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Abstract

In this work a type of discrete-event systems which vary with time, named dynamic

discrete-event systems, is defined and a method for the control of such systems is

proposed. Two major topics are discussed: redundancy structures for the efficient

reconstruction of the complete system models when constituent modules change, and

the use of online control to optimize the supervision of dynamic systems. Three

redundancy structures are proposed: stack redundancy, tree redundancy and hybrid

redundancy. The control algorithms are designed to address the specific requirements

of the class of systems considered. The online control paradigm is used since it can

adapt automatically to the changes that occur in dynamic systems. A value function

is used to guide the supervision of systems, allowing for optimal control and for a

flexible way to set requirements on the expected system behavior. This function,

combined with the definition of goals, is shown to successfully replace marking in

automata and to support the work of continuous-life systems using infinite goals. It is

shown experimentally that the proposed modifications offer a significant improvement

in the quality of control of dynamic systems. The results of this work can be applied

to the control of large dynamic systems with prioritizing: such as dispatching centers,

factories, resource access managers, and others.
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Chapter 1

Problem description

Discrete-Event Systems Control is a new and exciting field of research. There are

numerous ways one can model discretely a system which reacts to or generates events.

The research on control of such systems, though, usually revolves around the standard

supervisory control theory (SSCT), as proposed by Ramadge and Wonham [23]. This

theory is well-studied and has been adjusted by scientists to fit a number of different

requirements or situations.

In this work I will focus on a solution for the control of a specific class of discrete-

event systems. I will consider systems which are dynamic (change with time), which

are relatively large, which have a continuous lifecycle (i.e., they continuously execute

tasks from a set of tasks), and for which the users might wish to set requirements with

different levels of stringency. These properties are natural for many systems found

in real life. For example, a computer operating system might be executing different

applications, which appear or terminate, which have different priority settings, etc.

Another example is a truck-dispatching center, where different trucks are available at

different times and where different tasks have different levels of importance.

1
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Real-life discrete-event systems tend to be large. This is mostly because physical

behavior of systems is (at least at human-perceivable scale) continuous. As long

as the granularity with which we model increases, so does the complexity of the

model. This is an obvious result. However, what causes a problem here is the nature

of this relation: linear increase in granularity may result in exponential increase in

complexity. This is true even for systems which consist of a number of components

(or modules). While the complexity of a single module is very low, combining many

of these has a dramatic effect on the complexity of the overall system. Thus, it is

reasonable to expect that a controller for real-world discrete-event systems will have

to deal with large systems.

Another aspect of many real-world systems is their uncertainty. While in a well-

designed and tightly-controlled factory most of the processes are predictable (with the

exception of occasional breakdowns), when the system involves or models interactions

between disparate entities (especially when this involves humans), the predictability of

processes decreases substantially. Even when modeling the highly predictable internal

factory processes, one might choose to model also the dependence on external supplies.

Since the factory management has no control over processes outside of the factory,

it is no longer possible to blindly rely on a constant and timely flow of supplies.

The behavior of parts of the system becomes uncertain and this needs to be taken

into account during the control. In this work I consider a specific type of system

dynamics—the appearance or disappearance of a group of modules at different points

during the functioning of the system. While restrictive, this model can be applied

to many systems, since the uncertainty usually is associated with the behavior of

particular entities.
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Control of a system is applied when the natural behavior of the system does not

satisfy our requirements. Most of the time the problem is that the system may vi-

olate a requirement on its behavior. For example, a robot may continue dumping

manufactured parts into a container even when the container gets full. The standard

supervisory control theory was developed around the idea of having a system super-

visor which makes sure such problems do not occur. A subset of the system behavior

is delimited as being legal (admissible) and the supervisor prevents the system from

exhibiting behavior outside of this subset. Such a solution presumes the world is

black and white; and this certainly has applications, for example, in nuclear reactor

control, space exploration, contingency reaction systems, etc. However, in most real-

world systems there is a second requirement which is just as important. Not only

would we like to prevent unwanted behavior, but we would also like to encourage de-

sirable behavior. After all, systems are used to achieve some goals. While the robot

might not be doing anything wrong by not dumping parts at all, one would like parts

to be dumped while the container is not full. Thus, a refinement of the legal behavior

is needed. The controlled system will be guided toward the execution of a task.

The discussion in this work will be concerned mainly with systems which are

expected to function for a long time (have an infinite lifespan), such as operating sys-

tems, database systems, process co-ordinating systems, etc. The continuous lifecycle

relates to the repetition of attempts to achieve a goal from a given set of goals. After

one goal is achieved, the system starts working toward the achievement of another

goal. While the results will be applicable to short-lived systems as well, depending

on the size of these systems, SSCT-based solutions or the method proposed in [10]

might achieve better performance.
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The contributions of this work are as follows:

• The definition of a class of Discrete-Event Systems, called Dynamic Discrete-

Event Systems (DDES), which can be used to model the aforementioned sys-

tems. The formal definition is presented in Chapter 4.

• The definition of three types of redundancy structures which can be used to

speed up the process of recomputing of large systems consisting of separate

modules. Algorithms for the creation and maintenance of such structures are

also developed. The results are presented in Chapter 5.

• The development of a new method for the specification of requirements for the

behavior of Discrete-Event Systems, using a value and a goal function. This

method is shown to be more suitable for use with DDESs and it allows for

specifications with different level of stringency. The functions are discussed in

Sections 6.1 and 6.2.

• The modification of the online control algorithm, [7], to achieve near-optimal

control of DDESs using the value and goal functions. The algorithms for the

new control method are presented in Chapters 6 and 7. A proof-of-concept sim-

ulation shows that the optimal control algorithm achieves better performance

than the original online control algorithm, however, at the cost of increased com-

putational complexity. The results of the simulation are presented in Chapter 8.



Chapter 2

Background

The introduction of digital computers in the past century has influenced human soci-

ety beyond all initial expectations. However, many people do not notice that science

and research have been affected in a similar way. Advertisement logos like “for your

digital lifestyle”, “DIGITall1”, etc. are successful with users, because the most mod-

ern digital equipment has proved to outperform older “analog” machines. Yet science

has been “digitally” influenced as well. Even though Discrete Mathematics, Infor-

mation Theory, Formal Grammars and other fields have been developed before the

creation of the first digital computers, they have gained in popularity and importance

only through their reinvention as “Computer Science”. In other cases, completely new

areas of research have come into existence due to the digitalization of our world—such

as the Control of Discrete-Event Systems.

1Trademark property of Samsung Electronics

5
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2.1 Discrete-Event Systems

The discretization of calculations in a computer has served as an inspiration to many

researchers. It was not long before people realized that many systems (especially

digital systems) could be successfully modeled as Discrete-Event Systems (DES).

Such systems are those where events (changes of state) happen spontaneously, are

logically ordered relative to each other, and are not tied to a continuous global time.

An example of a DES is the high-level model of a vending machine. The machine

has a number of discrete states, defined by how many articles are available inside the

machine and how many coins are inserted. A change of state happens when a coin is

inserted or when the machine delivers an article. These changes of states are named

“events”. Some events can happen only in a given state. For example, the machine

will not deliver an item if there are no goods loaded, or if the correct amount of

money is not inserted. Naturally, DES models can be applied to much more complex

systems, such as manufacturing cells [16].

Discrete-Event Systems can be formally modeled using many different approaches,

ranging from Petri nets to Markov chains, fuzzy matrixes [17], and modal logic [25, 22].

However, the most commonly used method is the representation through automata,

and for all practical purposes—Finite-State Machines (FSM). Besides being a very in-

tuitive approach, this also allows for the application of results from Automata Theory,

which is a well-studied area.

An FSM is a five-tuple G = (Σ, Q, δ, q0, Qf ), where Σ is a finite set of symbols

(and is often called the alphabet), Q is a finite set of states, δ is a partial transition

function Σ × Q → Q, q0 is the initial state of the system, and Qf ⊆ Q is a subset of

the states, which are defined to be “final” (a final state is sometimes also referred to
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as a “marked state”). The special “empty” symbol ε, which does not belong to Σ,

is used to denote the empty string (i.e., the string of length zero). The notation Σ∗

stands for the set of all strings of symbols from Σ and ε. The transition function δ can

be naturally extended to the partial function δ′ : Σ∗×Q → Q, where δ′(σ, q) = δ(σ, q)

for all σ ∈ Σ and q ∈ Q and δ′(σs, q) = δ′(s, δ(σ, q)) for s ∈ Σ∗, σ ∈ Σ, and q ∈ Q.

Usually, δ′ is denoted by δ and is used instead of the original transition function. An

FSM can be interpreted as a DES if states are considered to be states of the system

and transitions labeled with symbols from Σ are considered to be events happening

in the system. Strings of symbols would describe sequences of events.

The language L(G) is defined to be the set of all possible sequences of events in

the system. The FSM G is said to generate L(G). The language Lm(G) is defined to

be the set of all sequences of events which lead to a final state. The FSM G is said

to accept Lm(G). The generated language L(G) is always a superset of Lm(G). More

formally,

L(G) = {s | s ∈ Σ∗, δ(s, q0) is defined},

Lm(G) = {s | s ∈ Σ∗, δ(s, q0) is defined, δ(s, q0) ∈ Qf},

and Lm(G) ⊆ L(G).

The prefix-closure of a language is defined to be the set of all prefixes of strings in

the language. The empty string ε is a prefix of any string. For all automata, prefix-

closing the generated language produces a language equal to the generated language

itself. More formally,

L = {s | s ∈ Σ∗,∃t ∈ Σ∗, st ∈ L}, L(G) = L(G).

A prefix-closed language is a language which equals its prefix-closure. Prefix closure
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is an important operation because it describes all the possible partial behaviors of a

DES. An example of a DES is the simplified model of a customer at a store (Fig. 2.1).

q0 q1

q3 q2

enter

leave

pickleave

pay cash

pay cc

leave

Figure 2.1: DES model of a customer in a store

The customer can enter the store, pick something to buy, pay with cash or a

credit card, and leave at any time. Here Σ = {“enter”, “pick”, “pay cash”, “pay cc”,

“leave”}. The set of states is Q = {q0, q1, q2, q3}. The transition function can be

determined from the diagram in Fig. 2.1, e.g., δ(pick, q1) = q2. The initial state is

marked with q0. This state is the only final state, as well (i.e., Qf = {q0}). Examples

of event sequences are “enter, leave” or “enter, pick, pay cc”. The second sequence

is not “complete”—it does not belong to Lm. However, it belongs to Lm, since it is

a prefix of the sequence “enter, pick, pay cc, leave”, which is in Lm.

The examples presented here are very simple, but one can easily imagine the

application of DESs in factory processes, computer protocols, and other areas. This

is why scientists are increasingly becoming interested in the DES paradigm.
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2.2 Control of DES

Ever since the first mechanical machines have been built, their control has played a

central role in the design. This is why Control Theory is a very important subject

of Engineering. Classical Control Theory deals with the control of machines in con-

tinuous real time—employing, for example, differential equations. In the early 1980s

researchers discovered the potential of describing systems as DESs. Naturally, one

would not like to use DESs without having any means of control. Along with the many

advantages that the discretization of a system’s behavior brings, such as simplifica-

tion and abstraction, there come also the issues of not having a well-developed theory.

The pioneers of the Control Theory of DES are Ramadge and Wonham [23, 24].

How would one control a DES? As with any other system, the first thing to do

is to specify the requirements on the system. This could be as simple as saying “the

customer should not leave without paying”. Of course, before being able to execute

the requirements, the verbal specifications have to be formalized. The example above

can be translated to “the sequence ‘enter, pick, leave’ must not happen in the sys-

tem”. If there are many requirements, we will end up with a list of sequences which

must not happen in the system, and another one with sequences that have to happen.

The above can be summarized easily by defining a sublanguage K of the accepted

language Lm, such that K contains all and only the sequences that are desirable. This

language is dubbed the “legal language”, because all sequences outside of K are con-

sidered forbidden, i.e., they must not happen. Thus the specification of requirements

translates to simply defining a legal language.

Before one starts exercising control, the limitations of the system have to be

explored. As with other types of systems, not all parts of a DES need be controllable.
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The alphabet Σ is thus partitioned into two complementary subsets, Σc and Σuc, the

set of controllable events and the set of uncontrollable events, respectively.

Σ = Σc ∪ Σuc, Σc ∩ Σuc = ∅

The controllable events are events which can be enabled or disabled. When en-

abled, the event can happen in the system, given that the underlying automaton can

generate it. When disabled, the event cannot happen in the system. The uncontrol-

lable events cannot be disabled and they may occur at any point, when they can be

generated.

In the store-customer example, the set of controllable events can be Σc = {“enter”,

“pay cash”, “pay cc”} and the set of uncontrollable events can be Σuc = {“pick”,

“leave”}. Clearly, if the owner closes the store, customers will not be able to enter.

The cashier can also control the method of payment. On the other hand, the behavior

of the customers inside the store is not under control; customers can make their own

decisions about whether they will pick something to buy or when to leave.

Once the requirements on the system are specified, and once the tools to control

a DES are available, how does one exercise the control? There are two basic types of

control: offline control and online control. The two approaches are discussed next.

2.3 Offline control

The offline control of DES was first proposed by Ramadge and Wonham [23]. Their

work has served as the basis for most of the research on DES performed since then.

Offline control uses a very simple approach. According to the requirement spec-

ifications, a new automaton is constructed. It is constructed in such a way that
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it accepts only the legal language. Roughly speaking, the automaton describes

when and which events have to be disabled, so that the requirements are met.

