose
(q1, q2) ∈ I and (w1, w2) ∈ actK⊆L. According to Def. 10, if (q1, q2) ∈ I, then ∃σ ∈ Σ such
that σ ∈ ξ(q1) ∩ φ(q2) or σ ∈ ξ(q2) ∩ φ(q1). According to (4.19), (4.20) and (3.5), σ is an event
such that (w1, w2) 6∈ actK⊆L, which is contradiction.

(⇐) Suppose (w1, w2) ∈ actK⊆L and (q1, q2) ∈ I. If (w1, w2) ∈ actK⊆L, then 6 ∃σ ∈ Σ such that
w1σ ∈ K and w2σ ∈ L(G) \K or w2σ ∈ K and w1σ ∈ L(G) \K. In this case, ξ(q1)∩φ(q2) = ∅
and ξ(q2) ∩ φ(q1) = ∅. Thus, (q1, q2) 6∈ I, resulting in a contradiction.

In other words, since the relations I and actK⊆L have opposite meanings, when a pair
(q1, q2) ∈ I, then their corresponding strings are not in actK⊆L or vice-versa.

Next, the main result of this chapter is presented, a new test for P-observability for an
attack set.

Theorem 3. Let G be a deterministic finite automaton that represents the behavior of a system,
K the desired language, with K ⊆ L(G). The set Σuo ⊆ Σ is the set of unobservable events,
Σv ⊆ Σ is the set of vulnerable events (Σuo ∩ Σv = ∅) and A = {Aα1 , Aα2 , . . . , AαM} is the
attack set, with αi ⊆ Σv, i = 1, . . . ,M . Let Π2

A be the relation of indistinguishable states
obtained after the execution of Alg. 1 and let I be the relation of control inconsistent states
of the automaton that implements K. The language K will be P-observable for L(G) and A if
and only if Π2

A ∩ I = ∅. �

56
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

Theorem 3 states that a given desired language K is P-observable for an attack set A
via a stealthy attack if and only if there are no pairs of states common to the relations Π2

A

and I. One can apply Theorem 3 to verify if a language K is P-observable for an attack set
A of stealthy attacker by checking if (q, q′) 6∈ Π2

A holds for every pair (q, q′) in the relation of
control inconsistent states I.

Proof of Theorem 3. (⇒) The proof is conducted by contradiction. Suppose K is P-observable
and Π2

A ∩ I 6= ∅. Let q1, q2 ∈ Q be states such that (q1, q2) ∈ Π2
A ∩ I and w1, w2 ∈ L(G)

be strings such that δ(q0, w1) = q1 and δ(q0, w2) = q2. If (q1, q2) ∈ I, then ∃σ ∈ Σ such
that w1σ ∈ K and w2σ ∈ L(G) \ K or w1σ ∈ L(G) \ K and w2σ ∈ K. This means that
(w1, w2) 6∈ actK⊂L(G).

If (q1, q2) ∈ Π2
A, then according to Lemma 2, P−1(AαiP (w1) ∩ AαiP (w2)) 6= ∅, which in

turn means that (w1, w2) ∈ RAαi ,Aαj
. Hence, (w1, w2) ∈ RAαi ,Aαj

but (w1, w2) 6∈ actK⊂L, which
contradicts the definition of P-observability for an attack set.

(⇐) Again, by contradiction, suppose that K is not P-observable and Π2
A∩I = ∅. If K is not P-

observable, it means that ∃w1, w2 ∈ Σ∗ and ∃Aαi , Aαj ∈ A such that AαiP (w1)∩AαjP (w2) 6= ∅
((w1, w2) ∈ RAαi ,Aαj

) and also ∃σ ∈ Σ such that w1σ ∈ K and w2σ ∈ L(G) \ K or
w1σ ∈ L(G) \K and w2σ ∈ K ((w1, w2) 6∈ actK⊂L(G)).

Let w1 and w2 be strings such that δ(q0, w1) = q1, δ(q0, w2) = q2. By Proposition 1,
(q1, q2) ∈ I. Furthermore, as (w1, w2) ∈ RAαi ,Aαj

, then AαiP (w1) ∩ AαjP (w2) 6= ∅ and
P−1(AαiP (w1) ∩ AαjP (w2)) 6= ∅, for some Aαi , Aαj ∈ A. Let w be a string such that
w ∈ P−1(AαiP (w1) ∩ AαjP (w2)) ∩ L(G) and q ∈ Q be a state such that δ(q0, w) = q. Then,
according to Lemma 3, it is possible to say that (q1, q2) ∈ Π2

A and Π2
A ∩ I 6= ∅, which is a

contradiction.

All the presented cases allow one to conclude that Π2
A ∩ I = ∅, contradicting the initial hy-

pothesis. Therefore, it is possible to say that K is P-observable if and only if Π2
A ∩ I = ∅.

The next example uses Theorem 3 to test if a given language is P-observable for an attack
set.

Example 12. Consider Examples 5 to 11. For each example, the relation of control inconsistent
states In, with n being the example number, is given below.

4.3. New test for P-observability restricted to stealthy attackers 57

I5 ={(1, 4), (1, 7), (4, 1), (7, 1)}

I6 ={(2, 5), (5, 2)}

I7 ={(1, 5), (5, 1)}

I8 ={(6, 7), (7, 6)}

I9 ={(4, 6), (6, 4)}

I10 ={(3, 5), (5, 3)}

I11 ={(3, 6), (6, 3)}

The relations Π2
A obtained for each example, are summarized next.

Example 5 : Π2
A ={(1, 2), (1, 3), (1, 4), (1, 5), (1, 7), (2, 1), (2, 3), (2, 4), (2, 5), (2, 7), (3, 1), (3, 2),

(3, 4), (3, 5), (3, 7), (4, 1), (4, 2), (4, 3), (4, 5), (4, 7), (5, 3), (5, 4), (5, 1), (5, 2),

(5, 7), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5)} ∪ {(q, q)|0 ≤ q ≤ 8}.

Example 6 : Π2
A ={(0, 4), (1, 2), (1, 5), (2, 1), (2, 5), (4, 0), (5, 1), (5, 2)} ∪ {(q, q)|0 ≤ q ≤ 5}.

Example 7 : Π2
A ={(0, 3), (0, 4), (3, 0), (3, 4), (4, 3), (4, 0)} ∪ {(q, q)|0 ≤ q ≤ 5}.

Example 8 : Π2
A ={(1, 2), (2, 1), (3, 4), (4, 3), (5, 6), (5, 7), (6, 5), (7, 5)} ∪ {(q, q)|0 ≤ q ≤ 8}.

Example 9 : Π2
A ={(1, 2), (1, 5), (2, 1), (2, 5), (3, 4), (3, 6), (4, 3), (4, 6), (5, 1), (5, 2), (6, 3), (6, 4)}∪

{(q, q)|0 ≤ q ≤ 6}.

Example 10 : Π2
A ={(1, 2), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 2), (3, 4), (3, 5), (4, 2), (4, 3), (4, 5),

(5, 1), (5, 2), (5, 3), (5, 4)} ∪ {(q, q)|0 ≤ q ≤ 6}.

Example 11 : Π2
A ={(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 2), (3, 5), (4, 2), (4, 3), (4, 5),

(5, 2), (5, 3)} ∪ {(q, q)|0 ≤ q ≤ 7}

Then, according to Theorem 3, it is possible to have the following conclusions:

58
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

Example 5− Π2
A ∩ I5 6= ∅ :The language K is not P-observable for the attack set A.

Example 6− Π2
A ∩ I6 6= ∅ :The language K is not P-observable for the attack set A.

Example 7− Π2
A ∩ I7 = ∅ :The language K is P-observable for the attack set A.

Example 8− Π2
A ∩ I8 = ∅ :The language K is P-observable for the attack set A.

Example 9− Π2
A ∩ I9 6= ∅ :The language K is not P-observable for the attack set A.

Example 10− Π2
A ∩ I10 6= ∅ :The language K is not P-observable for the attack set A.

Example 11− Π2
A ∩ I11 6= ∅ :The language K is not P-observable for the attack set A.

�

In the next sections the algorithms developed to perform the P-observability test are
presented, as well as their time complexity analysis.

4.4 Algorithms

The first algorithm is Algorithm 2, that obtains the relation of indistinguishable states
Πα with respect to attacker Aα. The algorithm receives an automaton H = (QH ,Σ, δH , qH0),
such that L(H) = K, and the set α of events that attacker Aα ∈ A can manipulate.

In Alg. 2, Ξ represents a FIFO queue and the call to the function at line 5 sets the
attribute of the states, which is the number of outgoing transitions from each state. This
attribute is represented by q.out, for q ∈ QH .

The operation at line 1 applies the map defined in (4.1) over all transitions in δ, as follows:

R¬(Σ\α)(δ
H) := {(q, σ, q′) ∈ ∆H |σ ∈ α}. (4.22)

In words, the operation R¬(Σ\α)(δ) removes from δ all the transitions labeled with
non-vulnerable events, i.e., events in Σ \ α, resulting in δα. The idea behind Alg. 2 is to first
obtain a modified automaton H ′ = (Q,Σ, δα, q0) and for each state q ∈ Q, a breadth-first
search (BFS) is performed. Once state q′ ∈ Q is reached from q, the pair (q, q′) is added to
Πα. The set π keeps track of all states already visited in a particular BFS, guaranteeing that
each state is visited only once.

The next algorithm finds the pairs of states that can be reached through identical contin-
uations from states that are already indistinguishable.

4.4. Algorithms 59

Algorithm 2: Indistinguishable states Πα with respect to attacker Aα
Input: H = (QH ,Σ, δH , qH0), α
Result: Πα

1 δα ← R¬(Σ\α)(δ
H)

2 Ξ← ∅ // Queue
3 π ← ∅
4 Π← ∅
5 Initialize_State_Attributes()
6 foreach q ∈ QH do
7 Ξ.Enqueue(q)
8 while Ξ 6= ∅ do
9 qc ← Ξ.Dequeue()

10 if (q, qc) 6∈ Π then
11 Π← Π ∪ {(q, qc)}
12 if qc 6∈ π then
13 π ← π ∪ {qc}
14 if qc.out > 0 then
15 foreach (qc, σ, q

′) ∈ ∆α do
16 if q′ 6∈ π then
17 Ξ.Enqueue(q′)

18 π ← ∅
19 return Πα

Algorithm 3: Identical continuations
Input: H = (QH ,Σ, δH , qH0),Π
Result: Π→(Π)

1 Π→(Π)← Π
2 ΣM ← {σ ∈ Σ|(∃(q, σ, q1), (q′, σ, q2) ∈ ∆)(σ ∈ (Σo \ Σv))[q 6= q′ ∧ q1 6= q2]}
3 π ← ∅
4 while |π| 6= |Π→(Π)| do
5 Π→(Π)← Π→(Π) ∪ π
6 π ← Π→(Π)
7 foreach σ ∈ ΣM do
8 foreach (q, q′) ∈ Π→(Π) do
9 if δ(q, σ)! ∧ δ(q′, σ)! then

10 π ← π ∪ {(δ(q, σ), δ(q′, σ))}
11 return Π→(Π)

60
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

Algorithm 3 receives as input the automaton H and the relation of indistinguishable
states. Then, line 1 calculates the set ΣM , which has all events such that they appear in
more than one transition in H and those transitions have different origins and destinations.
The next part of the algorithm is a while loop, which is executed as long as new pairs of
indistinguishable states can be created. At each iteration of the while loop, for each event
in σ ∈ ΣM and for each pair in the relation (q, q′) ∈ Πα, the algorithm checks if δ(q, σ) and
δ(q′, σ) are both defined, and if so, the pair (δ(q, σ), δ(q′, σ)) is added to π.

Algorithm 4 is used to check if a given desired language is P-observable for an attack set.
It receives an automaton H such that L(H) = K, the relation of pairs of control inconsistent
states I and the attack set A. It returns True if K is P-observable or False, otherwise.
Initially, the relations of indistinguishable states Πα, for all Aα ∈ A are obtained and added
to ΠA. Secondly, the relation of indistinguishable states after pairwise combined attacks Π2

A

is determined. Finally, for each pair (q1, q2) ∈ I, the inclusion of (q1, q2) in Π2
α is checked. If

at some point the inclusion holds, then the algorithm finishes by returning False, since the
language K is not P-observable. Otherwise, the algorithm returns True.

Algorithm 4: P-observability test
Input: H = (QH ,Σ, δH , qH0), I,A
Result: {True, False}

1 Π2
A ← Indistinguishable_States(H,A)

2 foreach (q1, q2) ∈ I do
3 if (q1, q2) ∈ Π2

A then
4 return false
5 return true

In Alg. 4 it is assumed that the relation of control inconsistent states is already provided.
The relation of indistinguishable states Π2

A is obtained by the execution of Alg. 1. Algorithm
5 shows how I can be obtained. The algorithm receives two automata G = (QG,Σ, δG, qG0)

and H = (QH ,Σ, δH , qH0), representing the plant and the desired language, respectively. It is
assumed that QH ⊆ QG. To obtain ξ(q), for q ∈ QH , all events σ ∈ Σ such that (q, σ, q′) ∈ ∆H ,
for some q′ ∈ QH , are taken. On the other hand, φ(q), for q ∈ QH , is obtained by picking all
σ ∈ Σ such that (q, σ, q′) ∈ ∆G and (q, σ, q′) 6∈ ∆H , for some q′ ∈ QG. Then, for all pairs of
states q, q′ ∈ QH , it is verified if φ(q) ∩ ξ(q′) 6= ∅ or φ(q′) ∩ ξ(q) 6= ∅.

Next, the complexity of the algorithms is discussed.

4.5. Time complexity 61

Algorithm 5: Inconsistent states
Input: G = (QG,Σ, δG, qG0), H = (QH ,Σ, δH , qH0)
Result: I

1 I ← ∅
2 foreach q ∈ QH do
3 foreach q′ ∈ QH \ {q} do
4 if φ(q) ∩ ξ(q′) 6= ∅ ∨ φ(q′) ∩ ξ(q) 6= ∅ then
5 I ← I ∪ {(q, q′)}
6 return I

4.5 Time complexity

In this subsection the time complexity of the presented algorithms is discussed. The sets
QH and QG are referred to as Q and the transition functions δH and δG as δ (the corresponding
transitions set as ∆). At line 1 of Alg. 2, in order to select only the transitions labeled with
events in α, all transitions have to be checked, resulting in the time complexity O(|∆|). Line 5
also has complexity O(|∆|), since in order to find the number of outgoing transitions from a
given state, all transitions have to be considered. The foreach loop of lines 6-25 is executed
once for each state q ∈ Q. At each iteration, a BFS is performed, considering state q as
the source state. Then, all transitions in ∆α are checked once, resulting in a complexity of
O(|Q||∆|). It is important to notice that a given state is never visited twice during the BFS.
Thus, the overall complexity of Alg. 2 is O(|Q||∆|).

Algorithm 3 starts by obtaining the set ΣM . In order to build this set, all transitions
have to be compared to each other, which leads to time complexity of O(|∆|2). The maximum
number of executions of the while loop of lines 4-10 is O(|Q|2), while the foreach loops of
lines 7-10 and 8-10 execute at most |Σ| and |Q|2 times, respectively. Thus, the overall time
complexity of Alg. 3 is O(|∆|2 + |Q|2|Σ||Q|2) = O(|Σ||Q|4).

Now it is possible to find the time complexity of Alg 1. The foreach loop of lines
1-3 is executed once for each attacker in A. The complexity of finding the relation of
indistinguishable states Πα is O(|Q||∆|). To implement the operation “Π(Πα), each relation Πα

can be represented as a |Q| × |Q| matrix. Then, all elements of the matrix representing Πα

need to be visited once, in the worst case. Thus, obtaining “Π(Πα) has a worst case complexity
of O(|Q|2). Then, to find their identical continuations, the time complexity is O(|Σ||Q|4).
Consequently, the complexity of this foreach loop is O(|A|(|Q||∆| + |Q|2 + |Σ||Q|4)). The
union operation at line 4, can be implemented as an adapted sum of matrices. This means
that all elements of the matrices need to be visited once, resulting in a complexity of O(|Q|2)

for each union operation. In order to find the set QMP at line 5, the observer automaton need
to be obtained, which has exponential complexity on the number of the states.

62
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

In line 6, the composition of the relations can be done with complexity of O(|Q|3),
as a matrix multiplication. Hence, the algorithm has a overall time complexity of
O(|A|(|Q||∆|+ |Q|2 + |Σ||Q|4 + |Q|2) + |Q|2 + 2|Q|) = O(2|Q|).

The P-observability for an attack set test, performed by Alg. 4, has as the worst case
scenario, all states being control inconsistent with all other states. This means that I can
have up to |Q|2 pairs and, consequently, the foreach loop of lines 2-4 will be executed at
most |Q|2 times. At line 3, the verification of the inclusion of (q1, q2) in Π2

A can be done in
constant time. This means that the foreach loop of lines 2-4 has a worst case complexity
of O(|Q|2). Finally, the overall complexity of Alg. 4 is O(|A|(|Σ||Q|4)+|Q|2) = O(|A|(|Σ||Q|4)).

For Alg. 5, the foreach loop of lines 2-8 executes |Q| times while the foreach

loop of lines 3-7 executes |Q| − 1 times. To find the set of enabled events all transitions
in ∆H have to be analyzed, while to find the set of disabled events, for each transition
in ∆, it is verified if the same transition is not in ∆H . The intersection operation has
a cost of O(|Σ|), since the set of enabled and disabled events have at most |Σ| elements.
Thus, the overall complexity of this algorithm is O(|Q|2(|∆|+|Σ|+|∆|2)) = O(|Q|2(|Σ|+|∆|2)).

In the next section, the P-observability test is applied to a problem extracted from the
literature.

4.6 Case study

Computer networks have many vulnerabilities in hardware or software and, although
taking advantage of a single vulnerability normally doesn’t cause significant damage, a
malicious user can exploit a sequence of vulnerabilities before achieving a particular goal, e.g.,
getting root privilege into a server. Such attacks are called multi-step attacks Akinyemi et al.
(2018).

Multi-step attacks can be described as attack graphs, that show the possible sequences of
malicious actions that an attacker can follow to invade the network and gain certain privileges.
Such graphs can be obtained by employing vulnerability scanner software Fadlallah et al.
(2016). Figure 4.11 is an example of an attack graph, taken from Matthews et al. (2020).
It has three node types. Diamonds represent a state that an attacker can be in, such as a
certain level of privilege with respect to a host. Ellipses represent actions such as exploiting
a vulnerability or connecting to a host, while rectangles represent conditions that have to be
true so that the action can be executed. Node 0 represents the initial state, where an attacker
located outside the network hasn’t taken advantage of any vulnerability yet, while node 1

4.6. Case study 63

represents that the attacker has gained root privileges in a database server. For a detailed
description of each node’s meaning, the reader is referred to Matthews et al. (2020).

Figure 4.11: Attack graph. From Matthews et al. (2020).

The attack graph of Fig. 4.11 was converted into the automaton shown in Fig. 4.12.
Each diamond node in the attack graph has generated a state in the automaton and each
ellipsis was converted to a transition in the automaton. The rectangle nodes were not included
in the automaton and it is assumed that the conditions needed for an action to happen are
always met. The numbers from Fig. 4.11 were kept in order to provide easier correspondence
between both figures. All events in Fig. 4.12 are uncontrollable.

0 14 11 8 6 3 1
σ15 σ12 σ9 σ7 σ4 σ2

σ22

σ23

σ21

Figure 4.12: Automaton representing the attack graph of Fig. 4.11.

In order to prevent an attacker from accessing the database, a security module that
monitors the network can be installed. This security module can control the connection to the
database server, by granting or denying an user’s access to it. These actions are represented
by controllable events µ and λ, respectively, as shown by the automaton G of Fig. 4.13. The
security module is equipped with security logs that allow the events representing the use of
the vulnerabilities to be observed.

While the system is at state 0, which represents a secure state, denial of access must
be avoided, since it can forbid legal users from accessing the database. In contrast, if the
system is at state 1, at which a malicious user has root privileges in the database server, the
access to the database must be forbidden. These situations are represented by states A and B,
respectively. The control of the security module can be implemented by means of a supervisor.
The desired language K is generated by the automaton shown in Fig. 4.14, where only the

64
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

0 14 11 8 6 3 1

A B

σ15 σ12 σ9 σ7 σ4 σ2

σ22

σ23

σ21µ

λ µ

λ

Figure 4.13: Modified automaton representing the computer network.

uncolored states from Fig. 4.13 are kept. The dashed arrows coming out of states 0 and 1 and
their labels represent disabled events.

Different malicious agents can hack into the security logs and add or erase the occurrence
of the σ events. According to Theorem 1, it is possible to design a supervisor that enforces
the language K if and only if K is controllable with respect to G and P-observable for a given
attack set A.