The actual control occurs by intersecting the original DES automaton and the con-

trol automaton. This results in a system which behaves according to the require-

ments, i.e., it accepts the legal language. The intersection of two automata—G1 =

(Σ1, Q1, δ1, q01, Qf1) and G2 = (Σ2, Q2, δ2, q02, Qf2)—is defined as the automaton

G = (Σ1 ∪ Σ2, Q1 × Q2, δ, [q01, q02], Qf1 × Qf2), where the states are elements of the

Cartesian product of the sets of states of the two automata, the transition function δ

is defined as δ : (Σ1 ∪ Σ2) × (Q1 × Q2) → Q1 × Q2, δ(σ, [q1, q2]) = [δ1(σ, q1), δ2(σ, q2)]

and is defined if and only if both δ1(σ, q1) and δ2(σ, q2) are defined. We use square

brackets to denote the Cartesian product of states for better readability.

The approach is offline since it requires full knowledge of the DES and since the

control automaton can be calculated once for the whole lifetime of the system. Due

to the way the control automaton is applied, it is called a “supervisor” of the system,

and the offline control is named “supervisory control of DES”.

In the store-customer example already discussed, the legal language could be de-

fined as K = {“enter, leave”, “enter, pick, pay cash, leave”}. One possible supervisor

could look like Fig. 2.2(b). After intersecting the supervisor and the DES, the con-

trolled system would look like Fig. 2.2(c). One can see how the new system can

execute only sequences from the legal language. For example, the customer is limited

in the payment methods he or she can use, i.e., only cash is accepted.

Being able to use supervisory control, however, does not guarantee that the re-

strictions can always be met. For example, since the “leave” event is uncontrollable,

the supervisor cannot disable it. Thus, the customer will be able to leave after picking
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q0

enter

leave

pickleave

pay cash

pay cc

leave

(a) uncontrolled system

∩ q0

pick

pay cash

enter, leave

(b) supervisor

=

q0

enter

leave

pick

pay cash

leave

(c) controlled system

Figure 2.2: Offline supervisory control

something to buy and before he or she pays for the item, i.e., the controlled system

could execute the sequence “enter, pick, leave” (Fig. 2.3).

q0

enter

leave

pickleave

pay cash

leave

Figure 2.3: An uncontrollable event leads outside the legal language

2.3.1 Controllability and the supremal controllable sublan-

guage

Given that supervisors cannot control every event, is there a way to always ensure the

DES behaves according to the legal language? As discussed in [4], this is not possible

in all cases. Sometimes no supervisor can be constructed such that the supervised

system executes only sequences from the legal language. The reason for this is that
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from a sequence in the legal language an uncontrollable event can “shoot off”, leading

to a sequence outside the legal language. The sequence “enter, pick” is a prefix of the

sequence “enter, pick, pay cash, leave” which belongs to the legal language. However,

the uncontrollable event “leave” may lead to the undesirable sequence “enter, pick,

leave”. Since, by definition, no supervisor can disable the “leave” event, a supervisor

for the legal language cannot be constructed. This fact is formalized by the definition

of controllability of a legal language with respect to a DES. A language is said to be

controllable with respect to a DES if and only if no uncontrollable event leads outside

the prefix closure of the legal language.

K is controllable with respect to G ⇔ {sσ | s ∈ K,σ ∈ Σuc, sσ ∈ L(G)} ⊆ K

What could one do if the desired legal language is not controllable with respect

to the DES? Controllability is always tied to a specific legal language; it is not an

intrinsic property of a system. For two different legal languages K1 and K2, K1

might not be controllable with respect to the system and K2 might be controllable

with respect to the system. Thus, if the legal language is modified, it might become

controllable with respect to the system.

A very important observation on the properties of controllability has been made

[29]. Controllability is preserved under union, that is, if both K1 and K2 are control-

lable with respect to G, then K1∪K2 is controllable with respect to G. Furthermore,

∅ is controllable with respect to any system. These results show that the class of all

controllable sublanguages with respect to a DES, C(K,G) = {L | L ⊆ K,L is con-

trollable with respect to G}, is a complete semilattice with a supremal element. This

element usually is denoted by sup C(K,G), the supremal controllable sublanguage of

the legal language K.



CHAPTER 2. BACKGROUND 14

Given the above results, if a legal language is not controllable with respect to

the DES, one could consider the supremal controllable sublanguage instead. It is

not necessary to choose the supremal controllable sublanguage, however, the reason

behind this choice is that the supremal one matches most closely the original legal

language. All other controllable languages impose greater restrictions on the system.

Unfortunately, even the supremal controllable sublanguage may turn out to be empty.

This is the case with the store-customer example. If “enter” is allowed to happen,

the uncontrollable events “pick” and then “leave” might follow—which would lead

outside the legal language. Thus “enter” has to be disabled. From here it follows

that the supremal controllable sublanguage is the empty set.

In general, whether the legal language K is prefix-closed or not impacts signifi-

cantly the complexity of algorithms which solve different problems. For example, the

least-complex algorithm available for the computation of supC has a complexity of

O(mn|Σ|) for a prefix-closed legal language, and a complexity of O(m2n2|Σ|) for the

general case, where m and n are the number of states in the DES automaton and the

supervising automaton respectively [4]. Since my work is interested in the control of

dynamic DESs where “final” (or “marked”) states do not always have meaning (see

Section 6.1), I have chosen to consider only prefix-closed legal languages. All legal

languages in the rest of this work are considered to be prefix-closed, unless stated

otherwise.

The approach of offline control, or supervisory control, can be summarized as

following:

1. Specify the requirements on the system.

2. Generate the legal language corresponding to the requirements.
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3. Verify the controllability of the legal language with respect to the DES. If it

is not controllable, generate the supremal controllable sublanguage of the legal

language.

4. Generate the supervisor FSM for the language from step (3).

5. Intersect the supervisor and the DES to obtain the controlled system.

2.3.2 Modular control

As already mentioned, supervisory control is the most extensively studied type of

control. Many modifications of the basic approach are proposed. These include

control of modular DESs [30, 28, 8, 2], hierarchical DESs [32], distributed DESs [26],

partially observable DESs [4] and others.

Modular DESs are of particular interest to my work because they serve to describe

DESs as an assembly of modules. These modules are coupled using one of a number

of possible compositions, of which the parallel composition (also called synchronous

product) is the most widely used [4]. For two systems, G1 = (Σ1, Q1, δ1, q01, Qf1) and

G2 = (Σ2, Q2, δ2, q02, Qf2), the synchronous product is defined to be the automaton

G1‖G2 = (Σ1 ∪ Σ2, Q1 × Q2, δ, [q01, q02], Qf1 × Qf2), where the states are elements

of the Cartesian product of the sets of states of the two automata, the transition

function δ is defined as δ : (Σ1 ∪ Σ2) × (Q1 × Q2) → Q1 × Q2,

δ(σ, [q1, q2]) = [δ1(σ, q1), δ2(σ, q2)] if both δ1(σ, q1) and δ2(σ, q2) are defined,

= [δ1(σ, q1), q2] if only δ1(σ, q1) is defined and σ /∈ Σ2,

= [q1, δ2(σ, q2)] if only δ2(σ, q2) is defined and σ /∈ Σ1,

undefined otherwise.
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In this work a modification of the synchronous product will be used because it allows

for greater freedom in the behavior of parallel systems. We will call the new compo-

sition synchronous shuffle. The only difference is in the definition of the transition

function δ:

δ(σ, [q1, q2]) = [δ1(σ, q1), δ2(σ, q2)] if both δ1(σ, q1) and δ2(σ, q2) are defined,

= [δ1(σ, q1), q2] if only δ1(σ, q1) is defined,

= [q1, δ2(σ, q2)] if only δ2(σ, q2) is defined,

undefined if neither δ1(σ, q1) nor δ2(σ, q2) are defined.

The synchronous shuffle of two DES modules simply means that the resultant

system can execute the events that any one of the constituent systems can execute,

and that the events are executed in both systems synchronously when possible.

If we consider the example discussed before, there could be two customers in

the store. Each customer will have its own set of events (“enter1”, “leave1”. . . and

“enter2”, “leave2”. . . ) If the customers are a couple, they could pay together if they

have chosen the items to buy, i.e., the “pay cash” event will be common for both

modules (Fig. 2.4). The result of the synchronous shuffle is shown in Table 2.1.

The modularity of DESs can be used to describe very complex systems as a parallel

composition of a number of smaller and simpler systems. This not only helps people

in being able to comprehend how a DES works, but also can be used to improve the

performance of different algorithms. A successful application is the modular super-

visory control [30]. Instead of creating one big supervisor for the complete DES, a

separate “local” supervisor for each module in the system is designed. The supervisor

for the complete system is then constructed by intersecting the two supervisors. This

approach significantly reduces the complexity of calculations. For a prefix-closed legal
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0 1

3 2

enteri

leavei

pickileavei

pay cash

pay cci

leavei

Figure 2.4: DES for two customers, i ∈ {1, 2}. The event pay cash is a common
event.

language, the complexity is reduced from O(mn|Σ|) to O(max(m,n)|Σ|), where m, n

are the number of states in the two modules.

An example of modular control is given in Fig. 2.5. Two separate supervisors for

the two customers are constructed and then the complete system is supervised by the

intersection of the supervisors. It is important to note that each “local” supervisor

should always enable the “foreign” events, otherwise intersection will not produce the

desired result.

When dealing with non-prefix-closed languages, the modular supervision would

not always produce a correct result, since each “local” supervisor is not able to see

the “big picture” of the whole system [4]. In [31] a number of different approaches to

supervisor construction for distributed control are investigated, however the principles

can also be applied to modular control, so this paper can be useful reading for modular

supervision.
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0 1

pick1

pay cc1, pay cash

0 1

pick2

pay cc2, pay cash

(a) two customers

0 1

pick1

pick2, pay cc2

pay cash

pick2, pay cc2

0 1

pick2

pick1, pay cc1

pay cash

pick1, pay cc1

(b) “local” supervisors

[0,0] [0,1]

[1,0] [1,1]

pick2

pay cash

pick1pay cash

pick2

pick1

pay cash

(c) global supervisor for the com-
plete system

Figure 2.5: Modular supervision. The legal language is the prefix closure of {“pick1,
pay cash”, “pick2, pay cash”, “pick1, pick2, pay cash”, “pick2, pick1, pay cash”}. The
DESs for the customers were edited to reduce the complexity.
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Table 2.1: Transitions of Customer1 ‖ Customer2. The system has 42 = 16 states:

Initial state Event New state
[0,0] enter1 [1,0]

enter2 [0,1]
[0,1] pick2 [0,2]

leave2 [0,0]
enter1 [1,1]

[0,2] pay cc2 [0,3]
pay cash [0,3]
leave2 [0,0]
enter1 [1,2]

[0,3] leave2 [0,0]
enter1 [1,3]

[1,0] pick1 [2,0]
leave1 [0,0]
enter2 [1,1]

[1,1] pick1 [2,1]
leave1 [0,1]
pick2 [1,2]
leave2 [1,0]

[1,2] pick1 [2,2]
leave1 [0,2]

pay cc2 [1,3]
pay cash [1,3]
leave2 [1,0]

[1,3] pick1 [2,3]
leave1 [0,3]
leave2 [1,0]

[2,0] pay cc1 [3,0]
pay cash [3,0]
leave1 [0,0]
enter2 [2,1]

Initial state Event New state
[2,1] pay cc1 [3,1]

pay cash [3,1]
leave1 [0,1]
pick2 [2,2]
leave2 [2,0]

[2,2] pay cc1 [3,2]
pay cash [3,3]
leave1 [0,2]

pay cc2 [2,3]
leave2 [2,0]

[2,3] pay cc1 [3,3]
pay cash [3,3]
leave1 [0,3]
leave2 [3,0]

[3,0] leave1 [0,0]
enter2 [3,1]

[3,1] leave1 [0,1]
pick2 [3,2]
leave2 [3,0]

[3,2] leave1 [0,2]
pay cc2 [3,3]
pay cash [3,3]
leave2 [3,0]

[3,3] leave1 [0,3]
leave2 [3,0]
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2.3.3 Issues with offline control

Simple as it is, offline control seems to be a very promising tool for the manipula-

tion of systems which can be modeled as DESs. Once the requirements are specified

as a legal language, the rest of the steps can be completely automated. There are

algorithms capable of generating FSMs from regular languages, algorithms for the

generation of the supremable controllable sublanguage, and algorithms to create syn-

chronous shuffle and intersection of automata. After the initial excitement over the

new convenient paradigm for control, however, a number of problems were identified.

These include the enormous state space complexity of relatively simple systems and

the inappropriateness of the supervisory approach for dynamically changing systems.

One of the most disappointing implications of the DES paradigm is its state-

space complexity. If continuous systems are modeled, they can be described using

real functions. Thus with a single equation (or a very small number of equations)

the system can be described to an arbitrarily small level of detail. However, if the

same system is to be described using discrete states, the level of detail will always be

finite—it depends on the “coarseness” of the description. If a simple function is to be

described, say the function y = x for x ∈ [0, 1), then a two-state DES could be used,

for example, to represent the states y1 = x for x ∈ [0, 0.5) and y2 = x for x ∈ [0.5, 1).

If twice the detail is required, the system will need four states: y1 = x for x ∈ [0, 0.25),

y2 = x for x ∈ [0.25, 0.5), y3 = x for x ∈ [0.5, 0.75), and y4 = x for x ∈ [0.75, 1).

For three times the detail, eight states will be needed, and so on. In other words, a

linear increase on the requirements for detail leads to an exponential increase in the

number of states required to describe the system. How severe this problem is can

be easily illustrated. If the store with customers is considered once again, one could
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easily imagine that there can be, for example, seven customers in the store. Each

customer is described using a highly simplified DES, consisting of only four states.

How complex would the complete system be? Using the synchronous shuffle, the

resultant DES could have up to 16,384 states! The large number is obtained for a

store with seven customers and this is a small store according to most standards.

A system with 16,000 states can still be successfully manipulated using any modern

computer. However, if real problems are considered, there can be 20 or more mod-

ules and each module can have 100 or more states. This results in a system which

can possibly have 10020 or more states. Is there a computer capable of performing

computations on this number of states in a reasonable amount of time? This result

shows that control of DES seems to be inappropriate for almost all practical purposes.

A solution to this problem might be made available through quantum computations

[3] since quanta are capable of performing an exponential number of calculations in

linear time. Unfortunately, the development of real quantum computers is still in its

very early stages and most of the research remains purely theoretical.

The next problem, connected with supervisory control of DES, is related to the

one discussed above. How would one implement the control of systems which vary

with time? Such change could be the flow of customers in a store. When the store

opens, it would start with no customers, then a varying number of customers will

come in and leave at different points during the open hours. If the store manager

wishes to use a controlled DES to model the operation of the store, he or she will

not be able to employ the supervisory control approach. Since the manager does not

know in advance the number of customers for any given time, he or she cannot build

a supervisor for the system.
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For small systems, this problem can be solved in a couple of ways:

• perform all computations over again each time the number of customers changes

• use modular control and each time only compose the required number of mod-

ules

• use precomputed models for every possible number of customers

As is easily seen, these approaches can work only when the state space of the

system is very small and when the range of possible changes to the system is limited

and predictable. If a supervisor for a very large system can be computed using a

supercomputer for one year, but the system changes every three months, would the

offline approach be feasible?

The practical limitations of the offline control of DES have led to the proposal of

other ways to control such systems.

2.4 Online control

Soon after the introduction of offline (supervisory) control of DES, it was recognized

that even though the method is “optimal” in the sense of providing the correct answer,

closest to our expectations, it is not applicable in most practical situations. Offline

control requires complete knowledge of the controlled DES, so that controllability

can be verified or the supremal controllable sublanguage can be constructed. Unfor-

tunately, most real systems are so complex that it is almost impossible to describe

them directly as a DES. The modular approach has been developed, namely, the sys-

tem is divided into logical components (modules) which cooperate (work in parallel).
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The description and the control of DESs are thus greatly simplified. This approach,

however, fails to circumvent the greatest obstacle in the application of DESs: the

state-space complexity. With the linear increase of the system (e.g., the number of

modules), an exponential “explosion” of the number of states is observed. Even when

it is practically possible to calculate a supervisor, the process is so long that it cannot

be used when the system changes frequently. An example of a system which can

be successfully modeled as a DES is the concurrency manager of databases. Even

though each transaction has a very limited set of states (usually three), there can be

tens of concurrent transactions in a database. The expected performance makes it

impossible to wait even one second for each decision of the manager. Looking for a

way to solve the issues with offline control, researchers have come up with the idea

of online control [6].

Unlike the offline control, this new approach does not depend on complete knowl-

edge of the system. Control is exercised from outside of the system. A unit, called

a controller, intercepts events as they happen in the DES and synchronously makes

decisions about which events to enable or disable. A diagram of the process is shown

in Fig. 2.6. This method lets the control be carried out “online”, i.e., the control

decisions are made as the system evolves.

How would the controller know which controllable events to enable and which to

disable? Two approaches have been proposed in the literature: abstracted control

[6] and control using state information [10]. The abstracted approach requires only

knowledge of the language, generated by the DES (L(G)), and the legal language (K).

No assumptions are made on how the DES is implemented and how it works (whether

it is an automaton, a Petri net, etc.) The approach using state information works
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Controller

System

event
enabled events,
disabled events
for next step

Figure 2.6: Online control scheme

only with FSM-implemented DESs and requires knowledge of the concrete structure

of the system. Both approaches proceed by building what is called a “look-ahead

window” and examining this structure to determine the control actions.

The operation of a DES consists of the occurrences of events. The events, which

have happened in the system, create a sequence which describes the history of the

system. After each event, there can be numerous ways a system can proceed. If

we consider the store-customer example, after the sequence “enter”, the system can

proceed by executing either “leave” or “pick”. After the sequence “enter, pick”, the

system can continue with “leave”, “pay cc”, or “pay cash”. These possibilities create

a tree-like structure (Fig. 2.7) which is called a look-ahead window or tree.

enter
leave

pick

leave

pay cc

pay cash

Figure 2.7: Look-ahead tree for the customer example
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After the occurrence of an event, the controller has to decide on the enablement

or disablement of the controllable events (since uncontrollable events remain always

enabled). The decision should be such that the sequence, which will eventually be

executed in the system, will belong to the legal language. Thus, examination of the

look-ahead tree can provide the controller with the necessary information, since it

contains the possible evolutions of the system. Each possible future sequence can be

explored and if it leads to something outside of the legal language, the controller can

decide to disable the controllable events leading to this sequence.

The use of the look-ahead tree is not very efficient, though, if no restrictions

are imposed. If the controller can follow arbitrarily long potential sequences, each

single iteration of the control process might end up having the same complexity as

the calculation of the supervisor for the offline control. This would only increase the

inefficiency of the control, without bringing any advantages. Two ways to deal with

this issue have been proposed: putting a limit on the depth of the look-ahead tree [6]

and restricting the class of DESs which can be controlled (i.e., only FSM-implemented

DESs can be considered) [10, 11].

2.4.1 Abstracted online control

The abstracted approach for online control uses a limited look-ahead window to

achieve higher efficiency and to solve the problems of offline control. The DES system

is treated as a black box, which simply outputs events as they happen. These events

are matched against the language L(G) which can be generated by the system. The

legal language is also available. The control decisions are fed back to the system

after an event is intercepted. The controller does not have unlimited exploration
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capabilities for the look-ahead window. A number N is chosen, which sets the max-

imal depth to which the controller can explore the tree structure (Fig. 2.8). Since

the depth can be a small number, it is expected that each control decision will be

available quickly and the controller will be able to operate with very complex systems

by simply examining a small part at a time. Knowledge of the whole system is not

required.

Figure 2.8: Limited look-ahead window (here N = 3)

Unfortunately, having a limited view of the whole system does not allow the

controller to always make the correct decision. More specifically, the controller does

not have any information about what can happen beyond the set depth of exploration.

For example, after a controllable event a sequence of uncontrollable events can lead

out of the window that is being considered. Up to the border the sequence might

be legal, but it is impossible to tell if it is a prefix of a legal sequence or of an

illegal sequence (Fig. 2.9(a) and (c), respectively). In general, there are two possible

problems: a sequence of uncontrollable events leads out of the limited look-ahead

window (as discussed above), or there are controllable events in the sequence, however,

if its continuation does not belong to the legal language, late disablement would leave
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the system with no way to continue operation (Fig. 2.9(b)). Chung, Lafortune, and

Lin propose two policies for how the controller can cope with the uncertainty: the

conservative and the optimistic policies [6].

a

b

c

Figure 2.9: Problems with the limited look-ahead window. a) a sequence of uncon-
trollable events leads to an unwanted state; b) a sequence of controllable events leads
to blocking (there are no acceptable continuations); c) a sequence of uncontrollable
events leads to a desirable state. Dashed arrows represent uncontrollable events. Dark
nodes represent illegal states.

The conservative policy assumes that sequences which cannot be determined to

be legal are considered illegal and controllable events leading to them are disabled.

This corresponds to the attitude “let’s play it safe”. This policy guarantees that

illegal sequences will never occur. There are two problems with this policy. The

first one is that the controller might not produce a correct result, i.e., it will disable

legal sequences which otherwise would be available under offline control (Fig. 2.9(c)).

The other is the “starting error”. A starting error occurs if the controller cannot

find a legal sequence in the look-ahead window before the DES starts operating.

Thus all controllable events will be disabled even before an event happens. However,

if there is no starting error and if the legal language does not contain a sequence
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of uncontrollable events with length N − 1, the conservative-policy controller will

exercise control equivalent to the supervisory control for supC(Kp, G), where Kp is

the legal language devoid of sequences containing uncontrollable-event subsequences

of length N − 1 or more. If L(G, cons) denotes the controlled language, then

L(G, cons) = sup C(Kp, G),

where Kp = K \ {uvw | u,w ∈ Σ∗, v ∈ Σ∗
uc, |v| = N − 1}.

Furthermore, if N is chosen such that it is greater than the maximal number of con-

secutive uncontrollable events in a sequence from the legal language, then the con-

servative policy achieves the supremal controllable sublanguage of the legal language,

i.e.,

N ≥ Nu + 2 ⇒ L(G, cons) = sup C(K,G),

where Nu = max{|v| | v ∈ Σ∗
uc,∃(u,w ∈ Σ∗)uvw ∈ K}.

When the optimistic policy is used by a controller, the uncertainties are treated in

exactly the opposite way to what the conservative controller would do. If a sequence

cannot be determined to be illegal, it is assumed to belong to the legal language. This

corresponds to the attitude “let’s take a chance”. This policy avoids disabling legal

sequences unnecessarily, however, it cannot guarantee that illegal sequences will not

occur. Like the conservative policy, the result might not be correct, i.e., there is the

chance that illegal sequences can happen in the DES (Fig. 2.9(a)). A runtime error

(RTE) is the condition when the controller disables all controllable events, because

the DES is in a state from which no legal sequences can follow. This can happen

when the optimistic policy has allowed the occurrence of a prefix of sequences which

are all illegal. It is important to note that due to the nature of the optimistic policy,
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if an RTE does not occur for any of the sequences executed under the optimistic

policy, the controller will achieve the supremal controllable sublanguage of the legal

language. So under what condition will RTEs not occur? It is sufficient to choose N

greater than Nu, similar to the conservative case. If L(G, opt) denotes the controlled

language, then

N ≥ Nu + 2 ⇒ L(G, opt) = sup C(K,G).

If there are k modules which constitute a DES, the computational complexity for

each control step is O(kN |Σ|). Both policies have the same complexity, since they

explore the look-ahead tree in the same fashion. The complexity of the construction of

the supremal controllable sublanguage is O(nkm|Σ|), where n is the number of states

in each module and m is the number of states in the FSM for the legal language.

Based on the “life expectancy” of the DES, one can decide if the offline or the online

control will be preferable.

The above results show that the limited look-ahead window approach is viable,

especially if Nu can be obtained. Unfortunately, this is not always the case. If the

system changes with time, it might be very difficult or even impossible to calculate Nu.

There is also another disadvantage: the controller has to perform all computations

over and over again for each step of execution. If the DES is in a loop, the controller

will not be able to take advantage of the previously obtained results. The second

problem is addressed in [10], where online control using state information is discussed.

2.4.2 Online control using state information

Following the work in [6], Hadj-Alouane, Lafortune, and Lin decide to undertake

another approach to online control [10]. The controller is given access to the complete
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look-ahead tree. However, the controller is limited in another way; it requires access to

the underlying FSM implementation and thus it can no longer work with an arbitrary

DES (i.e., one not implemented as an FSM). This approach uses states in the DES to

store previously computed information about legality and thus avoids repeating the

same calculations, one of the problems with the abstracted online control.

First, supremacy-safety of FSM states of G is defined. A state x is said to be

supremacy-safe if there is a sublanguage of the postlanguage generated by this state,

such that the sublanguage is not empty, it is controllable with rescept to the post-

language of L(G) at this state, and it is a sublanguage of the legal postlanguage of

K at this state.

(∃S ⊆ L(G)/[x])

1. S 
= ∅
2. S controllable with respect to L(G)/[x]

3. S ⊆ K/[x],

where L/[x] = {s | s = tu, t, u ∈ Σ∗, s ∈ L, δ(t, q0) = x} denotes the postlanguage of

a language L at the state x. It contains all the sequences from the language L, whose

prefixes can be generated by a path from the initial state q0 to the given state x.

If the system only operates within supremacy-safe states, then the generated lan-

guage will be a sublanguage of the supremal controllable sublanguage of the legal

language. Thus after each event, the controller has exact information about the cur-

rent state of the DES. Then it explores the look-ahead tree, as deep as necessary,

until it can decide for all controllable events if they would lead to states which are

not supremacy-safe. The control decision is then based on the results obtained from

having unlimited access to the look-ahead tree and the system produces a correct
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result, i.e., it achieves the controllable sublanguage of the legal language. It is im-

portant to note that since the structure of the FSM is fixed, the supremacy-safety

of states does not change over time. This means that if this information is stored,

once calculated, the controller will not have to repeat the same calculations. As a

result, the controller will start by examining large parts of the look-ahead tree, but as

the system evolves, it will have to examine fewer and fewer states, until all required

states have been examined. The worst-case complexity for each step is O(n|Σ|) and

up to O(n2|Σ|) for the whole lifetime of the system, where n is the number of states

in the FSM. This result is comparable to the complexity of offline control. However,

the approach using state information can perform significantly better if large parts of

the FSM lie behind states which are not supremacy-safe (Fig. 2.10).

Figure 2.10: A system where large parts are hidden behind a state which is not
supremacy-safe. The region beyond the dark state will never be explored.

Of course, a limitation to the depth of the look-ahead tree can also be imposed

for this type of online control. Results show that for an identical depth N , this

approach produces a better result than the abstracted approach, i.e., the controlled

languages for both the conservative and optimistic policies are closer to the supremal

controllable sublanguage [10]. Furthermore, a better bound than Nu is determined
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for which the controlled language is guaranteed to be equal to supC(K,G).

As can be seen, the approach using state information offers a solution for one of the

issues with the abstracted approach—it is not necessary to repeat calculations—and

thus the overall complexity of the algorithm is reduced significantly. Unfortunately,

this approach does not help with the other issue—the inability to obtain Nu for DESs

which change with time. Furthermore, if it is to be used with such systems, the key

advantage of being able to reuse calculations will be lost. Each change of the DES

would most probably invalidate the results obtained previously. On the other hand,

online control is capable of solving the main issue with offline control: the inability

to exercise control due to the state-space complexity. Online control using a limited

look-ahead window works by examining only a small part of the whole system at a

time. The price for this capability is that the control will not always be optimal or

correct.

Further reading on online control can be found in [11], [12], and [20], which deal

with the specifics of online control of partially observed DESs, and [9], which presents

an algorithm for distributed online control.