The first step is to find the relation of control inconsistent states I, using Alg. 5.
The result obtained is I = {(0, 1), (1, 0)}. This can be seen at Fig. 4.14, where event µ
is enabled at state 0 while it is disabled at state 1. No other state has disabled events,
making it impossible to find other pairs of control inconsistent states. Consider the attack
set A1 = {A∅, A{σ15,σ12,σ22}, A{σ22,σ7}, A{σ23,σ4,σ2}}. Then, as in Example 4, the proposed visual
interpretation was applied over the automaton. By inspecting Fig. 4.14, one can conclude
that the language K is not P-observable for the attack set A1, since attacker A{σ22,σ7} can
make states 0 and 6 indistinguishable, while attacker A{σ23,σ4,σ2} can make states 6 and 1
indistinguishable, and consequently, turning 0 and 1 indistinguishable if the two attackers
cooperate with each other. Another possibility is the one in which attacker A{σ15,σ12,σ22}
makes states 0 and 11 indistinguishable, while attacker A{σ23,σ4,σ2} makes states 11 and 1
indistinguishable. As expected, if one furnished the automaton of Fig. 4.14 and attack set
A1 to Alg. 4, it returns False. The fact that the desired language K is not P-observable
for attack set A1 means that a supervisor that enforces K cannot be designed, according to
Theorem 1.

One question that may arise is how to determine the attack set for which to test P-
observability. It could depend on the experience of the person responsible for the network’s
security management, for example. If such knowledge is not available, one can apply the P-
observability test proposed, not for a single attack set, but for different scenarios. Using this
idea, the P-observability test was applied for all attack sets of the type Ak = {Aαk}, for all
αk ⊆ 2Σv , with Σv = {σ15, σ12, σ9, σ7, σ4, σ2, σ23, σ22, σ21}. After performing the tests, it was
noticed that whenever αk ⊇ Φi, for i = 1, . . . , 4 and

4.6. Case study 65

0 14 11 8 6 3 1σ15 σ12 σ9 σ7 σ4 σ2

σ22

σ23

σ21
µ

λ µ

λ

Figure 4.14: Automaton representing the desired language K. The dashed transitions represent
disabled events. Dotted (red), dashed (blue) and dotted-dashed (green) borders represent
attackers A{σ15,σ12,σ22}, A{σ22,σ7} and A{σ23,σ4,σ2}, respectively.

Φ1 = {σ22, σ7, σ4, σ2};

Φ2 = {σ15, σ12, σ23, σ2};

Φ3 = {σ15, σ12, σ9, σ7, σ4, σ2};

Φ4 = {σ22, σ7, σ21, σ12, σ23, σ2},

the language K was not P-observable for the attack set Ak. Each set Φi is composed of events
belonging to a direct path between states 0 and 1. In other words, any path between states 0
and 1 is composed by events from one of the sets Φi. This means that if an attacker is able to
act on all events that belong to a direct path between two control inconsistent states, then the
language K is not P-observable. The tests were performed considering only one attacker per
attack set but different combinations of attack sets can be built from each αk. For instance,
considering αk = Φ1 = {σ22, σ7, σ4, σ2}, the following attack sets can be considered:

A2 = {A{σ22,σ7,σ4,σ2}};

A3 = {A{σ22,σ7}, A{σ4,σ2}};

A4 = {A{σ22,σ4}, A{σ7,σ2}}.

In Fig. 4.15, the single attacker in the attack set A2 can act on all the events in Φ1. It
is easy to see that the attacker can make states 0 and 1 indistinguishable, thus making the
language K not P-observable.

In Fig. 4.16, there are two attackers in the attack set A3. Attacker A{σ22,σ7} is able
to make states 0 and 6 indistinguishable, while attacker A{σ4,σ2} can make states 6 and
1 indistinguishable. Thus, if one allows the two attackers to cooperate, which is only a
hypothesis, they can make states 0 and 1 indistinguishable and it is possible to conclude that

66
Chapter 4. New test for P-observability for an attack set restricted to

stealthy attackers

0 14 11 8 6 3 1σ15 σ12 σ9 σ7 σ4 σ2

σ22

σ23

σ21µ

λ µ

λ

Figure 4.15: Attack set A2 = {A{σ22,σ7,σ4,σ2}}. The dotted (red) borders represent attacker
A{σ22,σ7,σ4,σ2} .

the language K is not P-observable for the attack set A3. In this case, the problem appears
once a string y such that δ(q0, y) = 6 is observed, e.g., y = σ22σ7. As state 6 is simultaneously
indistinguishable with states 0 and 1, upon observing y, a supervisor cannot decide which
control action to take.

0 14 11 8 6 3 1σ15 σ12 σ9 σ7 σ4 σ2

σ22

σ23

σ21µ

λ µ

λ

Figure 4.16: Attack set A3 = {A{σ22,σ7}, A{σ4,σ2}}. The dotted (red) and dashed (blue) borders
represent attacker A{σ22,σ7} and A{σ4,σ2}, respectively.

Finally, Fig. 4.17 shows the effect of the attack set A4 over the automaton that
implements the language K. For this attack set, K is P-observable, since if y = σ22 is observed,
for instance, one can only conclude that the system is at states 0, 8 or 6. States 3 and 1 are
excluded from this estimate because in order to make state 0 indistinguishable with them,
the two attackers would need to actually cooperate with each other, e.g., by erasing events
σ7 and σ4, which is not allowed. This can be seen at Fig. 4.17 where it is only possible to
reach state 1 starting from state 0 by inserting vulnerable events that alternately can be
manipulated by different attackers, e.g., there are 3 changes of attackers between states 0 and 1.

From another perspective, if Alg. 1 is applied, one obtains

Π′{σ22,σ4} ={(0, 0), (0, 8), (1, 1), (3, 3), (3, 6)(6, 3), (6, 6), (8, 0), (8, 8), (11, 11), (14, 14)},

Π′{σ7,σ2} ={(0, 0), (1, 1), (1, 3), (3, 1), (3, 3), (6, 6), (6, 8), (8, 6), (8, 8), (11, 11), (14, 14)},

4.6. Case study 67

0 14 11 8 6 3 1σ15 σ12 σ9 σ7 σ4 σ2

σ22

σ23

σ21µ

λ µ

λ

Figure 4.17: Attack set A4 = {A{σ22,σ4}, A{σ7,σ2}}. The dotted and dashed borders represent
attacker A{σ22,σ4} and A{σ7,σ2}, respectively.

ΠA4 ={(0, 0), (0, 8), (1, 1), (1, 3), (3, 1), (3, 3), (3, 6), (6, 3), (6, 6), (6, 8), (8, 0), (8, 6), (8, 8), (11, 11),

(14, 14)}.

The set QMP is empty. Lastly the relation of indistinguishable states is obtained.

Π2
A4

={(0, 0), (0, 6), (0, 8), (1, 1), (1, 3), (1, 6), (3, 1), (3, 3), (3, 6), (3, 8), (6, 0), (6, 1), (6, 3), (6, 6),

(6, 8), (8, 0), (8, 3), (8, 6), (8, 8), (11, 11), (14, 14)}.

As expected, Π2
A4

does not have the pair (0, 1) or (1, 0), confirming formally the conclusion
that K is P-observable for the attack set A4.

Thus, the way in which the events in Φi are distributed among the attackers in an attack
set also has influence in the P-observability of the language K. Furthermore, by inspecting the
sets Φi, it was noticed that event σ2 is a common element among them. By making sure that
σ2 is not vulnerable, then the language K will be P-observable for any attack set, where the
new set of vulnerable events is Σ′v = Σv \ {σ2}. Strategies to transform a vulnerable event in a
non-vulnerable one depend on the context and can include the addition of redundant sensors
or the employment of sensors that rely on more secure protocols for communication.

Chapter 5

Persistent attacks in Discrete-Event
Systems

In this chapter a new model of deception attacks at the supervisory control layer of a
control system is introduced and the problem of synthesis of successful persistent deception
attacks is presented. Although this thesis does not propose a method for defending against
attacks, understanding how attackers are designed will aid in developing defense strategies.

5.1 Problem formulation

The problem tackled in this chapter consists of the design of a persistent attacker, which
is an attacker that infects a control system and wants to remain undetected. It will not
necessarily act whenever it can, but it will eventually tamper with the communication between
devices, in order to accomplish its goal. Since the attacker is persistent, as a consequence,
it is also stealthy, or otherwise, its presence will be revealed. In this sense, an attacker is
considered to be stealthy if: (i) the behavior of the system under attack from the point of
view of the IDS (Intrusion Detection System) cannot be distinguished from the behavior
with no attack and; (ii) the behavior of the system under attack from the point of view
of a human operator will be similar to the behavior of the system with no attack. To be
similar means that machines in the system should not start or stop operating for no apparent
reason and the machines should not be prevented from starting work when they are supposed to.

5.1.1 System setup

Before presenting the attack model, the setup of the system under consideration is
presented, which will have impact on the mathematical description of the attacker.

69

70 Chapter 5. Persistent attacks in Discrete-Event Systems

Figure 5.1: System with IDS. The red circles represent the possible attack locations.

Consider a system composed by multiple subsystems, which are coordinated by a
centralized controller, as shown in Fig. 5.1. The subsystems and controller are connected to
a bus network, through which they exchange information. Because of the network’s topology,
whenever a message is sent by one of the devices connected to it, all other devices will receive
the message. Each device has the ability to check if the message was addressed to itself and
process the information in the positive case. Otherwise, the message is ignored.

In this work the ideas of Balemi et al. (1993); Dietrich et al. (2002); Vieira et al. (2017),
among others, are adopted. The controller has the role of generating commands to be sent
to the subsystems while the subsystems generate responses that are sent to the controller. A
command can be associated with a controllable event, while a response is associated with an
uncontrollable event. As a consequence, any subsystem will ignore any uncontrollable event
received while the controller ignores any controllable event that it might receive.

The monolithic supervisor or the local modular supervisors are encoded inside the
controller, that coordinates the subsystems by deciding which controllable events should be
triggered. This decision takes into account the control action of the supervisors and an event
priority rule. The details about how the controller is implemented are out of the scope of this
chapter, since only the controller’s behavior as seen by the network is of interest. Such details
will be presented in the next chapter.

The IDS is a special device that monitors the network, verifying if the events that are
being exchanged respect the legal behavior of the system. If it detects an abnormal behavior,
it triggers an alarm for a human operator. It is assumed that the IDS is immune to attacks.

An attack can happen in location 1 or 2, represented by the red circles in Fig. 5.1. In
this work, only attacks at location 1 will be considered. Furthermore, it is assumed that only

5.1. Problem formulation 71

Figure 5.2: Possible actions of the attacker

one of the subsystems is under attack.

5.1.2 Actions of the attacker

Once an attacker has infiltrated one of the subsystems, the possible actions that the
attacker can perform are shown in Fig. 5.2, where

• a: the attacker has not interfered in the communication;

• b: the attacker inserted an event in the network;

• c: the attacker inserted an event in the device observation;

• d: the attacker erased an event that came from the network;

• e: the attacker erased an event that was sent by the device.

Consider that the attacker has infiltrated subsystem Gi and let Σi denote the alphabet
of events related to it. The actions of the attacker can be represented by the following sets of
events:

• Σi: (action a of Fig. 5.2) events that are not tampered with by the attacker;

• Σ+N
i := {σ+N |σ ∈ Σi}: (action b of Fig. 5.2) events that are inserted in the network. The

attacker is able to insert any event in Σi. In this case, all devices in the network, except
the one that is infected by the attacker, can see the event;

• Σ−Ni,uc := {σ−N |σ ∈ Σi ∩ Σuc}: (action e of Fig. 5.2) events that are erased, preventing
them to get to the network. Note that the attacker can only erase uncontrollable events
in Σi since these are the only events generated by the subsystem. In this case, only the
device that is infected by the attacker can see the event;

• Σ+G
i,c := {σ+G|σ ∈ Σi ∩ Σc}: (action c of Fig. 5.2) events that are inserted in the device’s

observation. Note that the attacker can only insert controllable events in Σi since these
are the only events expected to be received by the subsystem. Other events will be ignored
by it. In this case, only the infected plant sees the inserted event;

72 Chapter 5. Persistent attacks in Discrete-Event Systems

• Σ−Gi,c := {σ−G|σ ∈ Σi∩Σc}: (action d of Fig. 5.2) events that are erased from the device’s
observation. Note that the attacker can only erase controllable events in Σi since these
are the only events expected to be received by the subsystem. The event has traveled
through the network and was seen by all other devices, except the plant under attack.

The set of all events, the ones that are legitimate and the ones that represent the actions of
the attacker, is represented by

Σai := Σi ∪ Σ+N
i ∪ Σ−Ni,uc ∪ Σ+G

i,c ∪ Σ−Gi,c

and is called the attacked alphabet. Note that an element σ−N ∈ Σ−Ni,uc or σ−G ∈ Σ−Gi,c represent
that the legitimate event σ has occurred and it was erased by the attacker. In the remainder
of the text, strings defined in Σai are denoted by w or v while strings defined in Σi are denoted
by s, including superscripts and subscripts.

Independently of which subsystem is under attack, there are two different points of view:
the one from the infected device and the one from all other devices in the network, including
the supervisor, that share the same observation. To obtain only the events from the attacked
alphabet that are seen by the plant, the map, called the plant projection, PG : Σai → (Σi∪{ε})
can be applied:

PG(σa) :=

σ if σa ∈ Σai \ (Σ+N ∪ Σ−Gi,c)

ε if σa ∈ (Σ+N ∪ Σ−Gi,c).
(5.1)

In a similar manner, to obtain only the events from the attacked alphabet that are seen
from the network’s point of view, the network projection PN : Σai → (Σi∪{ε}) can be applied:

PN(σa) :=

σ if σa ∈ Σai \ (Σ−Ni,uc ∪ Σ+G
i,c)

ε if σa ∈ (Σ−Ni,uc ∪ Σ+G
i,c).

(5.2)

Now, the plant and network projection are extended so they can be applied over strings.
To obtain the observation of string w, from the infected device’s point of view, one can apply
the plant projection PG : Σ∗ai → Σ∗i , defined as follows:

PG(ε) := ε (5.3)

PG(wσa) :=

P
G(w)σ if σa ∈ Σai \ (Σ+N ∪ Σ−Gi,c)

PG(w) if σa ∈ (Σ+N ∪ Σ−Gi,c).
(5.4)

That is, events in Σ+N and Σ−Gi,c cannot be seen by the infected device. To obtain the
observation as it is seen by all other devices in the network, the network projection, PN : Σ∗ai →

5.1. Problem formulation 73

Σ∗i , defined as:

PN(ε) := ε (5.5)

PN(wσa) :=

P
N(w)σ if σa ∈ Σai \ (Σ−Ni,uc ∪ Σ+G

i,c)

PN(w) if σa ∈ (Σ−Ni,uc ∪ Σ+G
i,c),

(5.6)

can be applied. If a string w ∈ Σ∗ai represents the sequence of actions of the attacker, then a
string s = PG(w) is the sequence of events observed by the plant under attack while s′ = PN(w)

is the sequence of events observed by the network.

5.1.3 Attack model

An attacker A is an agent that implements an attack function fA, which in turn, is
described by 1) the subsystem Gi under attack and; 2) a set of rules that gives the available
options of actions that the attacker can take according to the evolution of Gi. More details on
the attack function will be given later. An attacker that has infected the network interface of
a given subsystem is able to:

• Erase a controllable event from the subsystem’s observation or not tamper with it when
such event is sent by the controller;

• Erase an uncontrollable event from the network’s observation or not tamper with it when
such event is generated by the subsystem under attack and;

• Insert any event into the network’s observation or insert controllable events into the
subsystem’s observation or do nothing, when no legitimate event is generated by the
system.

An attacker that is able to act on all events is an attacker that is able to perform
multiple types of attacks including the ones that cause the system to block and the ones that
can even produce physical damage in the machines, depending on the physical system. Such
attacks can achieve the attacker’s goal with the cost of being exposed to a human operator,
that will likely perform a scan of the system in order to find the attacker. In contrast, in this
work, the interest is in the types of attacks that allow the attacker to remain hidden even
after achieving a successful attack, so that it can keep attacking without being revealed. Such
attackers are called persistent attackers. A persistent attacker is considered to be successful
if an attacker A is able to cause the production of off-specification products or to introduce
small delays in the process, while the discrete behavior of the controlled system under attack
is indistinguishable from the behavior of the controlled system with no attack, as seen by the
IDS. In this work, it is assumed that the attacker knows the plants and supervisors, as well as
the physical process. Let A be an attacker acting over a subsystem Gi, which is represented by

74 Chapter 5. Persistent attacks in Discrete-Event Systems

A/Gi. The attacker modifies the original behavior L(Gi) to a behavior of Gi under attack of
A, denoted by L(A/Gi). The concept of a persistent attacker is formalized in the next definition.

Definition 11 (Persistent attacker). An attacker A acting over a subsystem Gi with associated
attack function fA is called a persistent attacker if PN(L(A/Gi)) ⊆ L(Gi). ♦

According to Def. 11, an attacker is persistent if for every string w ∈ L(A/Gi),
then PN(w) ∈ L(Gi), which means that the behavior of the subsystem under attack is indis-
tinguishable from the behavior with no attack, when observed from the network’s point of view.

Furthermore, it is desirable to also minimize the possibility of a human operator detecting
an abnormal behavior of the system, which can reveal the attacker’s presence. For this reason,
the attacker won’t insert or remove controllable events in the device’s observation. Tampering
with controllable events will certainly cause an explicit abnormal behavior of the system,
drawing the undesirable attention of a human operator.

Under the presumption that controllable events are not going to be attacked, tampering
with uncontrollable events may also cause the controller to not respect specifications. This
situation is shown through the next example.

Example 13. Consider the system shown in Fig. 5.3. It represents two machines, M1 and M2,
which are connected through an unity buffer. The models of machines M1 and M2 are shown in
Figs. 5.4(a) and 5.4(b), respectively. For this problem, Σc = {a1, a2} and Σuc = {b1, b2}. The
automaton of Fig. 5.4(c) models the specification, which has the goal of avoiding underflow and
overflow in the buffer.

M1 B1 M2

a1 b1 a2 b2

Figure 5.3: Simplified small factory with unity buffer.

1 2

a1

b1

(a) M1

1 2

a2

b2

(b) M2

1 2

b1

a2

(c) E1

Figure 5.4: Models and specification of the simplified small factory problem.

Now suppose that machine M1 is under attack. Consider the sequence of the attacker’s
actions shown in the first column of Table 5.1. At each line a new event has happened and
the second and third columns show the observation of the controller and of the machine M1,

5.1. Problem formulation 75

respectively. The last column shows the current states of M1, M2 and E1, respectively, for each
new event. Note that after the occurrence of event a1 the attacker inserts event b1, (action
represented by b+N

1) into the network. This causes the controller to trigger event a2 before the
occurrence of the legitimate event b1. Thus, the specification is violated, resulting in underflow
in the buffer. This can also be seen by analyzing the last column, in which the state of machine
M2 goes from 1 to 2 before the state of machine M1 goes back to 1, characterizing the underflow
in the buffer. Depending on the physical system, this situation can cause some damage in the
machines since the second machine will start operating with no product.

Table 5.1: Sequence of strings that cause underflow in the buffer.

w PN(w) PM1(w) qM1 , qM2 , qE
ε ε ε 1, 1, 1
a1 a1 a1 2, 1, 1
a1b

+N
1 a1b1 a1 2, 1, 2

a1b
+N
1 a2 a1b1a2 a1 2, 2, 1

a1b
+N
1 a2b

−N
1 a1b1a2 a1b1 1, 2, 1

a1b
+N
1 a2b

−N
1 b2 a1b1a2b2 a1b1 1, 1, 1

�

The situation described in Example 13 will likely draw the attention of a human operator.
To avoid this problem, the attacker is not allowed to insert an uncontrollable event in the
network’s observation if this event causes a state change in the supervisor while the state in
the plant has not changed. However, as will be seen later, attacks on events which cause state
changes can result in a persistent attack under certain circumstances.

First, three types of attack functions are introduced, which take into account the restric-
tions over attacks on controllable and uncontrollable events and provide a set of rules that will
allow one to obtain persistent attackers, as will be seen later. For some attack functions, it
is important for the attacker to keep track of whether its last action with respect to a given
event was an insertion or a deletion. In particular, if an event σ causes a state change, then the
attacker can only insert σ+N if the last action regarding this event was its erasure, represented
by σ−N . To allow the attacker to check which was the last action, the map M : Σi → Σ∗ai is
defined as follows:

M(σ) := σ−N(σ+Nσ−N)∗ (5.7)

The map defined in (5.7) receives an event σ ∈ Σi and returns a language composed
only of strings that finish with event σ−N ∈ Σ−Ni,uc interleaved with events σ+N ∈ Σ+N

i,uc.
Now, if w ∈ Σ∗ai represents a string of past actions of the attacker and one wants to know
if the last action of the attacker with regard to an event σ was an insertion or deletion,
the first step is to take a string w and keep from it only events σ−N and σ+N . This is
done by obtaining PΣai→{σ−N ,σ+N}(w). Finally, if PΣai→{σ−N ,σ+N}(w) ∈ M(σ), it means that

76 Chapter 5. Persistent attacks in Discrete-Event Systems

the last action of the attacker regarding event σ was a deletion. On the other hand, if
PΣai→{σ−N ,σ+N}(w) 6∈M(σ), then the last action of the attacker with respect to event σ was an
insertion or the attacker has not acted over event σ yet. The map R1

Gi
: Q→ Σ1

i is also defined
as R1

Gi
(q) = {s ∈ Σ1

i |δi(q, s)!}, which gives all the strings s of length 1 that can be executed
from the state q in Gi.

Now it is possible to characterize three attack functions that can be used by a persistent
attacker, according to the next definition.

Definition 12 (Attack functions). Consider a subsystem Gi = (Q,Σi, δi, q0, Qm), a string
w ∈ Σ∗ai representing the past actions of the attacker that leads Gi to state q = δi(q0, P

G(w))

and that allows any device in the network to make a state estimate q̃ = δi(q0, P
N(w)) and a

string s ∈ R1
Gi

(q). The following three functions fA : Σ∗ai × (Σ1
i ∪ {ε}) → (2Σ1

ai \ ∅) ∪ {ε} are
called attack functions:

1. Passive mode, denoted by fPA :
fPA (w, s) = {s} (5.8)

2. Delay mode, denoted by fDA :

fDA (w, s) =

{σ} if s = σ ∈ Σ1

i ,c;

{σ−N} if s = σ ∈ Σ1
i ,uc;

{ε, λ+N} if s = ε.

(5.9)

∀λ+N ∈ (Σ+N
i,uc)

1, such that (5.10) and (5.11) always hold:

λ ∈ Γ(q̃) (5.10)

δi(q̃, P
N(λ+N)) = q̃ ∨ [δi(q̃, P

N(λ+N)) 6= q̃ ∧ PΣai→{λ+N ,λ−N}(w) ∈M(λ)]. (5.11)

3. Forward mode, denoted by fFA :

fFA (w, s) =

{σ} if s = σ ∈ Σ1
i ;

{ε, λ+N} if s = ε.
(5.12)

∀λ+N ∈ (Σ+N
i,uc)

1, such that
δi(q, P

N(λ+N)) = q. (5.13)

♦

5.1. Problem formulation 77

Definition 12 introduces three attack functions. In the first one, called passive mode and
defined by (5.8), the attacker does not interfere with the events and it is used when the at-
tacker only wants to observe the occurrence of events in the subsystem, without changing them.

In the second one, defined by (5.9) and called delay mode, the attacker introduces delays
in the execution of the subsystem by having the ability to erase from the network’s observation
any uncontrollable event σ that is generated by Gi. Also, the attacker is able to insert any
event λ+N ∈ (Σ+N

i,uc)
1 if λ+N meets the conditions in (5.10) and (5.11). The condition expressed

by (5.10) states that λ has to be feasible at state q̃. Note that q̃ is not necessarily equal to
the actual current state q of Gi. In fact, q and q̃ are different if the attacker has erased an
event that causes a state change in Gi. Thus, if a device in the network thinks that Gi is at
state q̃, then the attacker can only insert events that are feasible at that state or otherwise
the attacker is revealed. Condition (5.11) refines even more the condition expressed by (5.10).
Event λ can be inserted in the network in two cases. The first one occurs when λ appears as a
self-loop at state q̃. The second one handles the case where λ is not in self-loop. In this case,
the attacker can only insert λ into the network if the last action taken regarding event λ was
its erasure, which can be tested by verifying that PΣai→{λ+N ,λ−N}(w) belongs to M(λ).

Finally, the third attack function, which is called forward mode and is defined by (5.12),
allows the attacker to anticipate the occurrence of events by inserting them into the network.
The restriction, expressed by (5.13), is that the attacker can only anticipate events that are in
self-loops in Gi at state q.

Remark 4. A string w ∈ Σ∗ai cannot be executed directly in Gi, since the alphabets Σai and
Σi are different. Thus, to obtain the effect of w over Gi, one has to first translate w into a
string that can be executed in Gi. This is done by applying the plant projection over w. Hence,
q = δi(q0, P

G(w)) is the current state of Gi. In contrast, q̃ = δi(q0, P
N(w)) gives the current

state estimate that any device in the network can do about Gi after having observed PN(w). �

Next, an example that shows an application of the attack functions is presented.

Example 14. Consider the subsystem Gi, shown in Fig. 5.5, where Σi,c = {a} and
Σi,uc = {b, c, d}. Tables 5.2 to 5.4 show the possible actions of the attacker for each attack
function, considering some possible different strings w.

Table 5.2 illustrates the passive mode acting over Gi. One can observe that, independently
of w, the output of the attack function is exactly the second argument it receives (which is a
string representing what just happened in Gi), which means that the attacker is only observing
the execution of the system.

78 Chapter 5. Persistent attacks in Discrete-Event Systems

1 2

a

c

d b

Figure 5.5: Automaton Gi of Example 14.

Table 5.2: Passive mode over Gi of Fig. 5.5.

w q q̃ s fPA (w, s)

ε
1 1 ε {ε}
1 1 d {d}
1 1 a {a}

d
1 1 ε {ε}
1 1 d {d}
1 1 a {a}

da
2 2 ε {ε}
2 2 b {b}
2 2 c {c}

dac
1 1 ε {ε}
1 1 d {d}
1 1 a {a}

Under the action of the delay mode, illustrated in Table 5.3, whenever an uncontrollable
event happens in Gi, the only option for the attacker is to erase it. Starting from the initial
state of Gi, where w = ε, while no event occurs, the attacker is able to do nothing or to insert
event d in the network. If d happens, then the attacker has to erase it. On the other hand, if a
(controllable) is received by Gi, then the attacker cannot interfere with it. Now suppose event
d happened and the attacker chose to erase it, which means that w = d−N . The attacker is still
able to insert d into the network, erase event d if it eventually occurs again or to not interfere
in the case that event a was received by Gi. Note that because event d is in self-loop at state 1,
whenever the state estimate q̃ = 1, the attacker is able to insert d into the network.

Next, consider that w = d−Nd+Na, which means that Gi is at state 2, where events b
and c are feasible. Because b is in self-loop at that state, the attacker can always insert it to
the network. Notice that this is not the case for event c, which causes a state change. At this
point, the only action the attacker can take with respect to event c is to erase it if it occurs.

For w = d−Nd+Nab−Nc−N , which represents that events b and c happened and were
erased by the attacker, the possible actions are to insert those events into the network or do
nothing, while nothing happens in Gi. Although the state estimate is q̃ = 2, the actual state q
of Gi is 1, where event d can happen. If this is the case, the attacker has to erase event d, or
otherwise its presence is revealed.

5.1. Problem formulation 79

Furthermore, while q̃ = 2, the attacker can insert event b in the network multiple times.
This is the case when w = d−Nd+Nab−Nc−Nb+N , where the attacker can insert events c and b
at any time. However, after inserting c, which causes the state estimate to be updated to q̃ = 1,
the attacker can no longer insert event b into the network. Also, notice that event c can only
be inserted once after it is erased, since it is an event that causes a state change in Gi.

Table 5.3: Delay mode over Gi of Fig. 5.5.

w q q̃ s fDA (w, s)

ε
1 1 ε {ε, d+N}
1 1 d {d−N}
1 1 a {a}

d−N
1 1 ε {ε, d+N}
1 1 d {d−N}
1 1 a {a}

d−Nd+N 1 1 ε {ε, d+N}
1 1 a {a}

d−Nd+Na
2 2 ε {ε, b+N}
2 2 b {b−N}
2 2 c {c−N}

d−Nd+Nab−N
2 2 ε {ε, b+N}
2 2 b {b−N}
2 2 c {c−N}

d−Nd+Nab−Nc−N
1 2 ε {ε, b+N , c+N}
1 2 d {d−N}

d−Nd+Nab−Nc−Nb+N 1 2 ε {ε, b+N , c+N}
1 2 d {d−N}

d−Nd+Nab−Nc−Nb+Nc+N

1 1 ε {ε, d+N}
1 1 a {a}
1 1 d {d−N}

Finally, Table 5.4 illustrates the actions of the attacker when it is operating under the
forward mode. Notice that whenever an event σ is in self-loop at the current state q, the
attacker is able to insert it to the network or do nothing. That is the reason that event d can
be inserted while Gi is at state 1 and event b can be inserted when Gi is at state 2, but the
attacker is never able to insert event c, since this event causes a state change. When event c
is generated by Gi, the attacker cannot interfere with it.

It is important to highlight that among the three attack functions given in Def. 12, only
the delay mode causes the current state q of Gi and its estimate q̃ to be different at some point.
For the other two attack functions, q and q̃ are always equal. �

Next, it is shown how one can obtain the behavior of Gi when it is operating under the

80 Chapter 5. Persistent attacks in Discrete-Event Systems

Table 5.4: Forward mode over Gi of Fig. 5.5.

w q q̃ s fFA (w, s)

ε
1 1 ε {ε, d+N}
1 1 d {d}
1 1 a {a}

d+N

1 1 ε {ε, d+N}
1 1 d {d}
1 1 a {a}

d+Na
2 2 ε {ε, b+N}
2 2 b {b}
2 2 c {c}

d+Nab+N

2 2 ε {ε, b+N}
2 2 b {b}
2 2 c {c}

d+Nab+Nb+Nc
1 1 ε {ε, d+N}
1 1 d {d}
1 1 a {a}

action of attacker A, which is denoted by L(A/Gi).

Definition 13 (Behavior under attack). Given a subsystem Gi = (Q,Σi, δi, q0, Qm) and an
attack function fA : Σ∗ai × (Σ1

i ∪ {ε}) → (2Σ1
ai \ ∅) ∪ {ε}, the behavior of the subsystem Gi

under attack of A with attack function fA, is denoted by L(A/Gi) ⊆ Σ∗ai and can be obtained
as follows:

i. ε ∈ L(A/Gi)

ii. If w ∈ L(A/Gi), s ∈ Σ1
i ∪ {ε} such that PG(w)s ∈ L(Gi) and va ∈ fA(w, s), then

wva ∈ L(A/Gi);

iii. No other strings belong to L(A/Gi).

♦

Definition 13 shows how one can build the behavior under attack L(A/Gi), starting with
ε and by adding new strings that are formed by concatenating a string w ∈ L(A/Gi) with a
new string va ∈ fA(w, s), where s ∈ Σ1

i ∪ {ε} is a single-event string that is feasible at the
current state of Gi or is the empty string ε.

The first result shows that an attacker A that uses any of the attack functions of Def. 12
to guide its actions is a persistent attacker.

Theorem 4. An attacker A associated with an attack function of Def. 12 is a persistent
attacker (Def. 11), that is, PN(L(A/Gi)) ⊆ L(Gi). �

5.1. Problem formulation 81

Proof. To prove Theorem 4, it is necessary to show that PN(L(A/Gi)) ⊆ L(Gi) is true when
attacker A is associated with each of the three attack functions of Def. 12. That is, for every
string w ∈ L(A/Gi), it is necessary to show that PN(w) ∈ L(Gi). This will be done inductively
on the length of w.

Base case: According to Def. 13,

w = ε ∈ L(A/Gi).

As PN(ε) = ε, this allows one to say that

PN(ε) ∈ L(Gi), (5.14)

which is valid for all three attack functions.

Induction step: As the induction hypothesis, assume that for a string w ∈ L(A/Gi),
such that |w| = k, it holds that PN(w) ∈ L(Gi). Also, according to Def. 13ii, a new
string w′ = wva ∈ L(A/Gi), of length k + 1, is obtained by concatenating w with a string
va ∈ fA(w, s), with s ∈ Σ1

i ∪{ε} and PG(w)s ∈ L(Gi). Notice that it is not possible to consider
for the induction step the case where ε ∈ fA(w, s), since that would lead to a string w′ such
that |w′| = |w| = k. However, if ε ∈ fA(w, s), then w′ = w and it holds that PN(w′) ∈ L(Gi),
according to the induction hypothesis.

For the passive mode, defined by (5.8) in Def. 12:

va ∈ fPA (w, s) = {s}

va = s (5.15)

Furthermore, according to (5.8), the string w is only composed by events in Σi, which allows
one to say that

PG(w) = PN(w). (5.16)

Also,

PN(w′) = PN(wva)

= PN(w)PN(va)

= PN(w)PN(s) from (5.15)

= PN(w)s since it is always true that s ∈ Σ1
i ∪ {ε}

= PG(w)s from (5.16). (5.17)

Since PG(w)s ∈ L(Gi), then, from (5.17), one can say that PN(w′) ∈ L(Gi), proving that
PN(L(A/Gi)) ⊆ L(Gi) for the passive mode.

82 Chapter 5. Persistent attacks in Discrete-Event Systems

For the delay mode, recall that PN(w) ∈ L(Gi). Since va ∈ fDA (w, s), with PG(w)s ∈ L(Gi),
as defined in Def. 12, there are three possibilities:

a) fDA (w, s) = {σ}, if s = σ ∈ Σ1
i ,c. Then va = σ, PN(va) = σ and PN(w′) = PN(wva) =

PN(w)σ. Because σ is a controllable event, it is possible to say that PN(w)σ ∈ L(Gi),
since it is assumed that the controller will only trigger an event σ if it is feasible after
PN(w);

b) fDA (w, s) = {σ−N}, if s = σ ∈ Σ1
i,uc. Then va = σ−N , PN(va) = ε and PN(w′) =

PN(wva) = PN(w) ∈ L(Gi);

c) fDA (w, s) = {ε, λ+N}, if s = ε. Since |va| = 1, then va = λ+N and PN(va) = λ. Addition-
ally, according to (5.10), λ ∈ Γ(q̃) and q̃ = δi(q0, P

N(w)), which allows one to say that
PN(w)λ ∈ L(Gi).

For each of the above three cases, it is possible to say that PN(w′) ∈ L(Gi), allowing one to
conclude that PN(L(A/Gi)) ⊆ L(Gi) for the delay mode.

Finally, for the forward mode, defined in Def. 12, there are two possibilities:

a) fFA (w, s) = {σ}, if s = σ ∈ Σ1
i . Then, va = σ, PN(va) = σ and PN(w′) = PN(wva) =

PN(w)σ ∈ L(Gi);

b) fFA (w, s) = {ε, λ+N}, if s = ε. Since |va| = 1, then va = λ+N and PN(va) = λ. Also,
according to (5.13), one can say that δi(q0, P

N(wλ+N)) is defined, which allows one to
say that PN(wλ+N) = PN(w)λ ∈ L(Gi).

Hence, one can conclude that PN(w′) = PN(wwa) ∈ L(Gi) and consequently, PN(L(A/Gi)) ⊆
L(Gi) for the forward mode and, therefore, PN(L(A/Gi)) ⊆ L(Gi) for all attack functions of
Def. 12.

It is important to highlight that Theorem 4 states only that if an attacker is associated
with an attack function of Def. 12, then it is a persistent attacker. The converse does not need
to be true. In fact, a persistent attacker may have an attack function that is a combination of
the attack functions of Def. 12. A systematic method for obtaining all possible combinations
of the attack functions of Def. 12 will be presented later. First, it is shown how an attack
function is obtained from an automaton.

5.1.4 Attack function represented as an automaton

Let GA = (QA,Σai, δA, q0, Qm) be an automaton that represents an attack function fA

acting over Gi = (Q,Σi, δi, q0, Qm), with Q ⊆ QA and q0 and Qm be the same in both automata.
Then fA is an attack function such that ∀w ∈ L(GA), q = δA(q0, w) and ∀s ∈ PG(R1

GA
(q))∪{ε}:

5.1. Problem formulation 83

fA(w, s) =

R1
Gi

(q) ∩ (Σ+N
i,uc)

1 ∪ {ε} if s = ε

R1
Gi

(q) ∩ Σ1
i,uc ∩ (Σ−Ni,uc)

1 if s = σ ∈ Σ1
i,uc

{σ} if s = σ ∈ Σ1
i,c

(5.18)

Equation (5.18) shows how one can extract an attack function fA by considering each
state q ∈ QA and strings s ∈ PG(R1

GA
(q)) and the empty string ε. Notice that the second

argument of the attack function is defined only for strings s ∈ Σ1
i ∪ {ε}. That is the reason

why the plant projection is applied over R1
GA

(q), so only events in Σi are kept. There are three
different cases to consider. Case 1) happens when s = ε and the attacker can do the actions
corresponding to events in Σ+N

i,uc that are feasible at state q under consideration. Additionally,
the attacker can always choose to do nothing when there is no occurrence of events in Gi,
which is represented by ε ∈ fA(w, ε). Case 2) handles the case in which s = σ ∈ Σ1

i,uc and the
attacker can do the actions corresponding to all feasible events at state q that belong to Σi,uc

or Σ−Ni,uc. Finally, in case 3) the controllable events are considered, where the only option for
the attacker is to leave the event untouched.

Next an example showing how to obtain the attack function from an automaton GA is
presented.

Example 15. Consider the automaton GA shown in Fig. 5.6. In order two obtain the attack
function fA represented by GA, one has to consider strings that lead Gi to each of its states.
Starting with w = ε, then q = δA(q0, w) = 1 and R1

GA
(q) = {g}.

Now one has to find fA by considering w and all strings s ∈ PG(R1
GA

(q)) ∪ {ε} = {ε, g},
according to (5.18):

• fA(ε, ε) = {ε}

• fA(ε, g) = {g}

which means that the attacker can only observe the occurrence of events at this state. For state
q = 2, one possible string w is w = g and the set of possible continuations of length 1 at this state
is R1

GA
(q) = {h, h−N}. Thus, one has to obtain fA for every s ∈ PG(R1

GA
(q)) ∪ {ε} = {ε, h}:

• fA(g, ε) = {ε}

• fA(g, h) = {h, h−N}

At state q = 2, when event h happens, the attacker can choose between not interfering with the
event or erasing it. Finally, for state q = 3, one can consider a string w such as w = gh−N . In

84 Chapter 5. Persistent attacks in Discrete-Event Systems

this case, R1
GA

(q) = {h+N} and one has to consider every string s ∈ PG(R1
GA

(q)) ∪ {ε} = {ε}.
Thus:

• fA(gh−N , ε) = {ε, h+N}.

At state q = 3, the attacker can choose between doing nothing or inserting event h into the
network. After the execution of a string w′ = gh or w′′ = gh−Nh+N , the current state q of GA

is again the initial state and the attack function repeats itself as if w = ε.

1 2

3

g

h

h−N

h+N

Figure 5.6: Automaton GA representing an attack function fA - Example 15

�

As can be seen in Example 15, an attack function can have a finite representation when it
is represented as an automaton. Next, it is shown how to obtain the automata corresponding
to the attack functions of Def. 12.

Passive mode: An automaton GP
i that represents the passive mode fPA over subsystem

Gi is obtained by considering that GP
i ' Gi.

Delay mode: An automaton GD
i that represents the delay mode fDA over subsystem Gi

is obtained by applying Algorithm 6. Notice that the convention of representing the transition
function δ as a set ∆ is employed. Any changes in ∆ are automatically reflected in the
transition function δ.

In Alg. 6, every transition in Gi labeled with events in Σi,uc is replaced by at least two
new transitions while the original one is removed. For this to be possible, a new state qσ
is added to QA for every event in σ ∈ Σi,uc (line 2). Two different cases are treated. The
first one (lines 4-8) considers the case where the transition with event σ ∈ Σi,uc causes a
state change. In such a case, the original transition (q, σ, q′) ∈ ∆A is removed (line 5) and
two new transitions are created, (q, σ−N , qσ) and (qσ, σ

+N , q′) (line 6). The algorithm also
checks for the existence of transitions labeled with events λ ∈ Σi,uc originating in state q′

(line 7). If this is the case, then the attacker should be able to also erase event λ at state
qσ, or otherwise, its presence could be revealed. For this reason, a transition (qσ, λ

−N , qσ)

is added (line 8). Note that the transition added is a self-loop. This is because while the

5.1. Problem formulation 85

Algorithm 6: Automaton representation of fDA
Input: Gi = (Q,Σi, δi, q0, Qm)
Result: GD

i = (QA,Σai, δA, q0, Qm)
1 GD

i ← Gi

2 QA ← QA ∪ {qσ},∀σ ∈ Σi,uc

3 foreach (q, σ, q′) ∈ ∆A, with σ ∈ Σi,uc do
4 if q 6= q′ then
5 ∆A ← ∆A \ {(q, σ, q′)}
6 ∆A ← ∆A ∪ {(q, σ−N , qσ), (qσ, σ

+N , q′)}
7 if ∃(q′, λ, q′′) ∈ ∆A, with λ ∈ Σi,uc and q′′ ∈ QA then
8 ∆A ← ∆A ∪ {(qσ, λ−N , qσ)}
9 else

10 ∆A ← ∆A \ {(q, σ, q′)}
11 ∆A ← ∆A ∪ {(q, σ+N , q), (q, σ−N , qσ), (qσ, σ

−N , qσ), (qσ, σ
+N , q)}

12 if ∃(q, λ, q′′) ∈ ∆A, with λ ∈ Σi,uc and q′′ ∈ QA then
13 ∆A ← ∆A ∪ {(qσ, λ−N , qλ), (qλ, σ+N , qλ)}

attacker has not inserted event σ, its only option is to erase event λ if it wants to remain hidden.

The second case (lines 9-13) takes into account the situation where the event σ ∈ Σi,uc

is in self-loop. When this happens, the self-loop is removed (line 10) and four new transitions
are added: (q, σ+N , q), (q, σ−N , qσ), (qσ, σ

−N , qσ) and (qσ, σ
+N , q). These transitions allow the

attacker to erase event σ any number of times and to insert in the network any number of
occurrences of event σ. The decision about each action to take first is up to the attacker. Since
this is the delay mode, it is expected that the attacker erases events before inserting them.
After that, it is checked if there is another transition labeled with an event λ ∈ Σi,uc originating
in state q (line 12). If this is the case, then two new transitions are added: (qσ, λ

−N , qλ) and
(qλ, σ

+N , qλ) (line 13). These last transitions allow the attacker to erase an event λ that is also
feasible at the current state of Gi while σ is not inserted in the network.