Chapter 3

Basis for the work

Two approaches were selected as the basis of my work, since they are already targeted

at solving some of the issues in the discussed problem. Modular DES reduces the

perceived complexity of large systems and Online Control allows for the control of

large systems and systems which vary with time.

3.1 Modular Architecture

As discussed in Section 2.3.2, the modularization of DES systems plays a very im-

portant role when large systems have to be modeled and controlled. The definition

of highly complex systems can be achieved by modeling subsystems first and then

using automated tools to build the complete model using these blocks. Furthermore,

modular control can be used in some cases, significantly reducing the complexity of

the system supervisor.

There are two characteristics of Modular DESs, which can be exploited conve-

niently in the control of Dynamic DESs (DDESs). The first one is the hierarchical
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structure, implicit in modular systems. Indeed, we need not restrict ourselves with

a single level of subsystems. Subsystems of a large system may in turn consist of

subsystems, while large systems may be grouped into supersystems. Their designer

has a lot of flexibility in terms of the coarseness of detail he or she wishes to model

or examine. Tightly related to this property is an even more important characteristic

for the DDES. Modularity makes it possible to delimit parts of a complex system

which are essentially dynamic. Thus, modules can be used not only to model systems

hierarchically, but also to describe the dynamic (time-varying) properties of systems.

There is no need to track changes to the complete behavior of a large system if only

small parts of it produce variations.

3.2 Online Control

The second body of work on which this work is based is Online Control, as defined

in [7] and described in Section 2.4.

Standard supervisory control (SSC) is not suitable at all for the control of DDESs.

Each change in the supervised system would invalidate the lengthy computations

carried out to build a correct model of the controlled system. The approach used

in the online control scheme replaces such demanding computations with series of

short calculations which, if the control is exercised over a static system, might end

up requiring more processing than the one-time calculation of the SSC. However,

when used with DDESs, this “disadvantage” becomes a significant advantage—the

system is expected to change frequently enough so that the limited (and adjustable)

calculations at each step of the control will outperform the static in nature SSC. There

are two flavors of online control: abstracted control and control with state information
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(as discussed in Sections 2.4.1 and 2.4.2, respectively). The major difference is that

the latter stores some information in the states of the DES, modeled as an FSM, and

thus gradually improves its performance (since there is no need to recompute already

stored information). Unfortunately, this option cannot be fully utilized if the system

is dynamic.

The second major advantage of online control is that it is usable with very large

systems, even in cases when the SSC scheme would fail. Since the focus of my work is

on the control of large DDES, this property of online control served as an additional

motive to choose it as the basis for the proposed control method.

The recent work of Minhas and Wonham [18] is also centered around the idea

of modular systems and online control, however, it does not solve the problem of

control of dynamic systems and it provides no means for the refinement of control

specifications.



Chapter 4

The Dynamic Discrete-Event

System Model

In this chapter a formal definition of Dynamic Discrete-Event Systems (DDES) is

given. Such systems are constituted of separate small DES modules, which are com-

bined together using synchronous shuffle—i.e., the resulting system can execute all

strings that the separate modules can execute, even in interweaved fashion (see Sec-

tion 2.3.2). The system functions in time; however, time is discrete and it increases

by one after each occurrence of an event. A system is called dynamic when the set of

modules comprising the DDES can change with time.

Let Mi = {M1i,M2i, . . . ,Mni} for n ∈ N and some i be a set of DES modules

and let ‖Mi denote the synchronous shuffle of all elements of Mi. Then DDES G =

{(‖Mi, i) | i ∈ {0, 1, . . .}}. In this sense, i is a time variable and at each specific

moment (for each specific value of i) the first element of the pair (‖Mi, i) is a standard

DES system. We will use the notation Gi = ‖Mi.

The above definition defines exactly how systems can vary with time. With each
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occurrence of an event, one or more (or all) modules of which the system comprises

may disappear and new modules may appear. The modification of a module can

be modeled as the replacement of this module with the modified version (i.e., the

disappearance of the old module and the appearance of a new module). On the

other hand, the probability of a change in the system or the disappearance of specific

modules is not defined at all. This is because my work should be applicable to all

types of dynamic systems, without regard to the way they evolve. This is especially

important in systems, where the properties of the dynamic behavior also change with

time (usually such systems would be ones influenced by human behavior, by natural

forces, etc.)

The three other characteristics of the type of systems I would like to focus on are

not explicitly modeled. The DDES system can be as large as necessary—there is no

limit to the size of each constituent module and to the number of modules (except

that it is a natural number). However, as already was pointed out, real systems

tend to be much larger than a size that is convenient to work with. The continuous

life of such systems is implicitly present in the index i, however, my work does not

require such behavior. The methods may be applied to finite-time systems and some

examples will be provided.

An example of a very simple DDES system can be the store-customer example

from Chapter 2. Let us consider a number of customers, each of whom is modeled

by a separate module with an index j. For example, for seven customers there are

the modules {Cj | j ∈ {1, . . . , 7}} and the FSM representation of every module Cj is

shown in Fig. 4.1. The variation of the system will be modeled using the sets Mi. If the

store has one customer in the beginning, it could be M0 = {C1}. A second customer
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0 1

3 2

enterj

leavej

pickjleavej

pay cashj

pay ccj

leavej

Figure 4.1: DES model of the customer with index j

may appear in time 2 and thus M2 = {C1, C2}, while M1 would be the same as M0.

The first customer may execute the events “enter1, pick1”. In time 2, the second

customer may decide to enter, so “enter2” will happen. Then, the first customer may

decide to proceed with “pay cc1,leave1” and then exit the system. Thus, in time 5,

M5 = {C2}. The second customer picks something to buy, “pick2”, but when she goes

to pay for the item, the store owner recognizes her as an old friend from high school

and she ceases to be a customer, so M6 = ∅. Thus, the complete DDES G would

be modeled as follows: Mi = {C1} for i ∈ {0, 1}, Mi = {C1, C2} for i ∈ {2, 3, 4},
Mi = {C2} for i = 5 and Mi = ∅ for i ∈ {6, . . .}, G = {(‖Mi, i) | i ∈ {0, 1, . . .}}. The

system at any given time i would be the synchronous shuffle of all modules in Mi,

Gi = ‖Mi.



Chapter 5

Redundancy for Modular

Architecture

The first problem that will be discussed in my work is how to build a system more

robust to changes. The controller needs to have knowledge of the system in order

to perform its duty. Unfortunately, each time a module in the system changes, this

information is invalidated and it is necessary to rebuild the system model. In other

words, if the system consists of the synchronous shuffle of modules, this synchronous

shuffle would have to be recomputed each time a module appears or disappears. The

goal is to choose a method for the rebuilding of the complete system so that the

number of calculations that need to be performed is minimal.

A more abstract formulation of the problem would be the following: given elements

A1 to An for some n ∈ N and a commutative and associative binary operation ⊗ that

acts on these elements, what is the best method to compute A = A1 ⊗A2 ⊗ . . .⊗An

so that a change in the number or structure of the elements would result in the least

overhead in calculating the new A. The DDES problem we would like to solve may
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be cast as this problem by considering the modules as elements and the synchronous

shuffle as the binary operation ⊗ (since the synchronous shuffle is commutative and

associative).

This problem is, to some extent, related to the problem of fault tolerance in system

design. Different techniques are applied to try to preserve the correct functionality

of a system even when a part of it fails [21, 14]. The basic idea in fault tolerance is

redundancy, which may come in many different forms: hardware redundancy, infor-

mation redundancy, time redundancy, software redundancy, etc. The major difference

between fault tolerance and the problem discussed here is that fault tolerance’s main

goal is to preserve the behavior of a system, while our goal is to minimize the com-

putation required to assimilate the changing behavior of a system.

Even so, the idea of redundancy still seems very applicable. Keeping in memory

redundant byproducts of the computations might significantly decrease the time nec-

essary to rebuild the complete system model when a module changes. I introduce

three methods that can be used to speed up this process: stack redundancy, tree

redundancy, and hybrid redundancy. Redundancy, although in a very different form

and for a different purpose, is also successfully used in simulation [19].

5.1 Stack redundancy

Stack redundancy is achieved by keeping all intermediary steps during the compu-

tation of the result A. That is, if we start by computing A12 = A1 ⊗ A2, we save

this result before we compute the next result, A123 = A12 ⊗ A3. We save separately

A123 before we proceed and so on. Thus, at the end we have A12, A123, A1234, . . . to

A. I call this method “stack redundancy” because one can imagine that the elements



CHAPTER 5. REDUNDANCY FOR MODULAR ARCHITECTURE 41

are stacked on top of each other like a stack (see Fig. 5.1). The calculation of A is

performed as A = (. . . ((A1 ⊗ A2) ⊗ A3) ⊗ . . .) ⊗ An.

A1

A1 ⊗ A2

A1 ⊗ A2 ⊗ A3

A1 ⊗ A2 ⊗ A3 ⊗ A4

A1 ⊗ A2 ⊗ . . . ⊗ An

Figure 5.1: Stack-like redundancy structure

Clearly, we are only interested in the final result, A. However, the redundant

information we save becomes useful when we need to recompute A if one or more of

the constituent elements changes. If element Ai for some i ∈ {1, . . . , n} changes, then

the intermediary result A1...(i−1) is still correct and it is sufficient to perform n− i+1

operations to recompute A. Furthermore, if many elements change, this result still

holds true if we take i to be the minimal index of these elements. Correspondingly,

if new elements are to be added, the ⊗ operation can simply be performed on A.

Figure 5.2 illustrates how the redundancy structure can be modified.

The decrease in computational requirements is, however, achieved through higher

demands on memory. If the operation ⊗ is synchronous shuffle and if the sizes of two

elements Ai and Aj are p and q, respectively, then the size of Ai ⊗ Aj may be up to

p× q. If the size of the largest element is x and there are n elements to be composed,

then the total information stored might be up to
∑n

i=1 xi = (1 − xn+1)/(1 − x) − 1,
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A1

A1 ⊗ A2

A1 ⊗ A2 ⊗ A3

A1 ⊗ A2 ⊗ A3 ⊗ A4

A1 ⊗ A2 ⊗ . . . ⊗ An

A1 ⊗ A2 ⊗ . . . ⊗ An ⊗ BB

(a) The addition of the new element B

A1

A1 ⊗ A2

A1 ⊗ A2 ⊗ A3

A1 ⊗ A2 ⊗ A3 ⊗ A4

A1 ⊗ A2 ⊗ . . . ⊗ An

A3

(b) The removal of the element
A3. All nodes colored dark
are affected by the change
and have to be reconstructed.
The nodes not containing the
element being removed are
not affected.

Figure 5.2: Diagrams of operations performed on the stack redundancy structure

or up to 2xn, as opposed to just xn if we store only the final result. If xn is a very

large number, then the memory requirements might not be satisfiable.

Stack redundancy is very suitable when a large part of the DDES system is stable,

and only a small number of modules vary. An important property of this method

is that stable modules will eventually sink to the “bottom of the stack” and it will

be necessary to perform just a couple of ⊗ operations with the frequently changing

modules. In this case, it might be sufficient to keep just a single precomputed result

A1...i such that is contains the stable modules.



CHAPTER 5. REDUNDANCY FOR MODULAR ARCHITECTURE 43

5.2 Tree redundancy

The next redundancy design I propose is the tree redundancy. Again, the intermediary

computational results are kept for future use, however, using a different scheme—one

which resembles a binary tree. At each level, ⊗ is performed on pairs of the lower-level

results. Thus, we start by computing A12 = A1 ⊗ A2, A34 = A3 ⊗ A4, etc. The next

level of the tree will be computed as A1234 = A12 ⊗ A34 and so on. This is depicted

in Fig. 5.3. As a result, A is computed as A = (. . . ((A1 ⊗ A2) ⊗ (A3 ⊗ A4)) . . .) ⊗
(. . . (An−1 ⊗ An) . . .).

A1 ⊗ A2 ⊗ . . . ⊗ An

A1 ⊗ A2 ⊗ A3 ⊗ A4

A1 ⊗ A2

A1 A2

A3 ⊗ A4

A3 A4

An−1 ⊗ An

An−1 An

Figure 5.3: Tree-like redundancy structure

What are the advantages that this type of redundancy brings? The most impor-

tant one is the resistance to random changes in the elements. If the system is highly

variable, each module might not be stable for long. In such a case, the stack redun-

dancy would perform very poorly, because as the elements “sink” in the stack, the

probability that they will change increases. Thus, the stack will have to be constantly

rebuilt and there will be no savings in terms of computations. On the other hand,

the distance between every leaf element and the root of the tree is the same, so it
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does not matter which element changes. If any element changes, it will require log2 n

applications of ⊗ to rebuild the complete system. If multiple elements in the same

subtree change, then they will require less than log2 n times the number of changed

elements applications of ⊗. Furthermore, something similar to the “sinking” of stable

elements can be achieved if stable subtrees are preferentially put to the left (or right)

of the tree when it is being rebuilt. The algorithm for the rebuilding of the tree

structure is shown in Fig. 5.4. Figure 5.5 shows how the algorithm works.

The algorithm for the rebuilding of the tree redundancy structure works very

simply. After changes occur in the system, the previous tree structure is partitioned

into a set of stable subtrees ST which may contain single elements. This set is fed

into the rebuild function. It is possible that the previous tree was not fully populated

(i.e., it did not contain 2k elements), so the chunk function is invoked to create a

set of fully-populated subtrees. It achieves this by recursively splitting incomplete

subtrees into three parts: the left subtree of the root, the right subtree of the root,

and a single-element subtree consisting of the root. The recursion is invoked only on

the right subtree, since the rebuild function populates trees from left to right and the

left subtrees will always be fully populated.

In the next step, the subtrees are sorted first according to height and then, among

trees with the same height, according to the time they have been present in the

system (i.e., how stable they are). This sorting order allows the placement of stabler

subtrees to the left of the rebuilt tree and thus achieves the “sinking” effect discussed

previously.
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chunk(T )
/* splits a tree T to fully-populated subtrees

assumes that all left subtrees of T are fully-populated */

if T = null: return ∅
if T.number of leaves < 2T.height

R = T.root, Tl = {R.leftchild}, Tr = {chunk(R.rightchild)}
R.leftchild = null, R.rightchild = null

return Tl ∪ Tr ∪ {R}
else return {T}

rebuild(ST )
/* ST is a set of all stable subtrees after changes occurred */

CT = ∅
for each T ∈ ST

CT = CT ∪ chunk(T )
OT = sort(CT,tree height:descending);

sort(same height,time present in system:descending)
/* OT is an indexable set

level 0 is the leaf level, �log2 n� is the root level */

for i from 1 to �log2 n�
NT = ∅, lastused = false

for j from 1 to |OT | − 1
if OT [j].height < i

T = OT [j].root ⊗ OT [j + 1].root
T.leftchild = OT [j], T.rightchild = OT [j + 1]
NT = NT ∪ T

j = j + 1
if j = |OT |: lastused = true

else NT = NT ∪ OT [j]
if lastused = false: NT = NT ∪ OT [|OT |]
OT = NT

return OT [1]
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Figure 5.4: Algorithm for the tree redundancy
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r

(a) The removal of element r. The dark nodes are af-
fected. The nodes with a double border will also be
separated in order to create fully-populated subtrees
for the tree rebuilding.

n n

(b) The rebuilding of the tree with the addition of two new ele-
ments (n). The hatched nodes have to be computed.

Figure 5.5: Diagrams of operations performed on the tree redundancy structure: the
removal of an element and the addition of two new elements
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In the final stage, the algorithm proceeds by scanning all subtrees for each level

from 1 to the root level of the reconstructed tree. At each scan, if trees are found

to be of insufficient height, every two neighbors are combined into trees of a higher

height. Thus, the complete tree is rebuilt.

Surprisingly, if the operation ⊗ is synchronous shuffle, the space occupied by the

tree redundancy is smaller than the space required by the stack redundancy, even

though there are more “nodes” in the structure. To prove this, let the integer x > 2

be the size of the biggest module and let n be the number of modules. We will denote

the size of the tree by Tn and the size of the stack by Sn =
∑n

i=1 xi. The following

observation can be made: T1 = S1, T2 = S2 +x and T3 = S3 +2x. We will prove that

Tn < Sn for any n > 3 using induction. First, let us prove that T4 < S4. The tree

will have four leaf nodes, of size x, two inner nodes, of size x2, and a root node, of

size x4. Thus, T4 = 4x + 2x2 + x4 and S4 = x + x2 + x3 + x4.

4x + 2x2 + x4 ?
< x + x2 + x3 + x4

3x + x2 ?
< x3 (x is positive)

3 + x
?
< x2

0
?
< x2 − x − 3

(5.1)

The positive root of this equation is approximately 2.3. Thus for all integers x > 2:

x2 − x − 3 > 0 and thus S4 > T4. It can be proved analogously that for all x > 2,

S5 > T5. The induction hypothesis is that if Ti < Si for all i ∈ {5, . . . , k}, then

Tk+1 < Sk+1. Let us consider the two subtrees, L and R, of the root node in a tree

with k + 1 elements. Let L have l leaf nodes and R have r leaf nodes. From the

construction of the tree it follows that l ≥ r and l ≥ 4 (k is at least 5). The number

l is less than k + 1, so Tl < Sl, according to the induction hypothesis. Furthermore,
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Tk+1 = Tl + Tr + xk+1. Conversely, Sk+1 = Sk + xk+1.

Tl + Tr + xk+1 ?
< Sk + xk+1

(Tl < Sl ⇒ we can substitute)

Sl + Tr + xk+1 ?
< Sk + xk+1

x + x2 + . . . + xl + Tr

?
< x + x2 + . . . + xk

Tr

?
< xl+1 + . . . + xk

(5.2)

The following holds:

• r = 1 ⇒ Tr = Sr

• r = 2 ⇒ Tr = Sr + x

• r = 3 ⇒ Tr = Sr + 2x

• r ≥ 4 ⇒ Tr < Sr according to the induction hypothesis

We can conclude that in all cases Tr < Sr + 3x. Thus, we can substitute and obtain

Tr

?
< xl+1 + . . . + xk

Sr + 3x
?
< xl+1 + . . . + xk

4x + x2 + . . . + xr ?
< xl+1 + . . . + xk

(5.3)

Since l + r = k + 1 the sum on the left contains one more summand than the sum

on the right (the powers go from 1 to r versus l + 1 to l + r − 1). Each summand on

the right is greater than any summand on the left (x > 2). Thus, we can cancel some

summands and obtain:

4x + x2 ?
< xk (x is positive)

4 + x
?
< xk−1 (x2 < xk−1)

4 + x
?
< x2

0
?
< x2 − x − 4.

(5.4)
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The positive root of this equation is less than 3, thus we obtain that Tk+1 < Sk+1 for

any integer x > 2. �

The tree redundancy is much more preferable over the stack redundancy when

used for DDES purposes. However, the stack redundancy might be preferable when

the size of elements does not grow exponentially after the application of ⊗. If the

operation ⊗ does not increase the size of the result, then the stack redundancy would

have a size of n, while the tree redundancy would have a size of 2n − 1.

5.3 Hybrid redundancy

The third type of redundancy I propose is the hybrid type of redundancy which

combines ideas introduced in the previous two types of redundancy structures. The

basic structure is a binary tree (much like in the tree redundancy), however, inner

nodes use the ⊗ operation to combine the roots of the two subtrees, as well as a new

element (see Fig. 5.6). The result A is computed as A = (. . . ((A1 ⊗A2 ⊗A3)⊗A7 ⊗
(A4 ⊗A5 ⊗A6)) . . .)⊗Aj ⊗ (. . . (Ai−1 ⊗Ai ⊗Ai+1) . . .). The major advantages of this

new redundancy structure are the reduced size, compared to the tree redundancy,

and the “lifting” of elements from the leaves up the tree structure, which increases

the chances that fewer than log2 n number of ⊗ operations will have to be performed

when a change in the system occurs.

If the space occupied by the result of the ⊗ operation is linear in terms of its

operands, the size of the hybrid redundancy can be as much as two times smaller

than the size of the tree redundancy. If there are n elements, there would be 2n − 1

nodes in the tree redundancy, while only n nodes would be in the hybrid structure.

However, when the operation ⊗ represents the synchronous shuffle of automata (and
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A1 ⊗ A2 ⊗ . . . ⊗ An

A1 ⊗ A2 ⊗ . . . ⊗ A6 ⊗ A7

A1 ⊗ A2 ⊗ A3

A1 A2

A4 ⊗ A5 ⊗ A6

A4 A5

Ai−1 ⊗ Ai ⊗ Ai+1

Ai−1 Ai

Figure 5.6: Hybrid redundancy structure

hence the size of the result increases exponentially), hybrid redundancy performs

almost identically to the tree redundancy. In this case the savings in the size of the

structure are insignificant (see Fig. 5.13 for a comparison).

In tree redundancy, it does not make a difference which element changes, since

the distance to the root is constant for all elements. With hybrid redundancy, how-

ever, the distance between the elements and the root varies, depending on where

in the structure the given element resides. Thus, if the changing element is in the

level directly beneath the root, only four applications of ⊗ would be necessary (two

applications per tree level). Thus, elevating frequently-changing elements toward the

top of the tree structure will have the same effect as the one observed with stack

redundancy. This can be achieved by ordering the elements which will be used to

rebuild the tree according to the time they have remained stable and using the sta-

blest elements at the lower levels and the most volatile toward the top of the tree.

The algorithm for the rebuilding of the hybrid structure is shown in Fig. 5.7, Fig. 5.8,

Fig. 5.9 and Fig. 5.10. Figure 5.11 shows how the algorithm works.
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chunk(T )
/* splits a tree T to fully-populated subtrees

assumes that all left subtrees of T are fully-populated */

if T = null: return ∅
if T.number of leaves < 2T.height

R = T.root, Tl = {R.leftchild}, Tr = {chunk(R.rightchild)}
R.leftchild = null, R.rightchild = null

return Tl ∪ Tr ∪ {R}
else return {T}

split(T )
/* recursively splits a tree T into all the left subtrees and

all the roots of the subtrees leading to the right-most leaf */

if T.height = 0: return {T}
C = T.root, L = C.leftchild, R = C.rightchild

C.leftchild = null, C.rightchild = null

return {C} ∪ {L} ∪ split(R)

take last node(ST )
/* removes the right-most leaf of the last subtree in the set

ST, splitting the subtree if necessary. The change to the set

is propagated back and the leaf is returned separately */

CT = split(ST [|ST |])
OT = sort(CT,tree height:descending);

sort(same height,time present in system:descending)
last = OT [|OT |], OT = OT − OT [|OT |]
ST = (ST − ST [|ST |]) ∪ OT

/* the change to ST will propagate to the caller */

return last

height(n)
/* returns the height of a tree with n nodes */

return �log2 n�
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Figure 5.7: Algorithm for the hybrid redundancy: support functions (1)
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kappa(n)
/* returns the number of nodes in the largest fully-populated

tree which can be built using at most n nodes */

return 2κ − 1, such that

n = k1(2κ − 1) + k2(2κ−1 − 1) + . . . + ki−1(22 − 1) + ki

is the canonical decomposition of n (kj ∈ {0, 1, 2})

leaves(n)
/* returns the number of leaves in a tree with n nodes */

return �n/2�

compute(r)
/* recursively computes the value of the root r of a hybrid

structure (i.e., the result A) */

if r is already computed or r is a leaf: return r.value

if r.rightchild = null: r.value = compute(r.leftchild) ⊗ r.element

else r.value = compute(r.leftchild) ⊗ r.element ⊗ compute(r.rightchild)
return r.value
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Figure 5.8: Algorithm for the hybrid redundancy: support functions (2)

rebuild(ST )
/* ST is a set of all stable subtrees after changes occurred */

f = new(FIFO)
n = sum of the number of nodes in all subtrees

CT = ∅
for each T ∈ ST

CT = CT ∪ chunk(T )
OT = sort(CT,tree height:descending);

sort(same height,time present in system:descending)
/* OT is an indexable set */

if OT [1].height = height(n): return OT [1]
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continued in Fig. 5.10 . . .

Figure 5.9: Algorithm for the hybrid redundancy: main function (1)
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. . . continued from Fig. 5.9

root = take last node(OT ), leftnodes = kappa(n−1), rightnodes = n−1−kappa(n−1)
leftsubtrees = {OT [i] | i = {1, . . . , j}, j ≤ |OT |,

∑j
1 OT [i].number of leaves = leaves(leftnodes)}

rightsubtrees = OT − leftsubtrees

f.push(root, leftsubtrees, rightsubtrees, leftnodes, rightnodes)
do

parent, LS,RS, leftnodes, rightnodes = f.pop

if LS[1].height < height(leftnodes)
lchild = take last node(RS)
nextleftnodes = kappa(leftnodes − 1)
nextrightnodes = leftnodes − 1 − kappa(leftnodes − 1)
leftsubtrees = {LS[i] | i = {1, . . . , j}, j ≤ |LS|,

∑j
1 LS[i].number of leaves = leaves(nextleftnodes)}

rightsubtrees = LS − leftsubtrees

f.push(lchild, leftsubtrees, rightsubtrees, nextleftnodes, nextrightnodes)
else lchild = LS[1].root
if rightnodes > 0

if RS[1].height < height(rightnodes)
rchild = take last node(RS)
nextleftnodes = kappa(rightnodes − 1)
nextrightnodes = rightnodes − 1 − kappa(rightnodes − 1)
leftsubtrees = {RS[i] | i = {1, . . . , j}, j ≤ |RS|,

∑j
1 RS[i].number of leaves = leaves(nextleftnodes)}

rightsubtrees = RS − leftsubtrees

f.push(rchild, leftsubtrees, rightsubtrees, nextleftnodes, nextrightnodes)
else rchild = RS[1].root

else rchild = null

parent.leftchild = lchild, parent.rightchild = rchild

while not f.empty

if n = 2k

subroot = root.leftchild

leftsubtree = subroot.leftchild, rightsubtree = subroot.rightchild

root.leftchild = leftsubtree, root.rightchild = subroot

subroot.leftchild = rightsubtree, subroot.rightchild = null

compute(root)
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Figure 5.10: Algorithm for the hybrid redundancy: main function (2)
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Figure 5.11: Diagrams of the removal of an element and the reconstruction of the hy-
brid redundancy structure. The node numbers show the relative ordering of the elements
according to how much time they are present in the system (lower number means older).
(a) The removal of element r. The dark nodes are affected. (b) The first step of the tree
rebuilding. The newest element, 11, is chosen to be the root node. Using the remaining
nodes, the largest fully-populated subtree that can be built has four leaf nodes. Thus, the
first two subtrees are chosen. (c) In the next step, the second newest element, 9, is chosen
to be the root node for the subtree. Thus, the third stable subtree (containing elements 7, 8
and 9) has to be split. The left branch of the fully-populated subtree has to have two leaves
(half of the total number of leaves for the subtree). (d) The construction of the largest
fully-populated subtree is completed. Using the remaining nodes, the largest tree that can
be built has one leaf. The third newest element, 8, is chosen for the root of this subtree.
(e) The completion of the process of rebuilding. The root node is connected to the subtrees.
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The algorithm for the rebuilding of the hybrid redundancy structure starts simi-

larly to the algorithm for the tree redundancy. After changes occur in the system, the

previous hybrid structure is partitioned into a set of stable subtrees ST which may

contain single elements. This set is fed into the rebuild function. It is possible that

the previous tree was not fully populated (i.e., it did not contain 2k − 1 elements), so

the chunk function is invoked to create a set of fully-populated subtrees. It achieves

this by recursively splitting incomplete subtrees into three parts: the left subtree of

the root, the right subtree of the root, and a single-element subtree consisting of the

root. The recursion is invoked only on the right subtree, since the rebuild function

populates trees from left to right and the left subtrees will always be fully populated.