Forward mode: An automaton GF
i that represents the forward mode fFA over subsystem

Gi is obtained by applying Algorithm 7.

In Alg. 7, lines 2-4 are executed once for each event in σ ∈ Σi,uc. First, the algorithm
checks if σ is in self-loop in Gi (line 3). If this is the case, then a new self-loop with event σ+N

is added (line 4).

Next it is presented two examples of how to obtain the automata GD
i and GF

i , representing
the delay mode and forward mode, respectively, acting over subsystem Gi.

Example 16. Consider the subsystem Gi shown in Fig. 5.7(a), where Σc = {a} and
Σuc = {b, c, d}. If Algorithm 6 is applied over Gi, the result is the automaton of Fig. 5.7(b).

86 Chapter 5. Persistent attacks in Discrete-Event Systems

Algorithm 7: Automaton representation of fFA
Input: Gi = (Q,Σi, δi, q0, Qm)
Result: GF

i = (QA,Σai, δA, q0, X
m
A)

1 GF
i ← Gi

2 foreach (q, σ, q′) ∈ ∆A, with σ ∈ Σi,uc do
3 if q = q′ then
4 ∆A ← ∆A ∪ {(q, σ+N , q)}

1 2

a

c

d b

(a) Automaton Gi

1 2 qb

qc

qd

a b−N

b+N

c−N

c+N

d−N d+N
b+N b−N

b+N , d−N

d−N

(b) GD
i

Figure 5.7: Automata of Example 16.

It is important to highlight that Gi has transitions labeled with uncontrollable events causing
a state change as well as self-loops. In the delay mode the main goal of the attacker is to
erase uncontrollable events as soon as they happen and then insert false occurrences of them in
the network, which results in a delay. The first step is to set GD

i = Gi. Then all transitions
labeled with events in Σi,uc are removed, which means that the attacker will always erase the
uncontrollable events generated by Gi. The next step is, for every σ ∈ Σi,uc, to create a state
qσ and add it to QA. Then each event σ is treated individually.

For event d, that is in self-loop, transitions are added so that they allow the attacker to erase
multiple occurrences of event d and then insert false occurrences of it in the network. The
number of insertions does not need to match the number of occurrences that were erased,
since the event is in self-loop. The same analysis can be done for event b, that is also
in self-loop at state 2. However, because there is another uncontrollable event that is also
feasible at state 2 of Gi, additional transitions are added. To explain the reasoning behind
the necessity of such extra transitions, imagine the situation where event b occurred and was

5.1. Problem formulation 87

erased and the attacker wants to insert it again into the network before the occurrence of event
c. As event c is uncontrollable, it can occur before the attacker has inserted event b and the
attacker should be able to erase it. That is why a transition from state qb to qc with event
c−N was added in GD

i . But once event c is erased, the attacker should still be able to insert
event b in the network, which justifies the self-loop with b+N at state qc. Note that event
b can be inserted in the network only while event c is not inserted, or else the attacker is revealed.

Regarding event c, since that is an event that causes a state change, the attacker can only erase
and insert it back to the network once for every time the legitimate event c occurs. Moreover,
as long as the attacker has not yet inserted back event c, event d can occur since in this case
Gi is already at state 1. If event d is not erased at this point, the attacker is also revealed,
because as the devices in the network have not observed event c, they think that Gi is still at
state 2, where event d is not feasible. For this reason, a self-loop with event d−N is added at
state qc.

Finally, notice that one does not need to worry about event a, which is controllable, happening
while Gi is at a state where it is not feasible. This is because it is assumed that the controller will
only trigger a controllable event when it is feasible at the controller’s current state estimate. �

The next example shows how to obtain an automaton representing the forward mode.

Example 17. Consider the subsystem Gi shown in Fig. 5.8(a), where Σc = {a} and
Σuc = {b, c, d}. If Algorithm 7 is applied over Gi, the result is the automaton of Fig. 5.8(b).

In this example, the goal of the attacker is to insert false occurrences of events before the real
ones happen in Gi, while remaining undetected. This is only possible for uncontrollable events
that are in self-loop. For the other events, the only option for the attacker is to let them go
untouched when they happen.

1 2

a

c

d b

(a) Automaton Gi

1 2

a

c

d, d+N b, b+N

(b) GF
i

Figure 5.8: Automata of Example 17.

�

As stated by Theorem 4, an attacker that uses one of the attack functions of Def. 12,
is a persistent attacker. However, there are other attack functions that can be employed by

88 Chapter 5. Persistent attacks in Discrete-Event Systems

an attacker and that ensure that it will be a persistent attacker. However, a simple parallel
composition of the automata generated by Alg. 6 and 7 does not generate an attack function
that can be used by a persistent attacker. The next section shows how to obtain a combination
of the attack functions of Def. 12.

5.2 Design method for a persistent attacker

In order to obtain the combination of all three attack functions of Def. 12, two automata
are built, called estimators. The estimators proposed here were inspired by the estimator
proposed by Zhang et al. (2021). The estimators are automata that help the attacker to know
which actions the attacker can take and what is the impact of the actions on the system.
The first one is the plant estimator, which shows what the attacker knows the subsystem
under attack is seeing. The second one, called the network estimator, represents what the
attacker knows about the subsystem under attack as it is seen by the network and the devices
connected to it. Particularly, the network estimator captures the situations that can reveal
the attacker’s presence. Then, these two estimators are combined and after some refinement,
the automaton that represents the combination of the attack functions is obtained. The main
result of this section establishes that the resulting automaton includes the behavior of all three
attack functions of Def 14. The proof of this result relies on the fact that the behavior under
attack is included in the plant and network estimators and is preserved after their combination,
independently of which attack function of Def. 14 is being used by the attacker. Lemmas 4
and 5 show that the behavior under attack is captured by the estimators.

5.2.1 Plant estimator

In this subsection an algorithm for building the plant estimator is provided, which is a
structure that the attacker can use to determine the current state estimate according to the
observation of the subsystem under attack. Events in Σ+N

i,uc will not affect the plant since they
are not seen by it. This is the reason they appear in self-loops in all states of the estimator.
Events in Σ−Ni,uc are only possible when the legitimate event is possible and because they hide
the real occurrence of an event, this action of the attacker makes the estimator reach a new
state, that represents that the system is under attack. The plant estimator is obtained by
applying Alg. 8.

The next examples show how to obtain the plant estimator from Gi by applying Alg. 8.

Example 18. Consider the automaton of Fig. 5.9(a) where Σc = {a, b} and Σuc = {c}. In
order to obtain ΘG

Gi
according to Alg. 8, the first step is to consider ΘG

Gi
= Gi (line 2).

5.2. Design method for a persistent attacker 89

Algorithm 8: Plant estimator ΘG
Gi

Input: Gi = (Q,Σi, δi, q0, Qm)
Result: ΘG

Gi
= (XG,Σai, δG, x0, X

m
G)

1 Σai ← Σi ∪ Σ+N
i,uc ∪ Σ−Ni,uc

2 ΘG
Gi
← Gi

3 foreach σ−N ∈ Σ−Ni,uc do
4 foreach x ∈ XG do
5 if (x, σ, x) ∈ ∆G then
6 XG ← XG ∪ {xσ}
7 ∆G ← ∆G ∪ {(x, σ−N , xσ)}
8 foreach (x, λ, x′′) ∈ ∆G do
9 ∆G ← ∆G ∪ {(xσ, λ, x′′)}

10 else if (x, σ, x′) ∈ ∆G then
11 ∆G ← ∆G ∪ {(x, σ−N , x′)}
12 foreach σ+N ∈ Σ+N

i,uc do
13 foreach x ∈ XG do
14 if (δG(x, σ) = x) ∨ (δG(x, σ)! ∧ x 6∈ Q) ∨ (δG(x, σ) not defined) then
15 ∆G ← ∆G ∪ {(x, σ+N , x)}

Then, the foreach loop of lines 3-11 considers every event σ−N ∈ Σ−Ni,uc. Since the only event in
Σi,uc is event c, then Σ−Ni,uc = {c−N}. The inner foreach loop (lines 4-11) considers each state
x ∈ XG and checks if a transition with the legitimate event σ, which in this case is event c, is
defined. As event c is in self-loop, then lines 5-9 are executed with state x = 2. First, a new
state xc is created and added to XG (line 6), as well as a new transition (x, c−N , xc) (line 7).
The estimator obtained up to this point is shown in Fig. 5.9(b).

Next, the foreach of lines 8 and 9 will add one transition originating in state xc for each
transition that originates at state 2, which is the state that a transition with the legitimate
event c is originally defined. Since state 2 is the origin of three transitions, it means that
three new transitions are going to be added originating in state xc. The new transitions have
the state xc as origin and the same destination as the original ones. After adding the new
transitions, the estimator obtained so far is shown in Fig. 5.9(c).

Finally, in the foreach loop of lines 12-15, self-loops with events in Σ+N
i,uc are added to the

estimator. Note that Σ+N
i,uc = {c+N} since c is the only uncontrollable event in Gi. The self-

loops are added to the states of the estimator if at least one of the three conditions of line 14 is
met. In this example, the second condition is met for state 2 and the last one for states 1 and
xc. The final automaton is shown in Fig. 5.9(d).

�

In the plant estimator, the intent of adding self-loops with events in Σ+N
i,uc is to not restrict

the ability of the attacker to insert events, except in the case where the event is inserted before

90 Chapter 5. Persistent attacks in Discrete-Event Systems

1 2

a

b

c

(a) Automaton Gi

1 2

xc

a

b
c−N

c

(b) Lines 5-7

1 2

xc

a

b
c−Ncb

c

c−N

(c) Lines 8-9

1 2

xc

a

b
c−Ncb

c, c+N

c−N , c+N

c+N

(d) Lines 12-15

Figure 5.9: Automata of Example 18. Construction of ΘG
Gi

by Alg. 8.

the legitimate event that causes a state change is erased. This situation will be represented in
the next example.

Example 19. Consider the automaton of Fig. 5.10(a) where Σc = {g} and Σuc = {h}. In
order to obtain ΘG

Gi
according to Alg. 8, the first step is to consider ΘG

Gi
= Gi (line 2).

Then, since Σi,uc = {h}, the foreach loop of lines 3-11 will be executed with Σ−Ni,uc = {h−N}.
Now, the corresponding legitimate event causes a state change from state 2 to 1, which will be
treated by lines 10 and 11. In this case, only a new transition from state 2 to state 1 labeled
with event h−N will be added to the estimator. The resulting automaton up to this point is
shown in Fig. 5.10(b).

Next the self-loops with events in Σ+N
i,uc = {h+N} are added. In this example, the last condition

of line 14 is met for state 1 and none of the conditions is met for state 2. Thus, the self-loop
with event h+N is added only at state 1. The final estimator is shown in Fig. 5.10(c).

�

In Example 19, because the uncontrollable event h causes a state change, the self-loop
with event h+N was only added to state 1 in order to prevent the attacker from inserting the
event at state 2 before the legitimate one is erased, which would eventually cause the attacker

5.2. Design method for a persistent attacker 91

1 2

g

h

(a) Automaton Gi

1 2

g

h, h−N

(b) Lines 3-11

1 2

g

h, h−N

h+N

(c) Lines 12-15

Figure 5.10: Automata of Example 19. Construction of ΘG
Gi

by Alg. 8.

to be revealed. The next result, Lemma 4, shows that the behavior under attack is captured
by the plant estimator.

Lemma 4. Let Gi be a subsystem and let ΘG
Gi

be the plant estimator obtained by Alg. 8. Also,
consider that an attacker A is acting over Gi with one of the attack functions defined in Def.
12. Then, it holds that L(A/Gi) ⊆ L(ΘG

Gi
). �

Proof. To prove that L(A/Gi) ⊆ L(ΘG
Gi

) for the attack functions of Def. 12, one has to
consider every string w ∈ L(A/Gi) and show that w ∈ L(ΘG

Gi
), for each of the three attack

functions. This will be done inductively on the length of w.

Base case: According to Def. 13,

w = ε ∈ L(A/Gi).

It is also true that
ε ∈ L(ΘG

Gi
), (5.19)

which is valid for all three attack functions.

Induction step: As the induction hypothesis, assume that for a string w ∈ L(A/Gi),
such that |w| = k, it holds that w ∈ L(ΘG

Gi
). Also, according to Def. 13ii, a new string

w′ = wva ∈ L(A/Gi), of length k+1, is obtained by concatenating w with a string va ∈ fA(w, s),
with s ∈ Σ1

i ∪{ε} and PG(w)s ∈ L(Gi). Also, consider a state x ∈ XG, such that x = δG(x0, w).

For the passive mode, according to (5.8) in Def 12:

va ∈ fPA (w, s) = {s}

va = s. (5.20)

Thus, w′ = wva = ws ∈ L(A/Gi) and since, according to (5.8), the string w is only composed
of events in Σi, one can say that

PG(w) = w (5.21)

92 Chapter 5. Persistent attacks in Discrete-Event Systems

If PG(w)s ∈ L(Gi), then, from (5.21),

w′ ∈ L(Gi) (5.22)

Because Alg. 8 starts by considering that ΘG
Gi

= Gi (line 2) and no transitions are removed
from ΘG

Gi
, then one can say that

L(Gi) ⊆ L(ΘG
Gi

). (5.23)

From (5.22) and (5.23), one can say that w′ ∈ L(ΘG
Gi

), for the passive mode.

Regarding the delay mode, according to (5.9), va ∈ fDA (w, s), with PG(w)s ∈ L(Gi), there are
three possibilities:

a) fDA (w, s) = {σ}, if s = σ ∈ Σ1
i ,c. Thus va = σ and since PG(w)s ∈ L(Gi), then

w′ = wσ ∈ L(ΘG
Gi

), because Alg. 8 starts by considering that ΘG
Gi

= Gi and no transitions
are removed from ΘG

Gi
;

b) fDA (w, s) = {σ−N}, if s = σ ∈ Σ1
i,uc. Then va = σ−N and Alg. 8 adds a transition

with event σ−N whenever σ ∈ Γ(δG(x0, w)) (lines 3-11). Thus it is possible to say that
w′ = wσ−N ∈ L(ΘG

Gi
).

c) fDA (w, s) = {ε, λ+N}, if s = ε. Since |va| = 1, then va = λ+N and λ is an event
such that (5.10) and (5.11) (of Def. 12) are met. In (5.10), λ is an event such that
λ ∈ Γ(δi(q0, P

N(w))), which means that λ is feasible at the current state estimate. Ad-
ditionally, λ needs to be in self-loop at the current state estimate or, if it is not, then
a previous occurrence must have been erased, conditions expressed by (5.11). In lines
12-15, Alg. 8 adds a transition with event λ+N at state x if λ is in self-loop at state x,
or if a transition with event λ is defined from a state that is reached after the erasure
of λ or if no transition with event λ is defined at state x. Thus one can say that if
w′ = wva = wλ+N ∈ L(A/Gi), then wva ∈ L(ΘG

Gi
).

Hence, it is possible to conclude that L(A/Gi) ⊆ L(ΘG
Gi

) for the delay mode.

Finally, for the forward mode, according to (5.12), va ∈ fFA (w, s), with PG(w)s ∈ L(Gi), there
are two possibilities:

a) fFA (w, s) = {σ}, if s = σ ∈ Σ1
i . Hence va = σ and since PG(w)s ∈ L(Gi), then w′ =

wσ ∈ L(ΘG
Gi

), because Alg. 8 starts by considering that ΘG
Gi

= Gi and no transitions are
removed from ΘG

Gi
;

b) fFA (w, s) = {ε, λ+N}, if s = ε. Since |va| = 1, then va = λ+N and λ is an event such that
q = δi(q, P

N(λ+N)), a condition expressed by (5.13). Because Alg. 8 adds a transition

5.2. Design method for a persistent attacker 93

with event λ+N at state x whenever λ is in self-loop at state x (lines 12-15), it is possible
to say that w′ = wva ∈ L(ΘG

Gi
).

Hence, one can conclude that L(A/Gi) ⊆ L(ΘG
Gi

) for the forward mode. Consequently, it is
possible to say that L(A/Gi) ⊆ L(ΘG

Gi
) for any of the attack functions of Def. 12.

5.2.2 Network Estimator

The network estimator shows what the attacker knows about the plant if it is seen from
the point of view of a device in the network (except the one that is infected). Events in
Σ−Ni,uc will not affect this estimator since the legitimate event was erased by the attacker and
therefore was not seen by the network. Events in Σ+N

i,uc will potentially cause transitions in the
supervisor and because of that, the attacker needs to keep track of this information. This is
done by making the estimator reach a new state if the legitimate event is in self-loop. If it
is not in self-loop, then an additional transition will represent this information. Moreover, if
the attacker inserts an event that is not supposed to happen at a given state, it will make the
estimator reach a new state xE. This state represents that the presence of the attacker was
exposed. Note that it is assumed that the supervisor will never trigger a controllable event if
it is not feasible at the current supervisor’s state estimate. The network estimator is obtained
by applying Alg. 9.

Next, two examples are presented, showing how to obtain the network estimator, by
applying Alg.9.

Example 20. Consider the automaton Gi of Fig. 5.11(a) where Σc = {a, b} and Σuc = {c}.
In order to obtain the network estimator ΘN

Gi
, one has to apply Alg. 9. The first step is to

consider ΘN
Gi

= Gi (line 2).

Then, the foreach loop of lines 3-11 considers every event σ+N ∈ Σ+N
i,uc. Since the only event

in Σi,uc is event c, then Σ+N
i,uc = {c}. The inner foreach loop (lines 4-11) considers each state

x ∈ XN and checks if a transition with the legitimate event σ, which in this case is event c, is
defined. As event c is in self-loop, then lines 5-9 are executed with state x = 2. First, a new
state xc is created (line 6), as well as a new transition (x, c+N , xc) (line 7). The estimator
obtained up to this point is shown in Fig. 5.11(b).

Next, the foreach of lines 8 and 9 will add one transition originating in state xc for each
transition that originated from state 2, which is the state that a transition with the legitimate
event c is originally defined. Since state 2 is the origin of three transitions, it means that three
new transitions are going to be added originating from state xc. The new transitions have

94 Chapter 5. Persistent attacks in Discrete-Event Systems

Algorithm 9: Network estimator ΘN

Input: G = (Q,Σi, δi, x0, Xm)
Result: ΘN

Gi
= (XN ,Σai, δN , x0, X

m
N)

1 Σai ← Σi ∪ Σ+N
i,uc ∪ Σ−Ni,uc

2 ΘN
Gi
← Gi

3 foreach σ+N ∈ Σ+N
i,uc do

4 foreach x ∈ XN do
5 if (x, σ, x) ∈ δN then
6 XN ← XN ∪ {xσ}
7 ∆N ← ∆N ∪ {(x, σ+N , xσ)}
8 foreach (x, λ, x′′) ∈ ∆N do
9 ∆N ← ∆N ∪ {(xσ, λ, x′′)}

10 else if (x, σ, x′) ∈ δN then
11 ∆N ← ∆N(x, σ+N , x′)}
12 XN ← XN ∪ {xE}
13 foreach x ∈ XN do
14 foreach σ ∈ Σi,uc do
15 if δN(x, σ) is not defined then
16 ∆N ← ∆N ∪ {(x, σ, xE)}
17 ∆N ← ∆N ∪ {(x, σ+N , xE)}
18 foreach σ−N ∈ Σ−Ni,uc do
19 foreach x ∈ XN do
20 ∆N ← ∆N ∪ {(x, σ−N , x)}

the state xc as origin and the same destination as the original ones. After adding the new
transitions, the estimator obtained so far is shown in Fig. 5.11(c).

Then, the algorithm adds a new state xE to XN (line 12) and proceeds to add new transitions
connecting this new state in the foreach loop of lines 13-17. Thus, for each state x ∈ XG

and each event σ ∈ Σi,uc, it checks if δN(x, σ) is defined. If the transition is not defined,
then two new transitions are added (lines 16 and 17): (x, σ, xE) and (x, σ+N , xE). Note that
state xE is reached when an uncontrollable event that was not originally defined in a given
state x happens. Also notice that self-loops with events c and c+N are also added to state xE,
since event c is not originally defined in it. The estimator obtained so far is shown in Fig.5.11(d)

Finally, in the foreach loop of lines 18-20, self-loops with events in Σ−Ni,uc are added to the
estimator. Note that Σ+N

i,uc = {c−N} since c is the only uncontrollable event in Gi. The final
automaton is shown in Fig. 5.9(d).

�

In contrast to Example 20, the next example shows how to build the network estimator
of an automaton Gi that has a transition labeled with an uncontrollable that causes a state
change.

5.2. Design method for a persistent attacker 95

1 2

a

b

c

(a) Automaton Gi

1 2

xc

a

b
c+N

c

(b) Lines 5-9

1 2

xc

a

b
c+Ncb

c

c+N

(c) Lines 10-11

1 2

xcxE

a

b
c+Ncbc, c+N

c

c+Nc, c+N

(d) Lines 12-17

1 2

xcxE

a

b
c−Ncbc, c+N

c, c−N

c+N , c−N

c−N

c, c+N , c−N

(e) Lines 18-20

Figure 5.11: Automata of Example 20. Construction of ΘN
Gi

by Alg. 9.

Example 21. Consider the automaton of Fig. 5.12(a) where Σc = {g} and Σuc = {h}. In
order to obtain ΘN

Gi
according to Alg. 9, the first step is to consider ΘN

Gi
= Gi (line 2).

Then, since Σi,uc = {h}, the foreach loop of lines 3-11 will be executed considering
Σ−Ni,uc = {h−N}. Now, the corresponding legitimate event causes a state change from state 2 to
1, which will be treated by lines 10 and 11. In this case, only a new transition from state 2 to
state 1 labeled with event h−N will be added to the estimator. The resulting automaton up to
this point is shown in Fig. 5.12(b).

The next step is to add a new state xE to xN (line 12) and then add the transitions to connect
it to the automaton. This is done in the foreach loop of lines 13-17. The resulting automaton

96 Chapter 5. Persistent attacks in Discrete-Event Systems

is shown in Fig. 5.12(c).

Finally, in the foreach loop of lines 18-20, self-loops with events in Σ−Ni,uc are added to the
estimator. Note that Σ+N

i,uc = {h−N} since h is the only uncontrollable event in Gi. The final
automaton is shown in Fig. 5.12(d).

1 2

g

h

(a) Automaton Gi

1 2

g

h, h−N

(b) Lines 3-11

1 2

xE

g

h, h−N

h, h+N

h, h+N

(c) Lines 12-17

1 2

xE

g

h, h−N

h, h+N

h, h+N , h−N

h−N h−N

(d) Lines 18-20

Figure 5.12: Automata of Example 21. Construction of ΘN
Gi

by Alg. 9.

�

The next lemma shows that the behavior under attack is captured by the network esti-
mator.

Lemma 5. Let Gi be a subsystem and let ΘN
Gi

be the network estimator obtained by Alg.9. Also,
consider that an attacker A is acting over Gi with one of the attack functions defined in Def.
12. Then, it holds that L(A/Gi) ⊆ L(ΘN

Gi
). �

Proof. To prove that L(A/Gi) ⊆ L(ΘN
Gi

) for the attack functions of Def. 12, one has to
consider every string w ∈ L(A/Gi) and show that w ∈ L(ΘN

Gi
), for each of the three attack

functions. This will be done inductively on the length of w.

Base case: According to Def. 13,

w = ε ∈ L(A/Gi).

5.2. Design method for a persistent attacker 97

It is also true that
ε ∈ L(ΘN

Gi
), (5.24)

which is valid for all three attack functions.

Induction step: As the induction hypothesis, assume that for a string w ∈ L(A/Gi),
such that |w| = k, it holds that w ∈ L(ΘN

Gi
). Also, according to Def. 13ii, a new string

w′ = wva ∈ L(A/Gi), of length k+1, is obtained by concatenating w with a string va ∈ fA(w, s),
with s ∈ Σ1

i ∪{ε} and PG(w)s ∈ L(Gi). Also, consider a state x ∈ XG, such that x = δG(x0, w).

For the passive mode, according to (5.8) in Def 12:

va ∈ fPA (w, s) = {s}

va = s. (5.25)

Thus, w′ = ws ∈ L(A/Gi) and since, according to (5.8), the string w is only composed of events
in Σi, it is possible to say that

PG(w) = w (5.26)

If PG(w)s ∈ L(Gi), then from (5.26),

w′ ∈ L(Gi) (5.27)

Because Alg. 9 starts by considering that ΘN
Gi

= Gi (line 2) and no transitions are removed
from ΘN

Gi
, then it is possible to say that

L(Gi) ⊆ L(ΘN
Gi

). (5.28)

From (5.27) and (5.28), one can say that w′ ∈ L(ΘN
Gi

), for the passive mode.

Regarding the delay mode, according to (5.9), va ∈ fDA (w, s), with PG(w)s ∈ L(Gi), there are
three possibilities:

a) fDA (w, s) = {σ}, if s = σ ∈ Σ1
i ,c. Thus va = σ and since PG(w)s ∈ L(Gi), then

w′ = wσ ∈ L(ΘN
Gi

), because Alg. 9 starts by considering that ΘN
Gi

= Gi and no transitions
are removed from ΘN

Gi
;

b) fDA (w, s) = {σ−N}, if s = σ ∈ Σ1
i,uc. Then va = σ−N and Alg. 9 adds a self-loop with

event σ−N in every state of the estimator (lines 18-20). Thus it is possible to say that
w′ = wσ−N ∈ L(ΘN

Gi
).

c) fDA (w, s) = {ε, λ+N}, if s = ε. Since |va| = 1, then va = λ+N and λ is an event such
that (5.10) and (5.11) are met. In (5.10), λ is an event such that λ ∈ Γ(δi(q0, P

N(w))),

98 Chapter 5. Persistent attacks in Discrete-Event Systems

which means that λ is feasible at the current state estimate. Additionally, λ needs to be
in self-loop at the current state estimate or if it is not, then a previous occurrence must
have been erased, conditions expressed by (5.11). In lines 3-11, Alg. 9 adds a transition
with event λ+N at state x if a transition with event λ is defined ΘN

Gi
. Thus it is possible

to say that if w′ = wva = wλ+N ∈ L(A/Gi), then wva ∈ L(ΘN
Gi

).

Hence, one can conclude that L(A/Gi) ⊆ L(ΘN
Gi

) for the delay mode.

Finally, for the forward mode, according to (5.12), va ∈ fFA (w, s), with PG(w)s ∈ L(Gi), there
are two possibilities:

a) fFA (w, s) = {σ}, if s = σ ∈ Σ1
i . Hence va = σ and since PG(w)s ∈ L(Gi), then w′ =

wσ ∈ L(ΘN
Gi

), because Alg. 9 starts by considering that ΘN
Gi

= Gi and no transitions are
removed from ΘN

Gi
;

b) fFA (w, s) = {ε, λ+N}, if s = ε. Since |va| = 1, then va = λ+N and λ is an event such
that q = δi(q, P

N(λ+N)), condition expressed by (5.13). Because Alg. 9 adds a transition
with event λ+N at state x whenever λ is defined at state x (lines 3-11), one can say that
w′ = wva ∈ L(ΘN

Gi
).

Hence, it is possible to conclude that L(A/Gi) ⊆ L(ΘN
Gi

) for the forward mode. Consequently,
one can say that L(A/Gi) ⊆ L(ΘN

Gi
) for any of the attack functions of Def. 12.

The next subsection shows how to use the plant and network estimators to obtain a
combination of the attack functions of Def. 14.

5.2.3 Non-exposing attack structure

The next step is to combine the plant and network estimators in order to obtain all
possible behaviors of the system under attack. This is done by parallel composition and the
resulting automaton is called the attack structure, ΘGi = ΘG

Gi
||ΘN

Gi
. Depending on the actions

of the attacker, states labeled with a pair of the type (_, xE) may be reachable in the attack
structure. These states represent that the attacker is revealed, since the behavior of the system
under attack, as seen by the IDS, is not in the generated language of Gi. Such states are called
exposing states, which are formalized by the next definition.

Definition 14. [Exposing states] A state x = (x1, x2) ∈ XG × XN is an exposing state if
x2 = xE. ♦

The next result shows that if an exposing state is reached in ΘGi by a string w′, then the
same string w′, when seen from the network’s point of view, is not in L(Gi).

5.2. Design method for a persistent attacker 99

Lemma 6. Let Gi be a subsystem and ΘGi = ΘG
Gi
||ΘN

Gi
= (X,Σai, δA, x0, XM) its corresponding

attack structure. Consider a string w ∈ L(ΘGi) such that PN(w) ∈ L(Gi). If w′ = wva ∈
L(ΘGi), with va ∈ Σ1

ai, is a string such that δA(x0, w
′) = (_, xE), then PN(w′) 6∈ L(Gi). �

Proof. If w′ = wva ∈ L(ΘGi) = L(ΘG
Gi
||ΘN

Gi
), then it means that wva ∈ L(ΘG

Gi
)∩L(ΘN

Gi
), since

the estimators share the same alphabet. Because the exposing state is only defined in the
network estimator, then in order to analyze the case when δA(x0, w

′) = (_, xE), it suffices to
consider only the case when δN(x0, w

′) = xE.

Applying the network projection over wva, one has

PN(w′) = PN(wva) = PN(w)PN(va) =

 PN(w) if va ∈ (Σ−Ni,uc)
1 (5.29)

PN(w)v if va ∈ (Σi ∪ Σ+N
i,uc)

1 (5.30)

From (5.29), an exposing state is never reached, since in the construction of the network
estimator in Alg. 9, lines 13-17, an exposing state is reached with events in Σi or in Σ+N .

On the other hand, from (5.30) and from the lemma statement, it is true that
δA(x0, wv

a) = (_, xE). According to lines 13-17 of Alg. 9, the condition to add a tran-
sition with label va ∈ (Σi ∪ Σ+N

i,uc)
1 to the exposing state xE is that in the partially-built

network estimator, δN(x, v) is not defined, with x = δN(x0, w) and v ∈ Σ1
i,uc, which in turn,

means that δi(q0, P
N(wv)) is not defined as well, since the algorithm starts by considering that

ΘN
Gi

= Gi (line 2) and no transitions are removed from ΘN
Gi
.

If δi(q0, P
N(wv)) is not defined, then it is possible to say that PN(w′) = PN(wva) = PN(w)v =

PN(wv) 6∈ L(Gi). In other words, if w′ ∈ L(A/Gi) and δGN(x0, w
′) = (_, xE), then PN(w′) 6∈

L(Gi).

To avoid the problem of reaching exposing states, one can remove these states from the
attack structure, as well as the associated transitions. Removing a transition in the attack
structure means that the attacker is choosing to not execute a given action or, in other words,
it means that a given action is being disabled. From the attacker’s point of view, events in
Σ+N
i,uc, Σ−Ni,uc and Σi,uc are controllable, since the attacker chooses when to execute the associated

actions. Note that an event in Σi,uc also represents an action of the attacker, corresponding
to the option of not tampering with the occurred event. The other option of the attacker is
to erase the event from the network’s observation, represented by the corresponding event in
Σ−Ni,uc. On the other hand, events in Σi,c are uncontrollable from the attacker’s point of view.

Thus, the problem of avoiding exposing states can be thought as the problem of finding a
non-exposing sublanguage in a way that exposing states are never reached. Alg. 10 summarizes
this procedure. It starts by obtaining the parallel composition of the plant and network

100 Chapter 5. Persistent attacks in Discrete-Event Systems

estimators, resulting in automaton ΘGi . Next, it removes from ΘGi the exposing states, by
applying the Trim operation, and the algorithm returns an automaton ΨGi which is called the
non-exposing attack structure. The removal of exposing states and its associated transitions
by the Trim operation is possible because once they are reached, marked states become
inaccessible and, since xE is not a marked state in ΘN

Gi
, exposing states will not be marked

states in ΨGi either.

Algorithm 10: Non-exposing attack structure
Input: ΘG

Gi
,ΘN

Gi

Result: ΨGi

1 ΘGi ← ΘG
Gi
||ΘN

Gi
= ((XG ×XN),Σai, δGN , (x

G
0 , x

N
0), (Xm

G ×Xm
N))

2 ΨGi ← Trim(ΘGi)
3 return ΨGi

The next example shows to obtain the non-exposing attack structure of the automaton
Gi from Examples 18 and 20.

Example 22. Continuing from Examples 18 and 20, the attack structure ΘGi = ΘG
Gi
||ΘN

Gi
is

shown in Fig. 5.13, while the non-exposing attack structure ΨGi is shown in Fig. 5.14. Note
that the exposing state is reached if the attacker chooses to insert an occurrence of event c to
the network, while the ΘGi is at the initial state. In order to avoid reaching such a state, the
attacker should not have the possibility of inserting that event at this point. The exposing state
and associated transitions are removed after the Trim operation, meaning that inserting event
c at the initial state is no longer a possibility.

�

The non-exposing attack structure represents all the behavior of the subsystem under
attack that keeps the attacker undetected. Next, it is shown that the behavior of the three
attack functions of a persistent attacker given by Definition 12 is captured by the non-exposing
attack structure generated by Alg. 10.

Theorem 5. Let A be an attacker with an attack function according to Def. 12 and L(ΨGi) be
the generated language of the automaton returned by Alg. 10. Then L(A/Gi) ⊆ L(ΨGi). �

Proof. One has to prove that for any string w ∈ L(A/Gi), it is also true that w ∈ L(ΨGi).
This must be done for all three attack functions of Def. 12.

Because the alphabets of ΘG
Gi

and ΘN
Gi

are the same, then

L(ΘGi) = L(ΘG
Gi
||ΘN

Gi
)

= L(ΘG
Gi

) ∩ L(ΘN
Gi

). (5.31)

5.2. Design method for a persistent attacker 101

(1, 1) (1, xE)(2, 2)(xc, xc)

(xc, 2)

(2, xc)

c+N

a

b
c−N c

c+Nc

c

c+N

c−N b

b

b

c+N

c−N

c+N

c−N , c+N

c

Figure 5.13: Attack structure ΘGi = ΘG
Gi
||ΘN

Gi
of Example 22.

According to Lemmas 4 and 5, it is possible to say that

L(A/Gi) ⊆ L(ΘG
Gi

) (5.32)

and
L(A/Gi) ⊆ L(ΘN

Gi
). (5.33)

From (5.31), (5.32) and (5.33), one can say that

L(A/Gi) ⊆ L(ΘGi). (5.34)

Since L(ΨGi) is obtained from L(ΘGi) by removing exposing states, according to Algorithm 10,
then it is true that

L(ΨGi) ⊆ L(ΘGi) (5.35)

The relationship between the languages of interest is shown in Fig. 5.15. It is still to be
shown that L(A/Gi) ⊆ L(ΨGi), i.e., the gray area in Fig. 5.15 does not exist. This will be
done by contradiction. Assume that there exists a string w′ = wva ∈ L(A/Gi) such that
w′ 6∈ L(ΨGi). If w′ 6∈ L(ΨGi), and from (5.34), it is possible to say that w′ is a string such that

102 Chapter 5. Persistent attacks in Discrete-Event Systems

(1, 1)(2, 2)(xc, xc)

(xc, 2)

(2, xc)

a

b
c−N c

c+Nc

c

c+N

c−N b

b

b

c−N

c+N

c−N , c+N

c

Figure 5.14: Non-exposing attack structure ΨGi of Example 22.

L(ΘGi) L(A/Gi)

L(ΨGi)

Figure 5.15: Relationship between languages.

δGN(x0, wv
a) = (_, xE). From Lemma 6, it is true that

PN(wva) 6∈ L(Gi) (5.36)

According to Def. 13, a string w′ = wva ∈ L(A/Gi), with w ∈ L(A/Gi), if va ∈ fA(w, s) and
PG(w)s ∈ L(Gi).

For the passive mode of Def. 12, defined by (5.8), va = s and one can say that PN(wva) =

PG(w)s ∈ L(Gi), which contradicts (5.36).

5.2. Design method for a persistent attacker 103

For the delay mode, there are have three possibilities:

a) fDA (w, s) = {σ}, if s = σ ∈ Σ1
i ,c. Thus, va = s = σ and if PN(wva) = PN(w)s 6∈ L(Gi),

which results in a contradiction, since it is assumed that a controllable event will only be
triggered if it is feasible at the current state estimate;

b) fDA (w, s) = {σ−N}, if s = σ ∈ Σ1
i,uc. Hence va = σ−N and PN(va) = ε. Then PN(wva) =

PN(w) ∈ L(Gi) (Lemma 6), what contradicts (5.36);

c) fDA (w, s) = {ε, λ+N}, if s = ε. Then it is possible to say that va = ε or va = λ+N . If
va = ε, then PN(va) = ε and PN(wva) = PN(w) ∈ L(Gi), which contradicts (5.36). For
the case where va = λ+N , then PN(va) = λ. According to (5.11), λ is an event feasible
at the current state estimate, that is, PN(w)λ ∈ L(Gi), which again, contradicts (5.36).

Finally, for the forward mode, there are two possibilities:

a) fFA (w, s) = {σ}, if s = σ ∈ Σ1
i . Hence va = s = σ and PN(va) = s. Thus, PN(wva) =

PN(w)s ∈ L(Gi), what contradicts (5.36).

b) fFA (w, s) = {ε, λ+N}, if s = ε. Then it is possible to say that va = ε or va = λ+N . If
va = ε, then PN(va) = ε and PN(wva) ∈ L(Gi), what contradicts (5.36). For the case
where va = λ+N , then PN(va) = λ. According to (5.13), λ is an event feasible at the
current state estimate, that is, PN(w)λ ∈ L(Gi), which again, contradicts (5.36).

Hence, if one assumes that w′ = wva ∈ L(A/Gi) and w′ 6∈ L(ΨGi), there is a contradiction, for
all attack functions of Def. 12. Consequently, it is possible to say that for a string w′ ∈ L(A/Gi),
it is also true that w′ ∈ L(ΨGi), and hence, L(A/Gi) ⊆ L(ΨGi).

The last result of this chapter is Theorem 6, which is the dual of Theorem 4. While
Theorem 4 states that if an attacker A uses one of the attack functions of Def. 12, it will be a
persistent attacker, Theorem 6 states that if an attacker uses the automaton returned by Alg.
10 as an attack function, it will also be a persistent attacker.

Theorem 6. Let A be an attacker with an attack function represented by ΨGi, where ΨGi is
the automaton returned by Alg. 10. Then PN(L(ΨGi)) ⊆ L(Gi). �

Proof. One has to prove that for any string s ∈ PN(L(ΨGi)), it is also true that s ∈ L(Gi).
This will be done by contradiction.

Consider a string w ∈ L(ΨGi) such that PN(w) = s, s 6∈ L(Gi). According to Lemma 6, if
PN(w) 6∈ L(Gi), it means that an exposing state is reached after the execution of w in ΘGi .
Since the non-exposing attack structure, according to Alg. 10, is ΨGi = Trim(ΘGi) (line 2),
then it is true that ΨGi has no exposing states and, therefore, w 6∈ L(ΨGi), or s 6∈ PN(L(ΨGi)),

104 Chapter 5. Persistent attacks in Discrete-Event Systems

which is a contradiction.

Thus it is possible to say that PN(L(ΨGi)) ⊆ L(Gi).

Next, an example of how an attacker can use the non-exposing attack structure to guide
its actions will be presented.

Example 23. Consider the non-exposing attack structure ΨGi obtained in Example 22, which
is shown in Fig. 5.14. Upon initialization, the only option for the attacker is to wait for the
occurrence of events sent by the controller. To extract from ΨGi the possible actions of the
attacker at a given moment, it suffices to identify the feasible events at the current state of ΨGi

and use the following reasoning:

• If an event is controllable, then the attacker can only wait for its occurrence;

• If an event is uncontrollable, then the attacker can let it remain untouched when it hap-
pens.

• If an event is in σ−N ∈ Σ−Ni,uc, then the attacker can erase event σ when it happens;

• If an event is in σ+N ∈ Σ+N
i,uc, then the attacker can insert it to the network at any time.

Thus, at state (2, 2) in ΨGi, for example, the attacker can choose between letting event c
untouched when it happens, erasing it, or inserting it in the network at any time. Regarding
event b, the only option is to let it go untouched, since it is a controllable event.

�

5.2.4 Complexity

In this subsection the time complexity of the algorithms presented in this section is
discussed. In Alg. 6, the foreach loop of lines 3-13 is executed once for each transition
in ∆A. In order to check the if statement of lines 7 and 12, all transitions need to be
considered, which means that the if statements are executed |∆A|2 times. In the worst case,
when the transition function is complete, |∆A| = |QA||Σai|. Additionally, if all events in Σi

are uncontrollable, then |Σai| = |Σi| + |Σ−Ni,uc| + |Σ+N
i,uc| = 3|Σi| and |QA| = |Q| + |Σi|. Thus

|∆A| = (|Q|+ |Σi|)3|Σi| = 3|Q||Σi|+ 3|Σi|2 and O(|∆A|2) ≈ O(|Σi|4), where Q and Σi are the
set of states and events of Gi, respectively. Regarding Alg. 7, the foreach loop of lines 2-
3 is executed once for each transition in ∆A. Thus, the overall complexity is O(|∆A|) ≈ O(|Σi|2).

For Alg. 8, which builds the plant estimator, the foreach loop of lines 3-11 is executed
once for each uncontrollable event, while the foreach loop of line 4-11 is executed once for
every state in the estimator. Additionally, the inner foreach loop of lines 8-11 is executed

5.3. Discussion 105

again for each transition in ∆G. Thus, an upper bound for the number of executions of the
foreach loop of lines 3-11 is |∆G|2. If the transition function is complete and all events are
uncontrollable, then |∆G| = |XG||Σai| = (|Q|+ |Σi|)(3|Σi|). Thus, the overall time complexity
for the foreach loop of lines 3-11 is O(|∆G|) ≈ O(|Σi|4). The same time complexity can be
associated with the foreach loop of lines 12-15. Thus, the overall time complexity of Alg. 8 is
O(|Σi|4).

For the network estimator, built by Alg. 9, the analysis is similar to the one made for
Alg. 8. Even though Alg. 9 has an additional foreach loop (lines 18-20), the overall time
complexity does not change, since the foreach loop is executed sequentially. Thus, the overall
time complexity of Alg. 9 is O(|Σi|4).

Finally, in Alg. 10, the parallel composition of line 1 has a complexity of O(|XG||XN |),
while the Trim operation over ΘGi has a linear complexity with respect to number of states of
ΘGi (Cassandras and Lafortune, 2007). Since, in the worst case, |XG| ≈ |XN | ≈ |Q| + |Σi|,
then the overall complexity of Alg. 10 is O((|Q|+ |Σi|)2).