In the next step, the subtrees are sorted first according to height and then, among

trees with the same height, according to the time they have been present in the system

(i.e., how stable they are). This sorting order allows the placement of stabler subtrees

to the left of the rebuilt tree.

The next stage of the algorithm is more complicated since, in order to maximize

the benefit of the rebuilt tree, the most frequently-changing (or latest to appear)

elements need to be placed toward the top of the tree, while stable structures should

not be decomposed if possible. Furthermore, the tallest stable trees should remain on

the left, to achieve the “sinking effect”. Thus, the algorithm should use a top-down

breadth-first method when utilizing frequently-changing elements. This is achieved

through the use of a FIFO structure. On the other hand, every subtree should

keep track of its own context of lowest-level subtrees, since the algorithm must not

use the tallest stable subtrees when building the right branches of the structure.

This is achieved by keeping a separate part of the global subtree set ST (or OT ,
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after sorting) for each subtree to use during the rebuilding. The algorithm uses

the take last node to get the most frequently-changing element available at each

time during the process of reconstruction. The variables leftnodes and rightnodes

hold the number of nodes which need to be contained in the left or right subtrees,

respectively. The sets leftsubtrees and rightsubtrees are used to hold the left and

right subtree contexts for each parent node. The only time this algorithm fails to

produce a redundancy structure which occupies less space than the tree redundancy

is when the number of elements n equals a power of two. This necessitates an increase

of the height of the hybrid structure, while the height of the tree structure remains

the same. When the number of elements equals a power of two, the hybrid structure

looks like the one shown in Fig. 5.12(a). To improve the situation, in the final stage

L R

(a) Unmodified output

L

R

(b) The modification performed at the
end of the algorithm

Figure 5.12: The output of the hybrid redundancy algorithm when the number of
element equals 2k

the algorithm checks for this condition and then re-arranges the root nodes, as shown

in Fig. 5.12(b). This introduces a space saving of 2n−1 − 2n/2. The drawback of this

re-arrangement is the chance that the root of a stable subtree could be changed and

thus additional computations would be introduced.
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Since the evaluation of the root nodes in a top-down approach is not possible

(the values of the children are needed first), the rebuild function only connects the

nodes as it proceeds. Just after the bottom of the tree is reached (i.e., the whole tree

is connected), the compute function is invoked on the root to perform all necessary

calculations and obtain the final result.

Unfortunately, since there are two applications of ⊗ per tree level changed, the

benefits of the hybrid structure are greatly reduced. If an element changes, this

would lead to a maximum of 2 log2(n/2) = log2(n
2/4) operations, as opposed to

log2 n operations with the tree redundancy. Let us count the root as being in level 1,

its descendants in level 2 and so on. If a change at level i in the hybrid redundancy

is to require fewer computations than a change in the tree redundancy, there should

be more than 22i elements in the structure. For example, a change in the root (level

1) requires two operations ⊗. This will be fewer than the number of operations

required in a tree redundancy only if there are more than 22 = 4 elements (this would

produce three levels in the tree redundancy and a change there would require three

operations). We can see that if there are five frequently-changing elements (they

would occupy the top three levels in a hybrid structure), the hybrid redundancy

will be advantageous only if the total number of elements is more than 26 = 64.

Furthermore, this advantage heavily depends on how frequently different elements will

change. If there is not a well-defined group of stable elements, the hybrid redundancy

will ultimately be computationally more costly.

The applicability of the hybrid redundancy method depends on the nature of

the system. In terms of computations, it performs better than the tree redundancy

method only when a small number of the elements change and when most of the
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system remains stable. For systems where the probability that any of the elements

will change is the same, the tree redundancy is clearly preferable. On the other

hand, if the system is very large and there is not enough storage space, the hybrid

redundancy offers the best performance of all the considered redundancy methods.

As Fig. 5.13 shows, however, the decrease of requirements on space is not significant,

compared to that of a tree redundancy. Table 5.1 summarizes the properties of the

stack, tree, and hybrid redundancies.

Figure 5.13: Plot of the relation between the number of modules in the system and
the size of the different redundancy structures. The size of each separate module is 2.
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Table 5.1: Summary of the redundancy structures

stack tree hybrid

size
∑n

i=1 xi ∑�log2 n�
i=0 (n/2i)x2i ∑�log2 n�

i=1 (n/2i)x2i−1

number of operations
if an element changes n/2 �log2 n� 2(�log2 n� − 2)

(on average)
number of operations
if an element changes n − 1 �log2 n� 2(�log2 n� − 1)

(worst case)
advantages simple robust to small footprint

implementation random changes
use when operation ⊗ does oldest elements have small storage

not increase the highest chance to space
result exponentially change



Chapter 6

Control optimization

The next problem that will be discussed is the problem of optimization of the control

of DDESs. This problem also relates to the problem of refining the requirements

on the behavior of systems. Let us first consider how one would specify the desired

behavior of a system. Statements may consist of “the system should do this”, “the

system should attempt to do this”, “the system may do this, but it is undesirable”,

“the system must not do this”, etc. The standard supervision of DESs uses a set

of admissible strings as a specification, and the controlled system is not allowed to

execute other strings. There are two major drawbacks to this approach: it is not

possible to set specifications using all the nuances in the aforementioned statements

and the computational complexity for larger systems is daunting. If online supervision

is used (see Section 2.4), then in most cases it is even impossible to achieve precisely

the behavior specified with the legal set of strings. However, online supervision has a

control algorithm that is amenable to modifications. With suitable changes, control

of DDES can be significantly improved, resulting both in greater applicability and

in a refinement of the control specifications. This is achieved through the use of

60
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a language-based optimization method and the replacement of the scheme used to

define specifications.

6.1 Value function

Traditionally, marking (the set of “final” states) is used in finite-state machines to

signify “task completion”. When a string of events that leads to a marked state is

executed, then this string is considered “complete” in some sense. In DESs, marking

is used to specify which strings should be executed. However, when used with DDESs,

marking does not always make sense and, furthermore, it may lead to problems with

the correct interpretation of the behavior of a system. The following issues explain

why only prefix-closed languages will be considered in this work.

Let us consider a system which operates continuously, such as a database trans-

action manager. Which state should be considered marked? If the state where all

transactions are either pending or completed is considered as marked, then does it

mean that the transaction manager may stop operating at will when such a state

occurs? Should the transaction manager start rejecting new transactions because the

state when there are no transactions is marked? Obviously, there is more to event

strings than just the fact if they lead to a marked state or not. Sometimes it is dif-

ficult, if not impossible, to create marking such that it indicates the desired system

behavior.

The second problem with marking is related to the specifics of DDESs. The exact

behavior of a DDES can be highly unpredictable. Different modules may enter and

leave the system and the system will have to adjust. If the DDES is executing a

string and a module, needed for the reachability of a marked state, disappears from
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the system, would it mean the controller should stop functioning and announce unre-

coverable error? Such errors may be preventable in static systems, since the controller

can rely on the information about the structure of the systems. With DDESs this is

not possible and “unrecoverable” errors may occur very often. How “unrecoverable”

such errors actually are cannot be predicted, since the missing module may reappear

before its functionality is needed. It is much more natural to expect that the system

should try to do the best possible with the resources available.

The third problem arises from the application of online control with a limited

look-ahead window. The method has a limited view of how the system can possibly

develop. Thus, if the controller steers the system toward one marked state and a

critical module disappears, but there is still a way to get to another marked state,

the supervisor will not necessarily be able to recognize this option. The problem is

illustrated with the system in Fig. 6.1. There is a person wishing to send a parcel

with the postal service. The person may bring the parcel to one of two post offices

or take it back home (“goi” and “backi”, respectively). At each office they have an

agent who receives the package (“receivei”) and a truck that delivers the parcel to its

destination (“deliveri”). The marked states are the states after a successful delivery.

The person may decide to go to the first post office and thus execute “go1”. However,

if the system is dynamic, by the time he or she gets to the office, the agent may leave

and thus the event “receive1” cannot happen in the system anymore, so the system

cannot get to the marked state after “deliver1”. In such a case the person may return

home and decide to go to the second post office, “back1, go2”. If the system does not

change, it would be possible to execute “receive2, deliver2” and still reach a marked

state. However, a supervisor with a limited look-ahead window may not be able to
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recognize this option. If it uses a look-ahead tree of depth 3, after the person goes

to the first post office, the supervisor would be able to consider only the sequence

“back1, go2, receive2” which does not lead to a marked state. Thus, the supervisor

(depending on the decision attitude) would announce a runtime error. However, this

would not happen if the language is prefix-closed. In the latter case, the supervisor

would enable the “back1” event and later on be able to consider the successful string

“go2, receive2, deliver2”.

receive1 deliver1

receive2 deliver2

go1

back1

go2

back2

Figure 6.1: DES where a parcel can be delivered using two different post offices

I propose the use of a different and more flexible scheme to define which strings

are “complete”. Instead of using marking—i.e., a binary operation on the set of

states of an FSM—a function v : L → R, called a value function, can be used to

define the desired behavior of a DES. The function can be any computable function,

which returns how close a string is to a goal the system should achieve. The greater

the value of v for a given string, the closer it is to achieving a goal; and conversely,

the smaller the value, the farther it is from achieving a goal. It is called a “value

function” because the intuition behind it is that it gives the value of a string (which

has to be maximized to achieve a goal). Since it returns real numbers, the distance to

the goal completion can be fine-tuned to any required level. The supervisors can use
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this function to choose the best path to follow and, with a suitable choice of v, errors

as described previously can be avoided. Section 6.4.4 explains in more detail how this

can be utilized. For practical purposes, the value function should have reasonable

restrictions, since its computational complexity affects the overall complexity of the

control process.

The second big advantage of the use of a value function is that it can serve as a

way to define requirements for the behavior of a system. The simplest function can

be one which would return −∞ for all illegal strings (strings outside of the set of

legal strings) and 0 in all other cases. As we will see later, this particular function

can be used to replace the original control method of online supervision. However,

a more elaborate function may be used to refine how “good” or “bad” a string is.

Thus, statements of the sort “the system may execute this, but it should be avoided”

can be translated into a form usable by the supervisor. For example, a fuzzy logic

processor may be used to produce the values of v.

The use of a value function provides many advantages. The disadvantage of

the value function is in its increased complexity, compared to simple FSM-based

approaches. It presumes that a more powerful computing device will sit at the steering

wheel of the system supervision.

6.2 Goals vs. marking

As discussed in the previous section, marking in the system is not suitable for the

control of large and dynamic systems and prefix-closed languages are preferable. How-

ever, marking signifies the “completion of a task”, or what we would like the system

to achieve. Thus, in essence, this is a part of the specifications for the behavior
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of the system, but it cannot be used if the language is prefix-closed. To solve this

problem, instead of using marking in the system I propose that a different scheme

be used, namely, the specification of goals which will work in conjunction with the

value function. A goal is something we would like the system to accomplish and

it is an independent entity within the possible behaviors of the DDES. In other

words, the event string that achieves the goal has no influence on the future be-

havior of the system and the events executed after the achievement of the goal do

not contribute to the “value” (or benefit) of this goal. Goals are defined by a “goal

function” g : Σ∗ → {0, 1} which returns 1 if a string signifies the completion of a

task and 0 otherwise. The value function v is related to g in the sense that for most

s, t ∈ Σ∗, st ∈ K, g(s) = 1 : v(st) = v(t). In other words, the value function “restarts”

calculating after the sting s. The exception to this rule is when the string achieving

a goal is the prefix of a string achieving another goal. The function g can be as

complex as necessary, however, for most practical purposes it can be interpreted as

some kind of marking in the prefix-closed legal language. It is important to make the

distinction between real marking and goals. While marking is a hard specification

which the system must achieve, goals are used together with the value function and

they merely indicate that there is no mutual influence between the value of a string

and the values of the continuations of this string.

What is the difference between marking and using goals and the value function

instead? First, using a value function allows the definition of “infinite goals”, or goals

where the length of the event string is infinite (i.e., the supervisor will continuously

strive to maximize v for the executed string). The marking scheme is not suitable

for this purpose if FSMs are used. Second, the specification of a goal is in terms of
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language strings and a function, which allows the supervisor to continue operation

even in a frequently-changing environment where the completion of a task may be

well beyond the horizon. As discussed previously, if marking is used, this may lead

to recurring errors. Third, the value function can be used directly to optimize the

control, since the information needed is implicitly available in the function. Marking,

on the other hand, has no means to indicate any preference over the way the system

operates. Last but not least, it is very hard to predict how marking in the modules

will get reflected in the global system, especially if there are many modules. If there

have to be changes in the desired outcome of operation, it might be very demanding

to figure out how to modify marking in the modules so that the global behavior is

changed correctly. Using the goal function g simplifies this task significantly, since the

function is already defined globally and furthermore it is independent of the modules

of which the DDES consists.

6.3 Optimal control for DDES

There is work which proposes modifications to the control algorithms so that control

becomes not only acceptable, but also optimal with respect to some selected criteria

[27, 15]. Unfortunately, these approaches are designed only for standard supervisory

control, using stable (static) systems. Cost is associated with transitions between

states and the algorithms avoid sequences of transitions which will result in high ac-

cumulated costs. Such algorithms are not suitable for DDESs, since they do not work

with the online control scheme, and since they require access to the FSM representa-

tion of the system. In [5] a method for the optimization of online control is presented,

however, it is based on a non-standard control framework where the occurrence of
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events can be enforced. The value function defined in Section 6.1 does not have these

limitations and it can serve as the means to provide optimal control of DDESs. In

this section we discuss how this can be achieved through a simple modification of the

online supervision algorithm presented in [7]. The role of the value function is similar

to the role of the heuristic function for the A* algorithm (described in [1]).