In the next section, the results of this chapter are discussed.

5.3 Discussion

First, it is important to highlight that, in the same way that a supervisor obtained by
the SCT does not stipulate which event should be triggered next, but rather a set of disabled
events, the non-exposing attack structure provides the possible actions that the attacker can
take while remaining hidden. The decision of which action the attacker will do next needs
to be made by another entity, the attacker’s controller. Such an entity has knowledge about
the physical process and can decide when and for how long to delay or anticipate events (or
it can receive information through a communication network, indicating when to start or stop
the attack). The design of the attacker’s controller will be the subject of future research.
Additionally, the non-exposing attack structure allows an attacker to perform different types of
attacks simultaneously, i.e., the attacker can anticipate one event while it is delaying another
one.

Furthermore, although the method for attack design proposed in this thesis was inspired
by the method described in Zhang et al. (2021), there are thee main differences, summarized
next.

• Attack location: in the referred work, the authors consider attacks in the communication
channel while in this thesis the attacks are considered to happen at the devices;

106 Chapter 5. Persistent attacks in Discrete-Event Systems

• Attacker’s goal: in this thesis, a new type of attacker is defined, called a persistent
attacker, which is an attacker that wants to act and remain hidden, so it can act multiple
times. In the aforementioned work, the attacker’s goal is to lead the system to a critical
state, which can be done just once, since the attacker is revealed;

• Estimators: in this thesis, the plant and network estimators are built based on the au-
tomaton of Gi, while in the referred work, one of the estimators was built based on the
supervisor. Thus, depending on the size of the supervisor realization, the application
of their technique can be limited by computational resources. Because the estimators
proposed in this thesis are based on Gi, their size is normally smaller when compared to
an estimator obtained from a supervisor.

The assumption that was made in this work that only uncontrollable events were to be
attacked may seem too restrictive, but in reality, the impact of this assumption on the types of
attacks proposed in this work is very small. This is because a delay or anticipation of events
can be inserted in the production process by acting either on controllable or uncontrollable
events. The advantage of acting only on uncontrollable events resides in the fact that the
attacker is less likely to be found when compared with attacks on controllable events, as
discussed in the beginning of the chapter.

Additionally, in reality the attacker has the ability to acting on all events, controllable
and uncontrollable, which might seem desirable since it results in an easier problem from the
point of view of the system’s logical behavior, because the attacker would be free to choose
when to turn on and off the machines and also would be free to choose which events to transmit
to the network. However, such behavior would also draw the attention of a human operator,
which is undesirable. Thus, restricting the attacker to act on only uncontrollable events is a
more interesting problem.

Chapter 6

Implementation of a security testbed

In this chapter the details related to the implementation of a security testbed are
discussed. The main goal of the testbed is to reduce the gap between theory and practice by
providing a way to apply theoretical results in a physical system. The testbed consists of a
prototype of a Networked Control System (NCS). The coordination between devices is done
by the discrete-event controller, alongside continuous-time controllers. The contributions of
this section were presented at the 16th IFAC Workshop on Discrete-Event System, held in
Prague, between September 7-9, 2022 (Alves et al., 2022b). Additionally, an online repository
was created to allow sharing all the details regarding the implementation.

The prototype was initially inspired by the work of De Oliveira et al. (2020), where the
authors describe the implementation of a hybrid control system. The plant is instrumented
with intelligent devices that communicate with each other in a foundation Fieldbus (FF)
industrial network. A commercial PLC (programmable logic controller) is the logic solver
linking the discrete elements, the HMI (human-machine interface) panel and the FF.

The process in (De Oliveira et al., 2020) consists of a pump, that supplies liquid to a tank
and a pneumatic valve, that regulates the liquid level in the tank. The level sensor (LIT) in
the tank and the valve positioner (LIC) are intelligent FF devices implementing a distributed
PID control system. The PLC may read and write the parameters of LIT and LIC by means
of an FF interface, receives the signals of a selector switch on an HMI panel, and commands
the pump operation. A manual valve regulates the tank output. In such a continuous process,
there are risks related to unforeseen perturbations to the PID controller, that may arise from
system failures or human intervention in setpoint definition and manual valves manipulation,
for example. The main risks are related to underflow and overflow of tank level. Also the
pneumatic valve should not remain completely closed when the pump is turned on to avoid
leakage in piping and overheating of the pump. These circumstances can occur in the steady
state PID-controlled process, or in non-routine procedures, such as startup and shutdown.

107

108 Chapter 6. Implementation of a security testbed

As a solution, the authors design supervisors to ensure that the continuous-time controlled
system can operate under safety constraints. For this purpose, they model specifications and
synthesize minimally restrictive supervisors, which are reactive control agents to the events on
the continuous-time process.

A similar plant exists in one of the laboratories of the Department of Electronic
Engineering at UFMG. However, due to the restrictive measures adopted by the university
during the COVID-19 pandemic, the lab was inaccessible. Since the main idea was to have
a physical system and not a simulated one, the alternative was to build such a prototype at
home. To acquire industrial FF devices was not a viable option either, due to their high cost,
which would have impacted one of the prototype’s goal, namely, to propose an implementation
scheme that can be easily replicated. The final solution employed low-cost off-the-shelf
micro-controlled devices combined with communication modules, allowing the different devices
to exchange information with each other.

In order to allow other people to adapt or reproduce the prototype, a free online
repository1 was created, aiming to share information about the models, electronic circuits and
code.

In the next section the adopted architecture is presented.

6.1 System architecture

In an NCS, sensor, actuator and controller devices can be considered as computational
systems with communication interfaces. There are three basic configurations, which are shown
in Figure 6.1. Additionally, these topologies can be combined with each other to make more
complex ones. For example, suppose a given system has three variables that have to be
controlled. Each control loop can have one of the topologies shown in Fig. 6.1 while sharing
the same control network.

The proposed architecture is based on the topology of Figure 6.1(c) to implement the
DES control while the continuous-time control loops are based on the topologies of Figures
6.1(a) and 6.1(b). Furthermore, considering the topology of Figure 6.1(c), there are three new
configurations regarding the position of the controller with respect to the other nodes. In Fig.
6.2(a), the controller node is physically connected to the same control network as the actuator
and sensor nodes. Additionally, a SCADA (supervisory control and data acquisition) can be
employed so that a human operator can monitor and/or act over the process. The SCADA
does not need to be connected directly to the control network and a gateway can make the

1Available at: https://lacsed.github.io/security-testbed/

https://lacsed.github.io/security-testbed/

6.1. System architecture 109

(a) (b) (c)

Figure 6.1: NCS topologies

bridge between them. Furthermore, in some cases, the controller also plays the role of a
gateway between the control network and SCADA.

Another configuration is shown in Fig. 6.2(b), where the controller is not connected
directly to the control network. In this case, the controller is said to be remote. The gateway
is responsible for making the bridge between the control network and the network which the
controller and SCADA are connected to. Finally, Fig. 6.2(c) shows a configuration in which
the controller is connected to a web server through the internet, which in turn, is connected to
the gateway. Note that in this case, it is important to have a local controller for the case the
internet connection is lost.

Regarding the control network, multiple types of physical mediums and protocols can be
employed. Once a specific protocol is chosen, all nodes must have a network interface capable
of handling the reception and transmission of information.

The architecture in which the testbed was implemented is based on the one with the local
controller, shown in Fig. 6.2(a). The local controller is responsible for implementing the DES
control, which includes the supervisory control. The next subsection gives some details about
the logical structure of the local controller.

6.1.1 DES control architecture

The DES control is responsible for coordinating the operation of all subsystems that
comprise a given system by implementing supervisors obtained through the supervisory control
theory. As described in Subsection 3.4, previous works present different approaches for such
implementations, and all of them agree on the point where controllable events are associated
with commands and uncontrollable events are associated with responses. The start point for
the proposed DES control architecture is the setup shown in Fig. 3.4, repeated in Fig. 6.3.

110 Chapter 6. Implementation of a security testbed

(a) Local controller. (b) Remote controller. (c) Controller over internet.

Figure 6.2: NCS topologies.

DES Controller

Plant

Σuc Σc

Figure 6.3: Feedback loop of DES control.

The supervisor obtained by the supervisory control theory is not enough to implement
the controller of Fig. 6.3, since the supervisor is only a function whose output is a set of
enabled events, while the controller needs to send to the plant only a controllable event chosen
among the set of enabled events. To implement the DES control, a new element has to be
added, resulting in the scheme represented by Fig. 6.4.

Figure 6.4: Implemented control loop of SCT.

In Fig.6.4, EDM stands for Event Decision Maker, which is a component that has as

6.1. System architecture 111

input the control action of the supervisor, i.e., the set of enabled events, and has as output a
single controllable event that will be sent to the plant. In this scheme, supervisor and EDM are
components of the DES controller, shown in a dashed line in Fig. 6.4. Now, the EDM receives
the set S(s, σ), which corresponds to the control action of the supervisor S after receiving event
σ and considering a string s of previous events that were executed by the system under control.
The EDM will choose an event σ′ ∈ S(s, σ) ∩ Σc to be sent to the plant. This will happen
until the set S(s, σ) ∩ Σc becomes empty. In such a case, the DES controller can only wait for
the occurrence of an uncontrollable event in the plant. Note that for every event σ′ chosen by
the EDM, this event is also sent back to the supervisor, allowing it to update its current state.
How the choice is made by the EDM will depend on the implemented rule. A few possibilities
are:

• Event priority: the EDM has information about which event has priority over the others;

• Predefined sequence: the EDM has an ordered list of events and the decisions are made
according to this list. This makes sense when an optimization is in place and a best
sequence is known (Pena et al., 2022; Alves et al., 2021);

• Random: the EDM chooses an event randomly.

Now that a DES controller is defined, the next step towards the implementation of
the DES control is to define where the conversion from events to electrical signals and from
electrical signals to events happen. The authors of (De Queiroz and Cury, 2002) propose a
three-level structure for the implementation of supervisory control, already shown in Fig. 3.5.
The three-level control system architecture was designed to be implemented in a single device,
as a PLC. However, the proposed testbed is a prototype of an NCS. Hence a combination
of the NCS topology shown in Fig. 6.2(a) and the three-level architecture was needed. The
obtained result is illustrated by Fig. 6.5.

In the DES control architecture of Fig. 6.5, each device connected to the network is
called a node. A node can be the global controller, identified by the number (1) in the top
right corner of the block global controller in Fig. 6.5, or a local controller (blocks (5)). The
global controller includes the modular supervisors (block (2)) and the product system (block
(3)). The supervisors obtained are local modular supervisors (De Queiroz and Cury, 2000)
and, in order to reduce even more the size of the automata that have to be coded, a super-
visor reduction technique is applied (Su and Wonham, 2004). Then, the information about
which event is disabled or enabled in each of the states of the reduced supervisor is also obtained.

The modular supervisor (block (2)) is informed of the occurrence of all events in the
system. Upon the reception of an event σ, each supervisor that has a transition labeled with σ
will make the transition, updating their current state. Each state of the modular supervisors

112 Chapter 6. Implementation of a security testbed

Figure 6.5: Proposed DES control architecture.

has associated a set of controllable events that are disabled. If a particular event is disabled by
at least one of the supervisors, then the event is assumed to be disabled and this information
is sent to the product system level.

The product system (block (3)) controls the evolution of the system. The internal
structure of this block includes all the models of the subsystems and the EDM, which receives
from each subsystem model i the set Γci(q) = Γi(q) ∩ Σci, corresponding to the set of feasible
controllable events at state q of subsystem i. The set Γc =

⋃
∀i Γci(q) is the set of feasible

controllable events of the overall system at a given moment. Note that this set may change
whenever one of the subsystems changes its corresponding state. The EDM also receives
the set of disabled events D, information that is provided by the block modular supervisors.
Whenever the set Γc \ D is not empty, the EDM will choose an event to be triggered. If
the set Γc \ D is empty, the EDM waits for the reception of an uncontrollable event, which
comes from the subsystems through the network. Upon reception of an uncontrollable event,
all subsystem models and supervisors are updated. Note that this may change the setsD and Γc.

Once a controllable event is chosen by the EDM, it will be sent into the network
through the network interface (NI), represented by block (4) in Fig. 6.5, and sent back to
the subsystem and supervisor models, allowing them to update their current state. All nodes
connected to the network (blocks (5)) will receive the event, but if a node does not have

6.2. Physical process 113

that event defined in its alphabet, the event will be simply ignored. This selection of events
is done by the network interface (blocks (6)). If the event is accepted into a node, it will
be treated by the local product system (blocks (7)). The local product system is respon-
sible for translating controllable events into commands and responses into uncontrollable events.

Finally, the operational procedures level (blocks (8)) is responsible for mapping com-
mands to the physical signals and the signals back to responses. A human operator can also
interact with the system if we model the human-machine interface as a node that is also
connected to the network. Events generated by such a node are uncontrollable from the global
controller’s point of view, since they cannot be prevented from happening.

The proposed implementation scheme is applicable to a wide range of industrial processes
that have a centralized controller. Furthermore, the technology employed to implement it can
vary from PLCs to micro-controlled based devices. Also, the communication protocol does not
necessarily need to be the same for all devices. The condition is that the controller has to be
able to communicate with all devices.

In the next section the physical process for which the testbed was designed is described.

6.2 Physical process

The physical process is represented by the P&I (process and instrumentation) diagram
of Fig. 6.6 and its goal is to allow the production of batches of a liquid that is the product of
chemical reactions that happen at different temperatures inside a reactor.

Upon initialization by a human operator, the process starts with the admission of three
different liquids. It is assumed that the flow of each liquid is defined by a previous process.
There are three on-off input valves, each one for a different liquid, that receive the same
control action, that is, they open and close together. Since the valves remain open for the
same amount of time, the proportion of each liquid in the tank is determined by their flow.

The total amount of liquid in the tank, is a controlled variable and it is measured by a
level sensor LT. Once the level in the tank reaches the setpoint, the input valves are closed and
the mixer is turned on. The mixer makes the mix more homogeneous and therefore diminishes
the total time of the batch production.

A heating control system is also in place and after the mixer has started, a continuous-
time PI controller TC controls the heater in order to make the temperature, measured by a

114 Chapter 6. Implementation of a security testbed

Figure 6.6: P&I diagram of the physical process.

sensor TT, reach a desired value and remain there for a predefined period of time. After that,
the controller makes the temperature reach a second predefined value, which is lower than the
previous one, for another amount of time. A heater installed in the tank makes it possible to
increase the temperature. To allow the liquid to cool faster, there is a heat exchanger coupled
to the tank. To make the liquid go through it, a pump is turned on. Once this part of the
process is finished, the mixer and the pump stop and an output valve is opened. The valve
remains open until the level sensor indicates that the tank has reached the low level. When
this happens, the output valve is closed and the batch is finished. The system is now ready to
produce another batch.

The models of plants and supervisors are presented in Appendix A. In the next section,
the details regarding the prototype’s hardware are discussed.

6.3 Hardware

This section describes the hardware employed to implement the DES control architecture.
The topology of the testbed is shown in Fig. 6.7. The DES control runs in the lower two levels of
the topology, between the global controller and the local controllers LC1 to LC3. In the top level
a SCADA allows an operator to command the start of a batch production and to monitor the
process. The hardware corresponding to the physical components of the system such as the tank,
input and output valves, mixer, pump and temperature sensor were simplified and represented

6.3. Hardware 115

as LEDs for the valves and motors. An RC (resistor-capacitor) circuit emulates the liquid
temperature in the tank while a trimpot allows the local controller to make the correspondence
between an analog signal and events related to the level. The physical implementation can be
seen in Fig. 6.8.

Figure 6.7: Testbed architecture.

Figure 6.8: Physical implementation.

The hardware uses Arduino, which is an open-source electronics platform based on easy-to-
use hardware and software. Arduino also simplifies the process of working with microcontrollers
by wrapping up details related to their setup. Furthermore, according to its developers, the
Arduino platform has the following characteristics:

116 Chapter 6. Implementation of a security testbed

• Inexpensive - Arduino boards are relatively inexpensive compared to other microcontroller
platforms. The least expensive version of the Arduino module can be assembled by hand,
and even the pre-assembled Arduino modules cost less than BRL 100,00.

• Cross-platform - The Arduino Software (IDE) runs on Windows, Macintosh OSX, and
Linux operating systems. Most microcontroller systems are limited to Windows.

• Simple, clear programming environment - The Arduino Software (IDE) is easy-to-use for
beginners, yet flexible enough for advanced users to take advantage of as well.

• Open source and extensible software - The Arduino software is published as open source
tools, available for extension by experienced programmers. The language can be expanded
through C++ libraries, and people wanting to understand the technical details can make
the leap from Arduino to the AVR C programming language on which it is based.

• Open source and extensible hardware - The plans of the Arduino boards are published
under a Creative Commons license, so experienced circuit designers can make their own
version of the module, extending it and improving it.

The presented characteristics are in consonance with the testbed’s goals and that is the
reason why Arduino was chosen. The Arduino hardware can be classified in two main groups:
boards and shields. An Arduino board has a microcontroller that can be programmed by the
user and a set of input and output pins that allows it to exchange information with the external
world while a shield or module is a circuit board that is connected to an Arduino board to add
extra functionalities to it. In the next two subsections details about the boards and shields
employed in the implementation are given.

6.3.1 Arduino boards

The prototype was implemented using several types of Arduino boards. A brief summary
of their specifications is given next. For more details, the reader is referred to the Arduino
website2.

• Arduino Mega 2560 - It is a microcontroller board based on the ATmega2560. It has 54
digital input/output pins and 16 analog inputs. It has 8KB of SRAM memory, 256KB of
FLASH memory and 4KB of EEPROM memory.

• Arduino UNO - It is a microcontroller board based on the ATmega328P. It has 14 digital
input/output pins and 6 analog inputs. It has 2KB of SRAM memory, 32KB of FLASH
memory and 1KB of EEPROM memory.

2Available at https://docs.arduino.cc/

https://docs.arduino.cc/

6.3. Hardware 117

• Arduino Nano - It is a microcontroller board based on the ATMega328. It has 14 digital
input/output pins and 8 analog inputs. It has 2KB of SRAM memory, 32KB of FLASH
memory and 1KB of EEPROM memory.

6.3.2 Arduino Modules

Although the Arduino boards have some built-in communication capabilities, they have
limitations that do not allow the implementation of the system architecture described in
Section 6.1. Thus, two communication-related modules were added, in addition to a third one
that is an LCD display.

In this implementation, each Arduino board in addition to its modules and other attached
components is called a node. The communication between nodes is done by means of the CAN
(controller area network) protocol. The CAN protocol provides a bus network to which all
nodes are connected. Because of its characteristics, any message sent in the network by a given
node is seen by all other nodes in the network. Each node decides if the message is addressed
to itself. If it is not, the message is simply ignored.

The module MCP2515, shown in Fig. 6.9, provides an interface between the nodes and
the network.

Figure 6.9: CAN module MCP25153.

For the communication between the global controller and the SCADA, an Ethernet net-
work was employed. For this reason, an Ethernet shield, as the one shown in Fig. 6.10 was
connected to the global controller.

The schematics of each node are presented in Appendix B. In next subsection the details
about the software developed to run the DES control system are presented.

3Image available at https://circuitdigest.com/microcontroller-projects/arduino-can-tutorial-interfacing-
mcp2515-can-bus-module-with-arduino. Accessed on 27/08/2022.

4Image available at: https://www.aranacorp.com/en/connect-arduino-to-the-web-using-ethernet-shield-
w5100/. Accessed on 27/08/2022.

118 Chapter 6. Implementation of a security testbed

Figure 6.10: Ethernet shield4.

6.4 Software

The software that was developed can be divided into two parts: SCT library and SCADA.

6.4.1 SCT library

The discrete-event models and the supervisory control is implemented by using the SCT
Library. It has two modes of operation, depending on which type of node, plant or controller,
it is applied to. For the controller, the first step to use it is to model each subsystem as an
automaton as well as the specifications. The subsystem models should have disjoint alphabets.
Once the models are obtained, the automata implementing the reduced supervisors can be
obtained, by any computational tool. In this work, Ultrades (Alves et al., 2017) was used. The
use of a reduced supervisor is for the purpose of having smaller automata, when compared
with automata generated by the classical supervisor synthesis. Another important piece of
information needed is the list of disablements, that is, the information about which events are
disabled or enabled at each one of the states of the supervisors.

Once the models are available, the next step is to map each event to an integer.
Controllable events are mapped to odd numbers while uncontrollable events are mapped to
even ones. One of the basic data types in the SCT Library is the State, which is a struct

with 3 attributes, as shown in Fig. 6.11. During the instantiation of a State, the parameters
on_enter and on_exit are pointers to action functions that are executed when the state is
entered and when the state is exited, respectively. A state is entered in the moment it becomes
the current state of the automaton and is exited in the moment it is no longer the current state.

Before building the automata, all of their states have to be declared first, as well as the

6.4. Software 119

Figure 6.11: State data type representation.

action functions, if they are needed. More details on what the action functions should do will
be given later.

Now the automata can be instantiated. The representation for the Automaton class is
shown in Fig. 6.12. The Supervisor class is a child of the Automaton class, as shown in Fig.
6.13, since it is also an automaton with additional specific methods to enable or disable events.
As can be seen, the initial state of the Automaton and Supervisor objects are defined during
their instantiation.

Figure 6.12: Automaton class.

Next, the DES object needs to be instantiated. The representation for the DES class is
given in Fig. 6.14. During its instantiation, vectors of integers that are associated with the
controllable and uncontrollable events, as well as their length should be provided. A DES
object will handle the dynamic of the system under control. The methods addPlant and
addSupervisor have to be used in order to add the automata models to the system. When
the method updateDES is called, it verifies if a controllable event can be triggered and triggers
it. A controllable event cannot be triggered if it is disabled by at least one of the supervisors.

120 Chapter 6. Implementation of a security testbed

Figure 6.13: Supervisor class.

Once controllable events are enabled, they will be triggered one by one until there are none.
The rule that determines the order in which the controllable events will be triggered can be set
with method setMode, which receives an integer corresponding to one of the following three
rules: 1) random; 2) pre-defined order and; 3) priority list. To trigger uncontrollable events,
the method triggerIfPossible should be used. The method will update all automata in
which a transition labeled with that event is feasible.

Figure 6.14: DES class.

Before the system can be initialized, each automaton needs to be fully defined, by
adding its transitions. This is done by the addTransition method. Finally, the system can
be initialized by calling the updateDES method. It will trigger controllable events if they are
enabled or the system will wait for an uncontrollable event to happen.

6.4. Software 121

The action functions will have different roles depending on the type of automaton
they are defined for. For plant automata, the action function is responsible for sending
the controllable events through the communication channel. For the supervisors, the action
function will define which events are enabled or disabled at that state. This is done by calling
the methods disable and enable.

For the plant nodes, a DES object has to be created and to which only the plant automata
need to be added, in the same way as is done for the controller node. The state action function
in the plant nodes is where the user will code the translation of controllable events to electrical
signals, by setting or resetting a single output pin or by initiating a sequence of operations.
Additionally, the user has to code the translation from electrical signals to uncontrollable events.

6.4.2 Communication

Regarding the communication, the specifics of the CAN protocol are handled by the CAN
library. In order to send a packet, three functions have to be called in the following order:

1. beginPacket(): receives the packet id and fills out the headers of the CAN packet;

2. write(): receives a byte of data to be transmitted. If the data has more than one byte,
this function has to be called multiple times;

3. endPacket(): encloses the packet and sends it through the CAN module.

The id of a packet can be used to identify the device that has send it or to identify the
type of message. In this implementation, the id is used to distinguish discrete events from the
continuous-time variables. To receive a packet, the following functions have to be used.

1. parsePacket(): verifies if there is an incoming packet. It returns the size of a packet, if
it exists, or zero otherwise;

2. packetId(): retrieves the packet id;

3. read(): reads the data from the packet. Each call to this function returns a byte of data.
If the packet load has more than one byte, than this function has to be called multiple
times.

In order to concentrate the communication handling in a specific part of the code, which
will allow the user to easily simulate the action of the attacker, two queues were employed.
One queue handles the incoming packets and the other one handles the outgoing ones. Thus,
whenever a state action function needs to send a controllable event to the plant, the event is
first added to the queue of outgoing packets. The program checks periodically if this queue is

122 Chapter 6. Implementation of a security testbed

not empty. When there is a new event in the queue, a packet is sent and the event is removed
from it. For the incoming events, the program checks periodically if there is a new packet.
Once a new packet arrives, the event is obtained from it and it is added to the queue of
incoming events. Once this queue is not empty, the event is removed from it and it is triggered
by the triggerIfPossible function.

Another important part of the communication is related to the handling of data exchange
between the controller and the SCADA. The protocol used is the Modbus IP. Modbus is an in-
dustrial protocol standard that was developed in the late 1970’s for communication among PLCs
and is still used for connecting industrial devices. The Modbus protocol specification is openly
published and use of the protocol is royalty-free. Modbus protocol is defined as a master/slave
protocol, meaning a device operating as a master will poll one or more devices operating as a
slave. This means a slave device cannot volunteer information; it must wait to be asked for it.
The master will write data to a slave device’s registers, and read data from a slave device’s
registers. A register address or register reference is always in the context of the slave’s registers.

It is important to highlight that the only events that are transmitted over the commu-
nication between the SCADA and controller are uncontrollable events related to the action of
the user, as starting or resetting the system.

6.5 Cyber-Attacks

In the proposed implementation, it is assumed that the attacker has already infiltrated
the system. How this is done by the attacker is out of scope of this work. The proposed
testbed can easily be used for implementing two types of attacks. The first one is when the
attacker is an independent node in the network. In this case, the attacker can insert false
occurrences of controllable and uncontrollable events in the network.

The second type of attack that can be simulated is when the attacker infects one of the
legitimate nodes in the network. In such a case, the user can alter the function that handles
the node’s communication and implement the attacker’s controller. If the node is a plant, then
the user can use the technique presented in Section 5.2 in order to obtain the possible actions
at a given moment, if the attacker is a persistent attacker.

The communication is handled by two FIFO queues, one for incoming events and the
other for the outgoing events. When a relevant event for a given node arrives, it is immediately
added to the associated queue. Then, it is retrieved from the queue and the automata are
updated. However, an attack can erase the event by retrieving it from the queue before the
models are updated. The attacker can also insert events by adding them into the queue of in-

6.6. Discussion 123

coming events. This will update the automata although the event was not received by the node.

For the outgoing communication, whenever an event is generated by the node, it is
added to queue of outgoing events. This queue is monitored periodically and when an event
is detected in it, the event is sent in the network. An attacker can add or remove events from
this queue as desired, representing the action of inserting or erasing events, respectively.

In order to detect attacks, a special node can be implemented, called Intrusion Detection
System (IDS). The IDS has the models of all subsystems and specifications. It observes all the
events exchanged by the nodes and updates its models accordingly. If it detects a behavior
that is not legal, then it triggers an alarm.

The next section presents some discussion about the results obtained in this chapter.

6.6 Discussion

The proposed implementation deals with all the problems enumerated in Section 3.4. The
problem of causality is solved by assigning the generation of controllable and uncontrollable
events to the global controller and local controllers, respectively. The translation of signals to
events and events to signals is handled in the local controllers. The issue of having multiple
events happening simultaneously is solved by the network’s constraint of transmitting only one
event at a time. The avalanche effect is not an issue in this implementation since the models
are updated only once for each event.

The problem of choice is dealt within the product system level in the global controller.
The EDM is responsible for choosing an event among a set of enabled events. The fact that a
system under control may be blocking even when the supervisors are nonblocking is a modeling
issue. Basically, to avoid the problem one has to guarantee that if a marked state is reachable
by a sequence of uncontrollable events, then the system has to reach a state after the execution
of controllable events where it can only wait for the occurrence of the uncontrollable ones.
Otherwise, a marked state may never be reached if a sequence of uncontrollable events that
lead the system to the marked state can be preempted at some point by the occurrence of a
controllable event.

The proposed solution does not suffer from the problem of inexact synchronization
between plant and supervisor, which can occur when the communication delay is considerable
when compared with the time constants of the system. This is not the case for the proposed
implementation since events are treated as soon as they are received by the nodes and sent
within a time window of a few milliseconds, which is adjustable by the user. However, if delays

124 Chapter 6. Implementation of a security testbed

are the subject of study, they can be forced to occur by changing the function that handles
the reception and transmission of events.

By having access to the incoming and outgoing events of the nodes, different types of
attacks can be implemented. The testbed can also be adapted to implement more complex
defense techniques than an IDS.

Chapter 7

Conclusion

As the use of CPSs is increasing, carrying with them a voluminous use of communication
networks, the surface area exposed to malicious agents is growing as well. This justifies the
endeavor of studying different aspects of security in control systems.

In the context of DES control, one of the approaches to ensure the correct system
behavior is to design supervisors that are robust to attacks. For attacks in the output symbols,
one of the conditions that allows robust supervisors to be designed is the P-observability for an
attack set. Although a test for this property already existed, it was based on a series of tests of
the classical observability property. The contribution of this thesis is to introduce a new test,
that checks for P-observability for an attack set itself and considers the effect of all attackers
in a single run, along with the visual explanation and some definitions that explain how an
attacker acts, providing insight to understand the attacks under consideration. In addition, an
algorithm for checking P-observability for an attack set was presented, that directly applied
the definitions proposed and whose overall complexity is O(|A||Q||δ|+ |A||Q|2 + |Q|3).

Another approach for improving the control system’s security, which can seem counter-
intuitive, is the study of design techniques for attackers. Nonetheless, having a good
understanding about how an attack works facilitate the development of better defense
techniques. In this context, the first contribution that this thesis brings is to propose an attack
model that is closer to real-world applications and considers that an attack happens at the
interface network of the devices that integrate the control system. Considering that the attack
has infiltrated one of the subsystems, a new type of attack was introduced, called persistent
attack. Differently from other types of attacks described in the literature, which normally
have the goal to lead the system to a critical or unsafe state, a persistent attacker wants to
anticipate events or to insert small delays in the production process, in a way that it remains
stealthy and can act multiple times. Finally, a design technique for such attacks was proposed.
Moreover, another contribution of this thesis is the establishment of tools and common ground

125

126 Chapter 7. Conclusion

that can be adapted to solve more complex problems, such as attacks on controllers, which
will be left for future research.

Lastly, this thesis proposes a testbed for testing security-related techniques, which can
be implemented by employing low-cost devices. The fact that problems related to the DES
control had to be dealt with during the development of the testbed, highlights its importance.
Such issues normally do not appear when a simulation, instead of a physical implementation, is
employed. Ultimately, the testbed contributes to reducing the gap between theory and practice.

The next subsection presents some directions for future work.

7.1 Future works

Regarding the work on P-observability for an attack set, it is still to be investigated
how to extend the property and its test to consider multiple attackers acting at once and on
controllable events as well. For the case that a given desired language is not P-observable for
an attack set, it would be interesting to have some guidelines on how to improve the security,
e.g., by turning one or more vulnerable events into non-vulnerable ones. This is also a possible
path for new research.

Concerning the content of Chapter 5, that presents the results on persistent attacks, a nat-
ural continuity for the work is to propose a design technique for different attack locations, such
as an attack in the controller. These design techniques can also be developed for more complex
scenarios, such as in a decentralized DES control system. Furthermore, it is also natural after
having explored an attack design technique, to propose a defense technique against such attacks.

Finally, with respect to the testbed implementation, some fronts of future work can be
enumerated. The first avenue for facilitating the testbed use could entail implementing a com-
putational tool for automatic generation of code. Secondly, to test possible defense techniques,
it would be beneficial to implement various types of attacks. Additionally, it will be useful to
have also an architecture of a DES control system with decentralized controllers.

Bibliography

Akinyemi, B. O., Jekoyemi, O. V., Aladesanmi, T. A., Aderounmu, G. A., and Kamagaté, B. H.
(2018). A Scalable Attack Graph Generation for Network Security Management. Journal of
Marketing Management, 6(2):34–43.

Alves, L. V. R., Martins, L. R. R., and Pena, P. N. (2017). Ultrades - a library for modeling,
analysis and control of discrete event systems. Proceedings of the 20th World Congress of the
International Federation of Automatic Control, pages 5831–5836.

Alves, L. V. R., Pena, P. N., and Takahashi, R. H. (2021). Planning on Discrete Event Systems
Using Parallelism Maximization. Control Engineering Practice, 112(August 2020):104813.

Alves, M. R., Pena, P. N., and Rudie, K. (2022a). Discrete-event systems subject to unknown
sensor attacks. Discrete Event Dynamic Systems: Theory and Applications, 32(1):143–158.

Alves, M. R. C., Rudie, K., and Pena, P. N. (2022b). A Security Testbed for Networked Control
Systems. In Proceedings of the 16th IFAC Workshop on Discrete Event Systems, Prague.

Alves, M. V., Barcelos, R. J., Carvalho, L. K., and Basilio, J. C. (2022c). Robust Decentralized
Diagnosability of Networked Discrete Event Systems Against DoS and Deception Attacks.
Nonlinear Analysis: Hybrid Systems, 44(309652):101162.

Alves, M. V., da Cunha, A. E., Carvalho, L. K., Moreira, M. V., and Basilio, J. C. (2019).
Robust Supervisory Control of Discrete Event Systems Against Intermittent Loss of Obser-
vations. International Journal of Control, 7179:1–13.

Alves, M. V. S., Carvalho, L. K., and Basilio, J. C. (2020). Supervisory Control of Networked
Discrete Event Systems With Timing Structure. IEEE Transactions on Automatic Control,
pages 1–13.

Balemi, S., Hoffmann, G. J., Gyugyi, P., Wong-Toi, H., and Franklin, G. F. (1993). Supervisory
Control of a Rapid Thermal Multiprocessor. IEEE Transactions on Automatic Control,
38(7):1040–1059.

Bhamare, D., Zolanvari, M., Erbad, A., Jain, R., Khan, K., and Meskin, N. (2020). Cyberse-
curity for Industrial Control Systems: A Survey. Computers and Security, 89:1–12.

127

128 Bibliography

Cao, L., Jiang, X., Zhao, Y., Wang, S., You, D., and Xu, X. (2020). A Survey of Network
Attacks on Cyber-Physical Systems. IEEE Access, 8:44219–44227. ISSN 21693536.

Cárdenas, A. A., Amin, S., Lin, Z.-S., Huang, Y.-L., Huang, C.-Y., and Sastry, S. (2011).
Attacks against process control systems. page 355.

Carvalho, L. K., Wu, Y. C., Kwong, R., and Lafortune, S. (2016). Detection and Prevention of
Actuator Enablement Attacks in Supervisory Control Systems. 13th International Workshop
on Discrete Event Systems, WODES 2016, pages 298–305.

Carvalho, L. K., Wu, Y. C., Kwong, R., and Lafortune, S. (2018). Detection and Mitigation of
Classes of Attacks in Supervisory Control Systems. Automatica, 97:121–133.

Cassandras, C. and Lafortune, S. (2007). Introduction to Discrete Event Systems, volume 11.
Springer, New York, 2nd edition.

Chen, Q., Su, R., and Li, Z. (2022). Attackable Detectability of Partially-Observed Discrete-
Event Systems under Sensor Attack. In Proceedings of the 16th IFAC Workshop on Discrete
Event Systems, Prague.

De Oliveira, R. G., de Queiroz, M. H., and Cury, J. E. R. (2020). Synthesis of Supervisors for
a PID-Controlled Industrial Process and Implementation on Foundation Fieldbus. In 15th
IFAC Workshop on Discrete Event Systems, pages 83–88.

De Queiroz, M. H. and Cury, J. E. R. (2000). Modular Supervisory Control of Large Scale
Discrete Event Systems. In Boel R., Stremersch G. (eds) Discrete Event Systems, pages
103–110. Springer, Boston, MA.

De Queiroz, M. H. and Cury, J. E. R. (2002). Synthesis and Implementation of Local Modular
Supervisory Control for a Manufacturing Cell. Proceedings of the 6th International Workshop
on Discrete Event Systems, WODES 2002, pages 377–382.

Dibaji, S. M., Pirani, M., Flamholz, D. B., Annaswamy, A. M., Johansson, K. H., and
Chakrabortty, A. (2019). A Systems and Control Perspective of CPS Security. Annual
Reviews in Control, 47:394–411.

Dietrich, P., Malik, R., Wonham, W. M., and Brandin, B. A. (2002). Implementation Consid-
erations in Supervisory Control. In Caillaud, B., Darondeau, P., Lavagno, L., and Xie, X.,
editors, Synthesis and Control of Discrete Event Systems, pages 185–201. Kluwer Academic
Publishers.

Ding, D., Han, Q. L., Ge, X., and Wang, J. (2021). Secure State Estimation and Control of
Cyber-Physical Systems: A Survey. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 51(1):176–190.

Bibliography 129

Ding, D., Han, Q. L., Xiang, Y., Ge, X., and Zhang, X. M. (2018). A survey on security control
and attack detection for industrial cyber-physical systems. Neurocomputing, 275:1674–1683.

Duo, W., Zhou, M. C., and Abusorrah, A. (2022). A Survey of Cyber Attacks on Cyber
Physical Systems: Recent Advances and Challenges. IEEE/CAA Journal of Automatica
Sinica, 9(5):784–800.

Fabian, M. and Hellgren, A. (1998). PLC-Based Implementation of Supervisory Control for
Discrete Event Systems. Proceedings of the IEEE Conference on Decision and Control,
3(December):3305–3310.

Fadlallah, A., Sbeity, H., Malli, M., and Lteif, P. (2016). Application of Attack Graphs in Intru-
sion Detection Systems: An Implementation. International Journal of Computer Networks,
(81):2016–1.

Fritz, R., Schwarz, P., and Zhang, P. (2019). Modeling of Cyber Attacks and a Time Guard
Detection for ICS Based on Discrete Event Systems. Proceeding of the 18th European Control
Conference, pages 4368–4373.

Fritz, R. and Zhang, P. (2018). Modeling and detection of cyber attacks on discrete event
systems. IFAC-PapersOnLine, 51(7):285–290.

Gao, C., Seatzu, C., Li, Z., and Giua, A. (2019). Multiple Attacks Detection on Discrete Event
Systems. Conference Proceedings - IEEE International Conference on Systems, Man and
Cybernetics, pages 2352–2357.

Ginter, Andrew (2018). The Top 20 Cyberattacks on Industrial Control Systems. Waterfall
Security Solutions.

Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., Tippenhauer, N. O.,
Sandberg, H., and Candell, R. (2018). A Survey of Physics-Based Attack Detection in Cyber-
Physical Systems. ACM Computing Surveys, 51(4).

Hemsley, K. E. and Fisher, R. E. (2018). History of Industrial Control System Cyber Incidents.
INL/CON-18-44411-Revision-2, (December):1–37.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006). Introduction to Automata Theory,
Languages and Computation. Prentice Hall, 3rd edition.

Jang-Jaccard, J. and Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal
of Computer and System Sciences, 80(5):973–993.

Khoumsi, A. (2019). Sensor and Actuator Attacks of Cyber-Physical Systems: A Study Based
on Supervisory Control of Discrete Event Systems. Proceedings of the 8th International
Conference on Systems and Control, pages 176–182.

130 Bibliography

Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., and Colombo, A. W. (2016). Smart
Agents in Industrial Cyber-Physical Systems. Proceedings of the IEEE, 104(5):1086–1101.

Li, Y., Tong, Y., and Giua, A. (2020). Detection and Prevention of Cyber Attacks in Networked
Control Systems. In Proceedings of the 15th IFAC Workshop on Discrete Event Systems, pages
7–13.

Lima, P. M., Alves, M. V., Carvalho, L. K., and Moreira, M. V. (2017). Security Against
Network Attacks in Supervisory Control Systems. IFAC-PapersOnLine, 50(1):12333–12338.

Lima, P. M., Alves, M. V., Carvalho, L. K., and Moreira, M. V. (2022). Security of Cyber-
Physical Systems: Design of a Security Supervisor to Thwart Attacks. IEEE Transactions
on Automation Science and Engineering, 19(3):2030–2041.

Lima, P. M., Alves, M. V. S., Carvalho, L. K., and Moreira, M. V. (2019). Security Against
Communication Network Attacks of Cyber-Physical Systems. Journal of Control, Automation
and Electrical Systems, 30(1):125–135.

Lima, P. M., Carvalho, L. K., and Moreira, M. V. (2018). Detectable and Undetectable Network
Attack Security of Cyber-physical Systems. IFAC-PapersOnLine, 51(7):179–185.

Lin, F. and Wonham, W. M. (1988). On Observability of Discrete-Event Systems. Information
Sciences, 44(3):173–198. ISSN 00200255.

Lin, L. and Su, R. (2020). Synthesis of Covert Actuator Attackers for Free. In Proceedings of
the 15th IFAC Workshop on Discrete Event Systems, number 1-6, pages 561–577.

Lin, L., Thuijsman, S., Zhu, Y., Ware, S., Su, R., and Reniers, M. (2019a). Synthesis of
Supremal Successful Normal Actuator Attackers on Normal Supervisors. In Proceedings
of the 2019 American Control Conference, pages 5614–5619. American Automatic Control
Council.

Lin, L., Zhu, Y., and Su, R. (2019b). Towards Bounded Synthesis of Resilient Supervisors
against Actuator Attacks. In Proceedings of the 58th IEEE Conference on Decision and
Control, pages 7659–7664.

Lin, L., Zhu, Y., and Su, R. (2020). Synthesis of Covert Actuator Attackers for Free. Discrete
Event Dynamic Systems, 30:561–577.

Lu, Y. (2017). Cyber Physical System (CPS)-Based Industry 4.0: A Survey. Journal of
Industrial Integration and Management, 02(03):17500141–175001457.

Mahmoud, M. S., Hamdan, M. M., and Baroudi, U. A. (2019). Modeling and Control of Cyber-
Physical Systems Subject to Cyber Attacks: A Survey of Recent Advances and Challenges.
Neurocomputing, 338:101–115.

Bibliography 131

Matthews, I., Mace, J., Soudjani, S., and van Moorsel, A. (2020). Cyclic Bayesian Attack
Graphs: A Systematic Computational Approach.

Meira-Goes, R., Kang, E., Kwong, R., and Lafortune, S. (2017). Stealthy Deception Attacks
for Cyber-Physical Systems. In Preceedings of the 56th IEEE Annual Conference on Decision
and Control, pages 4224–4230.