The original supervision algorithm explores recursively the tree of all possible con-

tinuations of the currently executed event string. The tree depth is limited to N levels,

and thus the controller has a restricted view of the future. Nodes are determined to

belong to one of three classes: legal, illegal, and undecided. Legal nodes are nodes that

correspond to strings belonging to the supremal controllable sublanguage of the legal

language, illegal nodes are nodes that can be determined to correspond to strings

leading outside of the supremal controllable sublanguage, and undecided nodes are

nodes that cannot be determined to be either legal or illegal. Undecided are nodes at

the boundary of the look-ahead tree for which there is insufficient information. Legal

nodes are assigned the cost 0, illegal nodes are assigned the cost ∞, and undecided

nodes may be assigned 0 or ∞, depending on which control attitude is chosen (see

Section 2.4.1). The values are propagated back to the root using a simple approach:

if all events leading from a node are controllable, the minimal value from the children

is taken (since the supervisor will be able to disable the unwanted events). Otherwise,

if there are uncontrollable events leading from the node, the maximal value of the

children via the uncontrollable events will be taken (since the controller will not be

able to prevent the most costly behavior through uncontrollable events). As well, the

supervisor will not explore branches further on if they have infinite costs or if they

lead to a marked state with no uncontrollable events leaving that state.
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The aforementioned algorithm can be extended very easily to incorporate the

information provided by the value function v. Instead of keeping track of which

states are legal, illegal or undecided and what control attitude has to be applied, the

function v can be simply used to obtain one number which describes all of the above.

The smaller the value, the “worse” it is to go through a given path, and −∞ can

be regarded as having the same expressive power as the illegality of a state. Since

the value function v has a reversed scale compared to the scale of the original online

supervision (∞ is used there to denote illegality), the rules for the back-propagation

of values have to be dual to the original ones. When a string is valued as −∞ there is

no need to search further from this node in the tree. After the achievement of a goal,

the system may either stop or continue while attempting to achieve a new goal. Thus,

if g of a string equals 1 and there are no uncontrollable events leaving the node, then

it is not necessary to explore the look-ahead tree further. The modified algorithm for

the control of DDES is presented in Fig. 6.2.

The algorithm I propose is based on the algorithm in [7] and it can be proved that

if used in conjunction with a specific value function, vo, and a specific definition of

goals, go, then the new algorithm has the same effect as the original version with the

optimistic attitude. For a fixed r ∈ (−∞,∞) the function vo is defined as

vo(s) = −∞ if s /∈ K,

vo(s) = r otherwise.
(6.1)

The function go is defined as go(s) = 1 ⇔ s ∈ K or, in other words, it selects the

strings which are marked in the legal language. To prove that under such conditions

the two algorithms are equivalent, let us examine what control decisions are made on

all possible inputs.
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cost to go(x, h)
/* x is a state, h is the string generated to reach this state */

Σout = events going out of x

if x hits the boundary

return v(h)
elseif g(h) = 1 and Σout ∩ Σuc = ∅

return v(h)
elseif v(h) = −∞

return −∞
else

if Σout = ∅
return v(h)

if Σout ∩ Σuc 
= ∅
for each σ ∈ Σout ∩ Σuc

y = state via σ

vσ = cost to go(y, hσ)
return minσ∈Σout∩Σuc

{vσ}
else

for each σ ∈ Σout

y = state via σ

vσ = cost to go(y, hσ)
return maxσ∈Σout

{vσ}

control step(h)
/* h is the event string executed so far,

E is the set of enabled events for the next step */

Σout = events going out of root

E = Σout ∩ Σuc

if cost to go(root, h) = −∞
announce RTE

else

/* yσ is the state reachable from root via σ */

m = maxσ∈Σout
{cost to go(yσ, hσ)}

E = E ∪ {σ | σ ∈ Σout, cost to go(yσ, hσ) = m}
return E
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Figure 6.2: Optimal DDES control algorithm
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For a string s the following notation is defined:

• |s| is the length of s,

• Σout(s) is the set of all events leading out of the state to which s leads,

• K/s|N = {t | st ∈ K, |t| ≤ N} is the set of all suffixes of strings in the legal

language K which have s as a prefix and which are of length up to N ,

• Xmc = {t | t ∈ K/s|N−1, Σout(t)∩Σuc = ∅} is the set of suffixes of s in the legal

language which lead to marked states with no uncontrollable events leading out.

This set is defined for a particular N chosen to be the depth of the look-ahead

tree.

Observe that for all strings in Xmc, go will return 1. The original algorithm considers

four major cases with some subcases for the continuations t of the string s:

1. |t| = N

(a) t /∈ K/s|N

(b) t ∈ K/s|N

2. |t| < N ∧ t ∈ Xmc

3. |t| < N ∧ t /∈ K/s|N

4. in all other cases

(a) Σout(t) ∩ Σuc 
= ∅

(b) Σout(t) ∩ Σuc = ∅
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In case (1a), the original algorithm (OA) returns ∞ which stands for illegal/should

be avoided. The modified algorithm (MA) for the same input returns v(st) = −∞
which stands for infinite cost/should be avoided. In case (1b) OA returns 0, i.e., this

is okay, while MA returns r which evaluates to some payoff or cost, depending on the

specific r. However, the controller will only consider it relative to the values of other

strings, i.e., it will be equivalent or better (if compared to r or −∞, respectively).

In case (2) OA returns 0. Since t ∈ Xmc, it means that go(st) = 1 and MA returns

r. In case (3) OA returns ∞, while MA returns −∞. Before we consider the last

case, it is important to note that if t ∈ K/s|N then st ∈ K. Furthermore, if t /∈
Xmc then go(st) = 0. This allows us to conclude that when OA chooses case (4),

the last option block in the MA is executed as well (line 10 of the algorithm in

Fig. 6.2). In case (4a) the original algorithm recursively follows the continuations of

the string through uncontrollable events and returns the maximal result. Similarly,

MA recursively follows the continuations via uncontrollable events, however, it returns

the minimal value, since the value function gives the “value” of a string and it is

negative values that need to be avoided. In the last case, (4b), OA recursively follows

all continuations and returns the minimal result. The modified algorithm, due to

its dual nature, performs the same actions, but returns the maximal result. In the

original algorithm the control action at the root is such that all controllable events

leading to nodes with infinite cost are disabled and the rest of the events are enabled.

In the modified algorithm the control action is to enable only the uncontrollable

events and the events leading to the nodes with the maximum value. The two control

actions are equivalent, since, for any event σ leading from the root, the following

holds: cost at node(sσ) = ∞ ⇔ value at node(sσ) = −∞. Furthermore, since both
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algorithms return values from a two-element set—{0,∞} and {r,−∞}, respectively—

the cost of a node will be 0 if and only if the value of the node is r. Lastly, the modified

algorithm will enable events leading to all nodes with value r because they all have

the same (maximum) value. Formally, for all σ ∈ Σout(s),

• if σ ∈ Σuc then σ ∈ enabledOA and σ ∈ enabledMA

• if σ ∈ Σc and cost at node(sσ) = ∞ then σ /∈ enabledOA and

value at node(sσ) = −∞ and σ /∈ enabledMA

• if σ ∈ Σc and cost at node(sσ) 
= ∞ then

σ ∈ enabledOA and value at node(sσ) = r and

r = maxτ∈Σout(s){value at node(sτ)} and σ ∈ enabledMA,

where enabledA stands for the events enabled by the algorithm A after the occurrence

of the string s. This concludes the proof of the equivalence between the optimal

control algorithm with value function vo and goals specified by go and the original

look-ahead algorithm with optimistic attitude. �

It is as simple to modify the value function so that the new algorithm is equivalent

to the look-ahead algorithm with conservative attitude.

The implication of the proof above is that the proposed algorithm is at least as

powerful as the online control algorithm. The value r was not a priori selected, nor

the method used to compute it specified. Thus, if a different value function v is

chosen, such that

v(s) = −∞ if s /∈ K,

v(s) 
= −∞ otherwise,
(6.2)

then this will result in a refinement of the optimal control decisions, i.e., the supervisor

may disable some controllable events even if they do not lead to states with a value



CHAPTER 6. CONTROL OPTIMIZATION 73

of −∞ because they will have a value smaller than the maximum (the valuation of

the strings will no longer be constrained to a two-value set {−∞, r}). This can be

used to advantage by confining the system behavior so that only valuable strings are

executed.

6.4 Issues in optimal DDES control

The control, guided by the value function v, is optimal in the sense that it attempts to

steer the DDES so that a goal is achieved as fast as possible and the value of executed

strings is highest. All this is possible very trivially, once the required value function

is defined. However, this approach does not provide absolute optimal control; it only

attempts to provide the best possible approximation by using the function v. There

are some optimality issues that arise when this control method is used. The following

examples illustrate these issues.

6.4.1 System description

Before the examples are presented, we will provide a brief description of the system

which will be explored. Let us consider that we have a company which needs supplies,

for example wooden logs. The company uses the logistic services of a provider and

the contract is such that we can rent one truck at a time. The provider has two types

of trucks available—a small truck (ST) and a big truck (BT)—which can bring ten

logs or either ten or twenty logs, respectively. The models are shown in Fig. 6.3(a)

and Fig. 6.3(b).

The system consists of the synchronous shuffle of these modules. The number and
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goSi

fetch10i

(a) small truck STi

goBi

fetch10i, fetch20i

(b) big truck BTi

Figure 6.3: DES models of trucks

type of trucks available at any given time is not known in advance. Thus the system

is inherently dynamic. Let us consider that our company needs a resupply of exactly

forty logs and we would like to automate the process, i.e., to have a controller which

will guide the system so that we achieve our goal.

The legality specification for the system is given by the following two rules:

1. After one truck goes to fetch supplies, we cannot send another truck (Fig. 6.4).

goSi, goBi

fetch10i, fetch20i

Figure 6.4: First restriction of the legal language, where i ∈ {1, 2, . . .}.

2. The number of logs fetched is forty:

∀s ∈ K : #fetch10(s) × 10 + #fetch20(s) × 20 = 40,

where #σ(s) denotes the number of occurrences of σ in s.

The goal function will be defined as g(s) = 1 ⇔ #fetch10(s) + #fetch20(s) × 2 ≥ 4,
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or in other words, a string will achieve the goal if and only if at least forty logs are

brought.

The costs associated with the events which can occur in the system are as follows:

• c(goSi) = −100 (we pay $100 to rent the small truck)

• c(goBi) = −150 (we pay $150 to rent the big truck)

• c(fetch10i) = 500 (the potential revenue we get from every log is $50)

• c(fetch20i) = 1000

and the value function v will be computed using the following equations:

v(s) = −∞ if s /∈ K,

v(s) =
∑

s=σ1σ2...σn
c(σi) otherwise,

(6.3)

where c(σi) is the single-event cost of elements of Σ.

All events in the system are controllable. Even though the proposed algorithm

allows for uncontrollable events, the use of controllable events renders the illustrative

examples clearer.

6.4.2 Example 1

In this example we will illustrate the effect of an overly limited look-ahead capability.

For this purpose, let us limit the prediction of the controller to just one step ahead.

At the start the system will have a small truck and a big truck available.

At time 0 (Fig. 6.5) the system supervisor has to make a decision about which

events have to be enabled and which have to be disabled. Since the prediction capa-

bility is very limited, the tree is very shallow and simple. The cost of renting a big
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0

1 v = −100goS1

2 v = −150goB2

Figure 6.5: Example 1, time 0 (one small truck, one big truck)

truck is greater than the cost of renting a small truck. Thus the controller, whose

task is to optimize the behavior of the system, chooses to disable the event goB2 and

leave only the less costly goS1.

Since our company needs forty logs, and since sending a small truck four times to

bring the logs is more expensive than sending a big truck twice for the same amount

of logs, one would correctly observe that it is preferable to send the big truck. This

judgment is based on the knowledge of what one expects to happen after a type of

truck is dispatched. Unfortunately, the controller is much more limited—it can only

foresee one step ahead. Without additional information, the controller will always

prefer to send small trucks over big trucks. The fundamental problem illustrated here

is that an online supervisor cannot provide optimal control if it cannot observe far

enough along event sequences to compute both the relevant costs and the relevant

payoffs.

6.4.3 Example 2

In this example we will illustrate the effect of overly lenient look-ahead capability.

For this purpose, the supervisor will be able to predict four steps ahead.

The system will be similar to the one in the previous example. At the beginning

there will be a small and a big truck available. At time 2 (after one round-trip) there
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will be only a small truck available. At time 4 (after two round-trips) there will be

only a big truck available.

As in the previous example, at time 0 (Fig. 6.6), the system supervisor has to

decide which events should be enabled or disabled. The tree is constructed, only

this time it is much deeper and more complex, since the prediction capability is

stronger. The branches goS1goB2 and goB2goS1 are not expanded further, because

these sequences are illegal. The supervisor is able to look further into the future

and it recognizes that sending the big truck is preferable, since it is cheaper to bring

twenty logs at a time (the value function v examines sufficiently long portions of the

event sequences). Thus goS1 is disabled (the payoff through this branch is only 1250,

while through the goB2 branch it is 1700) and the big truck is dispatched.

At time 1 (Fig. 6.7), the branch where the big truck fetches twenty logs twice

is not expanded further, because it achieves a goal and there are no uncontrollable

events leading from the state.

At time 2 (Fig. 6.8(a)), after one round-trip, only the small truck is available (for

example, someone else might have rented the big truck). There is only one possible

event which also turns out not to be illegal (the value function does not equal minus

infinity) and the small truck is dispatched.