Meira-Góes, R., Kang, E., Kwong, R. H., and Lafortune, S. (2020). Synthesis of Sensor Decep-
tion Attacks at the Supervisory Layer of Cyber–Physical Systems. Automatica, 121:109172.

Meira-Goes, R., Lafortune, S., and Marchand, H. (2021). Synthesis of Supervisors Robust
Against Sensor Deception Attacks. IEEE Transactions on Automatic Control, pages 1–8.

Meira-Goes, R., Marchand, H., and Lafortune, S. (2019). Towards resilient supervisors against
sensor deception attacks. Proceedings of the IEEE Conference on Decision and Control,
2019-December(Cdc):5144–5149.

Mohajerani, S., Góes, R. M., and Lafortune, S. (2020). Efficient Synthesis of Sensor Deception
Attacks Using Observation Equivalence-Based Abstraction. In Proceedings of the 15th IFAC
Workshop on Discrete Event Systems, pages 28–34.

Orojloo, H. and Azgomi, M. A. (2019). Modelling and Evaluation of the Security of Cyber-
Physical Systems Using Stochastic Petri Nets. IET Cyber-Physical Systems: Theory & Ap-
plications Research, 4(1):50–57.

Pan, Y., Wu, Y., and Lam, H. K. (2022). Security-Based Fuzzy Control for Nonlinear Net-
worked Control Systems with DoS Attacks via a Resilient Event-Triggered Scheme. IEEE
Transactions on Fuzzy Systems, 6706(c):1–10.

Pang, Z. H., Fan, L. Z., Sun, J., Liu, K., and Liu, G. P. (2021). Detection of Stealthy False
Data Injection Attacks Against Networked Control Systems via Active Data Modification.
Information Sciences, 546:192–205.

Pena, P. N., Vilela, J. N., Alves, M. R. C., and Rafael, G. C. (2022). Abstraction of the
Supervisory Control Solution to Deal with Planning Problems in Manufacturing Systems.
IEEE Transactions on Automatic Control, 67(1):344–350.

Prinsloo, J., Sinha, S., and von Solms, B. (2019). A Review of Industry 4.0 Manufacturing
Process Security Risks. Applied Sciences (Switzerland), 9(23).

Rashidinejad, A., Lin, L., Wetzels, B., Zhu, Y., Reniers, M., and Su, R. (2019). Supervisory
Control of Discrete-Event Systems Under Attacks: An Overview and Outlook. In Proceedings
of the 18th European Control Conference, pages 1732–1739. EUCA.

132 Bibliography

Rasmussen, T. B., Yang, G., Nielsen, A. H., and Dong, Z. (2017). A Review of Cyber-Physical
Energy System Security Assessment. 2017 IEEE Manchester PowerTech.

Seatzu, C. (2018). Partially observed discrete-event systems: from state estimation to intrusion
detection. IFAC-PapersOnLine, 51(7):508–511.

Shareef, T. (2022). 9 Times Hackers Targeted Cyberattacks on Industrial Facilities. Make use
of. Available at https://www.makeuseof.com/cyberattacks-on-industry-hackers. Accessed on
23/09/2022.

Singh, S., Yadav, N., and Chuarasia, P. K. (2020). A Review on Cyber Physical System
Attacks: Issues and Challenges. Proceedings of the 2020 IEEE International Conference on
Communication and Signal Processing, 2:1133–1138.

Slowik, J. (2020). Evolution of ICS Attacks and the Prospects for Future Disruptive Events.

Su, R. (2018). Supervisor synthesis to thwart cyber attack with bounded sensor reading alter-
ations. Automatica, 94:35–44.

Su, R. and Wonham, W. M. (2004). Supervisor Reduction for Discrete-Event Systems. Discrete
Event Dynamic Systems, 14:31–53.

Tahoun, A. H. and Arafa, M. (2021). Cooperative Control for Cyber–Physical Multi-Agent
Networked Control Systems with Unknown False Data-Injection and Replay Cyber-Attacks.
ISA Transactions, 110:1–14.

Tan, S., Guerrero, J. M., Xie, P., Han, R., and Vasquez, J. C. (2020). Brief Survey on Attack
Detection Methods for Cyber-Physical Systems. IEEE Systems Journal, 14(4):5329–5339.

Vaz, A. F. and Wonham, W. M. (1986). On supervisor reduction in discrete-event systems.
International Journal of Control, 44(2):475–491.

Vieira, A. D., Cury, J. E. R., and De Queiroz, M. H. (2006). A model for PLC implementation of
supervisory control of discrete event systems. In IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA, pages 225–232.

Vieira, A. D., Santos, E. A. P., De Queiroz, M. H., Leal, A. B., De Paula Neto, A. D., and
Cury, J. E. (2017). A Method for PLC Implementation of Supervisory Control of Discrete
Event Systems. IEEE Transactions on Control Systems Technology, 25(1):175–191.

Wakaiki, M., Tabuada, P., and Hespanha, J. P. (2019). Supervisory Control of Discrete-Event
Systems Under Attacks. Dynamic Games and Applications, 9(4):965–983.

Wang, Q. and Yang, H. (2019a). A survey on the recent development of securing the networked
control systems. Systems Science and Control Engineering, 7(1):54–64.

Bibliography 133

Wang, Q. and Yang, H. (2019b). A survey on the Recent Development of Securing the Net-
worked Control Systems. Systems Science and Control Engineering, 7(1):54–64.

Wang, W., Lafortune, S., and Lin, F. (2007). An Algorithm for Calculating Indistinguishable
States and Clusters in Finite-State Automata with Partially Observable Transitions. Systems
and Control Letters, 56(9-10):656–661.

Wang, Y., Li, Y., Yu, Z., Wu, N., and Li, Z. (2021). Supervisory Control of Discrete-Event
Systems under External Attacks. Information Sciences, 562:398–413.

Wang, Y. and Pajic, M. (2019a). Attack-Resilient Supervisory Control with Intermittently
Secure Communication. Proceedings of the IEEE Conference on Decision and Control, 2019-
December(Cdc):2015–2020.

Wang, Y. and Pajic, M. (2019b). Supervisory Control of Discrete Event Systems in the Presence
of Sensor and Actuator Attacks. In Proceedings of the 58th IEEE Conference on Decision
and Control, pages 5350–5355.

Wang, Z. Y., Góes, R. M., Lafortune, S., and Kwong, R. H. (2020). Mitigation of Classes of
Attacks using a Probabilistic Discrete Event System Framework. In Proceedings of the 15th
IFAC Workshop on Discrete Event Systems, pages 35–41.

Weerakkody, S., Liu, X., Son, S. H., and Sinopoli, B. (2017). A Graph-Theoretic Charac-
terization of Perfect Attackability for Secure Design of Distributed Control Systems. IEEE
Transactions on Control of Network Systems, 4(1):60–70.

Wonham, W. M. and Cai, K. (2019). Supervisory Control of Discrete-Event Systems. Springer,
Toronto.

You, D., Wang, S., and Seatzu, C. (2022). A Liveness-Enforcing Supervisor Tolerant to Sensor-
Reading Modification Attacks. IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, 52(4):2398–2411.

Zhang, K. and Feng, L. (2020). Revisiting Strong Detectability of Networked Discret-Event
Systems. In Proceedings of the 15th IFAC Workshop on Discrete Event Systems, pages 21–27.

Zhang, Q., Li, Z., Seatzu, C., and Giua, A. (2018). Stealthy Attacks for Partially-Observed Dis-
crete Event Systems. IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA, 2018-Septe:1161–1164.

Zhang, Q., Seatzu, C., Li, Z., and Giua, A. (2020). Cyber Attacks with Bounded Sensor
Reading Edits for Partially-Observed Discrete Event Systems. (122):1–20.

Zhang, Q., Seatzu, C., Li, Z., and Giua, A. (2021). Joint State Estimation under Attack of
Discrete Event Systems. IEEE Access, 9:168068–168079.

134 Bibliography

Zhou, S., Yu, Z., Nasr, E. S. A., Mahmoud, H. A., Awwad, E. M., and Wu, N. (2020). Homomor-
phic Encryption of Supervisory Control Systems Using Automata. IEEE Access, 8:147185–
147198.

Zhu, Y., Lin, L., and Su, R. (2019a). Supervisor Obfuscation against Actuator Enablement
Attack. In Proceedings of the 18th European Control Conference, pages 1760–1765.

Zhu, Y., Lin, L., Ware, S., and Su, R. (2019b). Supervisor Synthesis for Networked Discrete
Event Systems with Communication Delays and Lossy Channels. In Proceedings of the 58th
IEEE Conference on Decision and Control, pages 6730–6735.

Appendix A

Models

The next two subsections present the models for each one of the subsystems and the
models for the specifications, as well as the obtained supervisors.

A.1 Subsystems

The first two automata are the models of the input valve and output valve, shown in
Figures A.1(a) and A.1(b), respectively. Notice that, although the physical process has three
input valves, it is assumed that they operate synchronized, which allows the use of a single
model representing their behavior.

C O

V open
in

V close
in

rst

LH1

rst

(a) VIN - Input valve.

C O

V open
out

V close
out

rst

LL1

rst

(b) VOUT - Output valve.

Figure A.1: Models of input and output valves.

The model of the valves has two states, closed (C) and opened (O). Controllable events
V open
in (V open

out) and V close
in (V close

out) correspond to the commands to open and to close the input
valve, V IN (output valve, V OUT). Once the input valve is opened, the level sensor can
trigger the uncontrollable event LH1 , which signalizes that the tank is full. Note that the
action of closing the input valve once the tank is full is not commanded directly by the level
sensor; the V close

in event has to be sent by the controller.

Regarding the output valve, when it is in the opened state, the level in the tank
starts to drop. When the level reaches the lower setpoint, the level sensor triggers the

135

136 Appendix A. Models

uncontrollable event LL1 . Additionally, in both models and in the ones that are going
to be presented next, a transition labeled with an uncontrollable event rst is added to
all states of the automata. Once this event is executed, the automata go back to their
initial state, resetting the system. This is useful to synchronize the automata in case they
go out of sync, which can happen due to an attack or to a malfunction of one of the subsystems.

The next two models are the ones representing the behavior of the mixer and the
pump, shown in Figures A.2(a) and A.2(b), respectively. Their behavior is modeled by
a two-state automaton, representing the idle (I) and working (W) states. The transi-
tions from idle to working states and from the working state back to idle happen with the
execution of the controllable eventsM on andMoff for the mixer and P on and P off for the pump.

I W

M on

Moff

rst

rst

(a) Mixer.

I W

P on

P off

rst

rst

(b) Pump.

Figure A.2: Models of mixer and pump.

The temperature control of the liquid in the tank is modeled by the automaton of Figure
A.3. The states represent that the continuous-time temperature controller is either in idle
(I) or in the working (W) state. The controllable events T on and T off are responsible for
turning the temperature control on and off, respectively. When the temperature control is
working, a temperature sensor can trigger the uncontrollable events heated and cooled, each
one associated to a previously adjusted setpoint.

I W

T on

T off

rst

heated
cooled

rst

Figure A.3: Temperature control plant

The last plant model does not model a specific subsystem, but rather the whole process,
which can be in idle (I) or working (W) states. The automaton is shown in Figure A.4. This
model is useful when modeling the specifications that constrain the functioning of a subsystem

A.2. Specifications and supervisors 137

to to beginning or to end of a production cycle, as will be seen in the next section. The transition
from state idle to working is made by the uncontrollable event start, which is triggered when a
human operator presses a button to start the production of a batch. Once the batch is finished,
the event finish is triggered in the controller.

I W

start

finish
rst

rst

Figure A.4: Process automaton

In the next subsection the models of specifications and supervisors are presented.

A.2 Specifications and supervisors

With the goal to specify the correct order in which each subsystem in the physical
process has to operate to produce a batch of the final product, a set of specifications were
designed. The use of specifications with a small number of states, one for each of the necessary
conditions for batch production was preferred over more complex automata, where a single
one represents a set of conditions. In other words, it was preferred to obtain a large number of
small automata instead a small number of large automata, since small automata are easier to
code.

For each one of the specifications that will be presented next, a reduced supervisor was
also obtained. The local modular synthesis (De Queiroz and Cury, 2002) combined with the
supervisor reduction technique (Su and Wonham, 2004) was employed in order to obtain even
smaller automata, which are easier to code in the controller. Red dashed arrows represent that
a specific event is disabled by the supervisor at a given state. If an event is not disabled, then
the event is enabled. This information about event disablement/enablement is the control
action of the supervisor at each of its states.

The specification E1, shown in Fig. A.5(a), makes the occurrence of event V close
in

conditional upon the occurrence of event LH1 . This means that the input valve can only close
after the tank is full. The corresponding supervisor, S1, is shown in Fig. A.5(b). Notice that
event V close

in is disabled after the occurrence of V open
in until event LH1 occurs.

The specification E2 of Fig. A.6(a) makes the occurrence of event V close
out conditional

upon the occurrence of event LL1 . In other words, once the output valve is opened, it has to

138 Appendix A. Models

0 1

LH1

V close
in

rst LH1

rst

(a) Specification E1 - In-
put valve closing

0 1

V open
in

LH1

rst

LH1

V close
in

rst

V close
in

(b) Supervisor S1

Figure A.5: Specification E1 and Supervisor S1

remain that way until event the tank is empty. The corresponding supervisor S2 is shown in
Fig. A.6(b), which disables event V close

out before the occurrence of event LL1 .

0 1

LL1

V close
out

rst

rst

LL1

(a) Specification E2 - Out-
put valve closing and tank

0 1

V open
out

LL1

rst

LL1

V close
out

rst

V close
out

(b) Supervisor S2

Figure A.6: Specification E2 and Supervisor S2

The requirement for the input valve is that event start must occur before the input valve
is opened, which is modeled by the specification E3 of Fig. A.7(a). The corresponding super-
visor S3 is shown in Fig. A.7(b); which disables event V open

in before the occurrence of event start.

Regarding the output valve, it can only open after the liquid has been cooled, which
means that the final product is ready, condition modeled by specification E4, shown in Fig.
A.8(a). The corresponding supervisor S4, shown in Fig. A.8(b), disables event V open

out before
the occurrence of event cooled.

The specification E5 of Fig. A.9(a) makes the starting of the mixer conditional upon the
filling of the tank. For this, the supervisor S5, shown in Fig. A.9(b), disables event M on before
the occurrence of event LH1 .

Once the mixer is working, it can only stop when the liquid cools down. Thus, specifi-

A.2. Specifications and supervisors 139

0 1

start

V open
in

rst

rst

(a) Specification E3 - In-
put valve opening and
process

0 1 2

start

V open
in

rst

finish

V open
in

rst

finish
rst

V open
in

(b) Supervisor S3

Figure A.7: Specification E3 and Supervisor S3

0 1

cooled

V open
out

rstrst

cooled

(a) Specification E4 - Out-
put valve opening and pro-
cess

0 1 2

cooled

V open
out

rst

T off

T on

V open
out

rst

heated
T on

T off

rst
heated
cooled

V open
out

(b) Supervisor S4

Figure A.8: Specification E4 and Supervisor S4

cation A.10(a) makes the execution of event M off conditional upon the occurrence of event
cooled. This is accomplished by the supervisor S6 of Fig. A.10(b), which disables event Moff

while event cooled has not yet occurred.

The pump can only be turned on after the liquid has been heated, when the cooling
phase starts. This requirement is modeled by the specification E7, shown in Fig. A.11(a). The
corresponding supervisor S7, shown in Fig. A.11(b), disables event P on while event heated has
not occurred.

In order to be possible for the pump to stop working, the liquid has to be completely
cooled down. This condition is modeled by specification E8 of Fig. A.12(a). The supervisor
S8, shown in Fig. A.12(b), disables event P off until event cooled occurs.

140 Appendix A. Models

0 1

LH1

M on

rst

rst LH1

(a) Specification E5 -
Starting of mixer and
input valve

0 1 2

LH1 M on

LH1

Moff

rst

rst

Moff

LH1rst

M on

(b) Supervisor S5

Figure A.9: Specification E5 and Supervisor S5

0 1

cooled

Moff

rst

cooledrst

(a) Specification E6 - Stop-
ping of mixer and tempera-
ture control

0 1 2

cooled

Moff

rst

T off

T on

Moff

rst

heated
T on

T off

rst
heated
cooled

Moff

(b) Supervisor S6

Figure A.10: Specification E6 and Supervisor S6

The continuous-time temperature control can only start to operate once the tank is
filled, a condition captured by specification E9, illustrated in Fig. A.13(a). The corresponding
supervisor S9, shown in Fig. A.13(b), disables event T on while waiting for the occurrence of
event LH1 .

Finally, the last specification, E10, constrains the stopping of the continuous-time temper-
ature controller to cooling of the liquid. The specification is shown in Fig. A.14(a). Supervisor
S10 disables event T off while event cooled has not occurred.

A.2. Specifications and supervisors 141

0 1

heated

P on

rst

rst heated

(a) Specification E7 - Start-
ing of pump and tempera-
ture control

0 1 2

heated P on

heated

P off

rst

rst

P off

heatedrst

P on

P on

(b) Supervisor S7

Figure A.11: Specification E7 and Supervisor S7

0 1

cooled

P off

rst

rst cooled

(a) Specification E8 - Stop-
ping of pump and tempera-
ture control

0 1 2

cooled

P off

rst
P on

rst

cooled

rst
P on

cooled

P off P off

(b) Supervisor S8

Figure A.12: Specification E8 and Supervisor S8

0 1

LH1

T on

rst

rst LH1

(a) Specification E9 -
Starting of temperature
control and input valve

0 1 2

LH1

T on

rst

V close
in

V open
in

T on

rst

V open
in

V close
in

rst LH1

T on

(b) Supervisor S9

Figure A.13: Specification E9 and Supervisor S9

142 Appendix A. Models

0 1 2

heated

rst

cooled

T off

rst

cooled
rst heated

cooled
heated

(a) Specification E10 - Stopping of tem-
perature control

0 1 2

T on

rst

heated

cooled
rst

heated
cooled
T off

rst cooled heated

T off T off

(b) Supervisor S10

Figure A.14: Specification E10 and Supervisor S10

Appendix B

Schematics

The first schematic is the one of the global controller and it is shown in Fig. B.1. For
this node, which is based on the Arduino Mega board, only the communication modules were
attached to it, with the connections described in the schematic. The Ethernet shield is placed
over the Arduino board and requires no additional electrical connections. In the other hand,
the CAN module needs to be connected according to Fig. B.1. Notice that the jumper in the
CAN module that enables the terminating resistor of 120Ω is connected.

Figure B.1: Schematic of the global controller node.

The next node is shown in Fig. B.2. It is based on an Arduino UNO board and has
a CAN module attached to it, in addition to a RC circuit and two LEDs. The RC circuit
emulates the dynamic of the liquid temperature inside the tank. The output of the RC circuit
is connected to an analog input of the Arduino, while its input is connected to an Arduino
output with PWM (pulse width modulation) capability. The values for the capacitor and
resistor are 47µF and 680KΩ, respectively, which gives a time constant of τ = 31, 96s. Because
the time constant is much higher than the period of the PWM signal, which is 2ms, then the
signal applied to the RC circuit can be considered as analog. The two LEDs represent the

143

144 Appendix B. Schematics

input and output valves and each one is connected through a 220Ω resistor.

Figure B.2: Schematic of the node related to the temperature control and valves.

Figure B.3 shows the schematic of the node in which the LEDs representing the pump
and the mixer are connected to. It is based on an Arduino Nano board. A trimpot allows the
user to vary the analog signal sent to one of the analog inputs of the Arduino, representing
the level of liquid in the tank. Additionally, an LCD display is connected to the Arduino
by using an I2C to LCD converter. The display allows the user to see the current values of
continuous-time process variables, such as temperature and level.

Finally, in Fig. B.4, the schematic of a generic node is shown. Is consists only in the
Arduino UNO board and the CAN module. This node can be used to run the Intrusion
Detection System (IDS) or an attacker, for example.

145

Figure B.3: Schematic of the node related to the level sensor, mixer and pump.

Figure B.4: Schematic of the generic node.

	PPGEEUFMG
	41e753aca6ccbcf3e819223b11a1b6d598568aa3a66a16f0449d117a59800cf2.pdf
	Michel Rodrigo das Chagas Alves.odt
	9446ca641e0c1474f0a3befbfa24bcedcc073a8206b4d81704480e0805e6b389.pdf
	41e753aca6ccbcf3e819223b11a1b6d598568aa3a66a16f0449d117a59800cf2.pdf
	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Text Organization

	Literature Review
	Preliminaries
	Language
	Automata
	Supervisory Control Theory
	Supervisory Control under partial observation

	Implementation of DES control

	New test for P-observability for an attack set restricted to stealthy attackers
	Attack Model
	P-Observability for an attack set
	New test for P-observability restricted to stealthy attackers
	Algorithms
	Time complexity
	Case study

	Persistent attacks in Discrete-Event Systems
	Problem formulation
	System setup
	Actions of the attacker
	Attack model
	Attack function represented as an automaton

	Design method for a persistent attacker
	Plant estimator
	Network Estimator
	Non-exposing attack structure
	Complexity

	Discussion

	Implementation of a security testbed
	System architecture
	DES control architecture

	Physical process
	Hardware
	Arduino boards
	Arduino Modules

	Software
	SCT library
	Communication

	Cyber-Attacks
	Discussion

	Conclusion
	Future works

	Bibliography
	Models
	Subsystems
	Specifications and supervisors

	Schematics