After the small truck fetches ten logs, the only available truck is the big truck (for

example, the small truck might need maintenance). Thus at time 4 (Fig. 6.8(c)), the

supervisor has to enable goB2 even though the truck will be used to fetch only ten

logs (fetching more than forty logs in total is illegal).
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0

1 v = 1250

goS1

3 v = 1250
fetch101

8 v = 800goS1

14 v = 800
fetch101

15 v = −∞goB2

9

v = 1250

goB2
16 v = −∞goS1

17 v = 750fetch102

18 v = 1250fetch202

4

v = −∞
goB2

2 v = 1700

goB2

5 v = −∞

goS1

6 v = 1200

fetch102

10 v = 750goS1

19 v = 750
fetch101

20 v = −∞goB2

11

v = 1200

goB2

21 v = −∞goS1

22 v = 700fetch102

23 v = 1200fetch202

7 v = 1700

fetch202

12 v = 1250goS1

24 v = 1250
fetch101

25 v = −∞goB2

13

v = 1700

goB2

26 v = −∞goS1

27 v = 1200fetch102

28 v = 1700fetch202

Figure 6.6: Example 2, time 0 (one small truck, one big truck)
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0 2
goB2

5 v = −∞

goS1

6 v = 1100

fetch102

10 v = 650
goS1

19 v = 650
fetch101

29 v = 650goS1

30 v = 600goB2

20 v = −∞goB2

11

v = 1100

goB2

21 v = −∞
goS1

22 v = 600

fetch102

31 v = 600goS1

32 v = 550goB2

23 v = 1100
fetch202

33 v = 1100goS1

34 v = 1050goB2

7 v = 1700

fetch202

12 v = 1150goS1

24 v = 1150
fetch101

35 v = 1150goS1

36 v = 1100goB2

25 v = −∞goB2

13

v = 1700

goB2

26 v = −∞goS1

27 v = 1100fetch102

37 v = 1100goS1

38 v = 1050goB2

28 v = 1700fetch202

Figure 6.7: Example 2, time 1 (one small truck, one big truck)
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0 2
goB2

7
fetch202

39

v = 1650

goS1

40

v = 1650

fetch101

41

v = 1650

goS1

42

v = 1650

fetch101

(a) Time 2 (one small truck)

0 2
goB2

7
fetch202

39
goS1

40

v = 1650

fetch101

41

v = 1650

goS1

42

v = 1650

fetch101

(b) Time 3 (one small truck)

0 2
goB2

7
fetch202

39
goS1

40
fetch101

43 v = 1600
goB2

44

v = 1600
fetch102

45

v = −∞
fetch202

(c) Time 4 (one big truck)

Figure 6.8: Example 2, time 2 to 4
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After bringing the last ten logs, the goal is accomplished. As one can observe,

however, the system ended up incurring a greater cost than necessary. Had we used

the small truck at time 0, the payoff of fetching forty logs would have been

v(goS1fetch101goS1fetch101goB2fetch202) = 1650,

while the payoff in this example is

v(goB2fetch202goS1fetch101goB2fetch102) = 1600.

In other words, the solution produced by the supervisor is not optimal. Unlike the

situation in example 1, the problem is not caused by the lack of information: the

controller has sufficient look-ahead capability. This time the cause is the availability

of incorrect information. Since the system is dynamic, basing control decisions on

predictions of a too distant future will most likely result in incorrect assumptions. In

this example, at time 0 the system assumes the big truck will be available in time 2

and the cost computations are based on this. The fundamental problem illustrated

here is that the lack of a good model of the changes of a system renders far-reaching

predictions inherently unreliable.

Even though the supervisor cannot always perform perfectly due to the dynamic

nature of DDESs, it offers much greater robustness than the original online supervision

method [7]. The following example illustrates how the new control algorithm can

handle a case where the original approach would produce a runtime error.

6.4.4 Example 3

In this example we will demonstrate how the value function v can be used for more

robust control. Let us consider example 2 and let us assume that the big truck can
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be used to fetch twenty logs only. Until time 4 the supervisor will make the same

control decisions, since fetching ten logs with the big truck did not have a decisive

influence in the previous example.

0 2
goB2

7
fetch202

39
goS1

40
fetch101

43

v = −∞

goB2

44

v = −∞

fetch202

Figure 6.9: Example 3, time 4, with legality constraints

At time 4 (Fig. 6.9), it becomes clear that if the big truck is used, the system will

generate an illegal string: fifty instead of forty logs will be fetched. The controller has

to disable the goB2 event and the system gets “stuck” and produces a run-time error.

Such errors are naturally expected in online control, but this renders the supervised

system unreliable or error prone. One would think that if such a situation occurs, the

supervisor should attempt to find the best possible way out automatically.

A way to achieve this “automatic recovery” would be simply to relax the legality

requirements and to use the optimizing algorithm to calculate the least damaging

course of action. Understandably, sometimes the least damaging course of action

may not be admissible at all. In such cases, the hard restrictions will still be kept

as legality requirements. For example, if we get a larger resupply of wood logs this

will not necessarily result in damage to the company—we might be able to sell the

extra merchandise we produce from the logs. On the other hand, not sticking to the

rules of the contract and renting more than one truck at a time can result in damage

claims or legal actions from the renting company.

Let us examine what would happen if we only keep legal requirement 1 (not more
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than one truck can be used at a time) and we modify the value function as follows:

v(s) = −∞ if s /∈ K,

v(s) =
∑

s=σ1σ2...σn
c(σi)

if #fetch10(s) + #fetch20(s) × 2 ≤ 4,

where c(fetch10i) = 500,

c(fetch20i) = 1000, and

v(s) = (
∑

s=σ1σ2...σn
c(σi)) + 4000 otherwise,

where c(fetch10i) = −500,

c(fetch20i) = −1000.

(6.4)

This value function will calculate the first forty logs to be fetched as a benefit

(positive value) and all extra logs as costing $50 per log. With this setup the controller

can proceed at time 4 (Fig. 6.10). As one can see, our company still benefits from the

0 2
goB2

7
fetch202

39
goS1

40
fetch101

43

v = 1100

goB2

44

v = 1100

fetch202

Figure 6.10: Example 3, time 4, with value-function constraints

whole operation and the control was optimal, given the circumstances (since it was

not possible to predict that the small truck would no longer be available). On the

other hand, as before, two trucks are never used at the same time, since this would

result in an illegal string.

This example illustrates how the careful delegation of non-hard requirements may

result in significant improvement of the overall reliability of the supervised system.
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The value function provides the necessary flexibility for constantly changing (dy-

namic) systems.

6.5 Selecting a limit for the depth of the look-

ahead tree

Even though the new control method is capable of dealing better with unexpected

situations, we have shown that the exercised control can only be an approximation

of the optimal way to guide the system’s behavior due to the limited view of the

supervisor and the dynamics in the system. The natural question arises, “is there a

way to choose a number N to get the best possible performance?” While the best

N is always dependent on the specific application, the following observation can be

made. We have seen that it is important to have as much information as possible

about the contingent future development of the system (i.e., a large N); and to use

as little as possible of this information to make the control decisions (i.e., a small N).

A possible approach is to put emphasis on the dynamic characteristics of the DDESs.

When the controlled system is highly variable (many changes in its structure

occur per some unit time) and it is expected that major modules (i.e., modules very

significant for the overall behavior of the system) could appear or disappear, then it is

unreasonable to base the control decisions on far-reaching predictions of the executed

strings. It is preferable to limit the tree depth to the bare minimum. If the supervisor

is to optimize the control decisions, it should have information to be able to compare

strings in terms of their value. When comparison of continuations of strings far in

the future is not possible, the smallest “local discriminator” should be taken. A local
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discriminator is a sequence of events which completes a very limited and simple task

and where the immediate cost and payoff of the events is relatively self-contained

in the sequence. In the previous examples, the sending of a truck and fetching of

logs can be viewed as a local discriminator, since this is a completion of a subtask

and the cost and payoff of the two events are mutually related. As we saw, it is not

sufficient to have a tree depth of length N = 1, most notably because it showed only

the initial costs of sending trucks without considering the payoff a new supply would

bring. Furthermore, since it is expected that a truck will not “disappear” while on

the road, the important modules will be stable for at least two time periods. Thus, if

N = 2 is chosen, the supervisor would be able to make some reasonable predictions

to control the system.

6.6 Threshold for the acceptance of event strings

As we saw in the previous discussion, optimal control is defined as choosing the visible

goal with greatest value or the path leading to the optimal goal. This uncertainty

is due to the specific value function v used. It is possible that with a limited look-

ahead tree a visible goal will be valued more than the limited prefix of an event string

leading to the goal having greatest value overall. Furthermore, if it is not possible to

choose a limit N according to the guidelines in Section 6.5 (it is difficult to calculate

such a number or the number is very large), then one can also imagine a situation

when the value of a prefix of a goal is larger than the value of the prefix of another

goal, yet when the complete strings are considered, the second goal has greater value

than the first one. Even though this problem is inherently not solvable (especially

when changes of the system in time are considered), the user of the system might
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wish to have more control over how the supervisor treats the values of string prefixes.

A tool that might be used for this purpose is a flexible threshold for the enablement

or disablement of events. A number τ can be used to specify that if the difference

between the value of a string and the maximal value of all strings is less than τ , the

string can be considered a valid continuation and the supervisor should not disable

it. In this way, the supervisor may be much more lenient and options in the system’s

behavior would be explored more fully. By increasing τ , the supervisor would be less

restrictive, while decreasing τ will result in behavior closer to the optimal. Also, since

the number τ is finite, the supervisor would never enable a string with the value −∞
which would be avoided otherwise. The algorithm for the supervisor is modified very

little to achieve the above—it is sufficient to change the way E is constructed in the

function control step (see Fig. 6.11).

control step(h)
/* h is the event string executed so far,

E is the set of enabled events for the next step */

Σout = events going out of root

E = Σout ∩ Σuc

if cost to go(root, h) = −∞
announce RTE

else

/* yσ is the state reachable from root via σ */

m = maxσ∈Σout
{cost to go(yσ, hσ)}

E = E ∪ {σ | σ ∈ Σout, cost to go(yσ, hσ) ≥ (m − τ)}
return E

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6.11: Optimal DDES control algorithm with τ -threshold
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6.7 Dynamic event evaluation

The greatest strength of the new method comes from the flexibility of the value

function. The simple-form value function can be extended to account for other types

of dynamics in a system. In particular, let us consider a system where the cost of

different events changes with time. This is a very natural feature of many systems.

For example, the utilization of a truck can become more expensive with time, due

to the increase of maintenance costs. Consequentially, optimization of the control

of such systems cannot be based on static event costs, i.e., the value function as

defined previous examples cannot be used. However, if we recall the most general

specification, v is a function that assigns a real number to a sequence of events. Thus

we can use any computable specification to define the function.

For simplicity, let us use the system defined in Section 6.4 and consider that there

are only small trucks available. Let us define the value function as follows:

v(s) = −∞ if s /∈ K,

v(s) =
∑

s=σ1σ2...σn,σi∈{fetch10j} c(σi)−
100 × ∑k

j=1 (
∑ng(j)

l=1 log2(1 + l))

otherwise,

(6.5)

where k is the maximal index of the trucks in the system, j ∈ {1, 2, . . . , k} and

ng(j) = #goSj
(s). The only substantial difference from the value function we used in

the previous examples is that this one increases logarithmically the cost of using the

trucks.

Let us consider a supervisor with a one-step-ahead prediction capability and a

system where there are constantly two small trucks available. When the system
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starts (Fig. 6.12(a)), the cost of using either of the two trucks is the same, so the

controller leaves both choices available. Let us assume that the first truck is used.

0

1 v = −100goS1

2 v = −100goS2

(a) Time 0, both events enabled

0 1
goS1

3 v = 400
fetch101

4 v = −∞goS2

(b) Time 1, fetch101 enabled

0 1
goS1

3
fetch101

5 v = 241.5goS1

6 v = 300goS2

(c) Time 2, goS2 enabled

0 1
goS1

3
fetch101

6
goS2

7 v = −∞goS1

8 v = 800fetch102

(d) Time 3, fetch102 enabled

0 1
goS1

3
fetch101

6
goS2

8
fetch102

9 v = 641.5goS1

10 v = 641.5goS2

(e) Time 4, both events enabled

Figure 6.12: Look-ahead trees for the system with changing event costs

At time 2 (Fig. 6.12(c)), using the value function the supervisor correctly com-

putes that sending the second truck instead of the first one will be less costly, since it

has not been used at all whereas a truck that has been used requires more expensive
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maintenance. This judgment would not have been possible if static event costs were

used.

Again at time 4 (Fig. 6.12(e)), costwise, there is no difference between the two

trucks: they have been used an equal number of times. Following this pattern, the

value function will attempt to balance the truck usage in the system at any one time.

This example illustrates that using the value function, the control of systems may be

optimized so that it utilizes resources equally even in systems with complex dynamics.

6.8 Early RTE warning

Finally, we will discuss an interesting and useful characteristic of the optimal control

algorithm. Since the supervisor has access to a tree of the possible continuations of

the executed event string, it can detect future problems that can occur, such as the

system executing a string whose value is −∞, i.e., a string which is not acceptable. In

some cases this string contains controllable events and thus the supervisor can disable

one of the controllable events and automatically prevent the system from executing

the string. In other cases, as discussed in [6, 7], all the events leading to the string

may be uncontrollable and the supervisor may not be able to block the execution of

the illegal string; and a runtime error (RTE) occurs. Runtime errors translate into

having a −∞ value at the root of the look-ahead tree. However, often it may be that

this value is propagated from branches further in the tree and that the execution of

the illegal string is not something imminent (see Fig. 6.13). A large portion of the

string can be still acceptable and the system may continue execution. It may be even

the case that the illegal string is only one possible continuation and that ultimately it

never gets executed: as is the case in Fig. 6.13 if from state 2 the system continues to
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1 2

3

4

Figure 6.13: Early prediction of a runtime error. State 3 is an illegal state to which
an uncontrollable event leads. While in state 1, the controller can predict that from
state 2 the system may veer to an undesired path.

state 4. Thus, there is not always a reason to announce RTEs immediately. Instead,

an early RTE warning can be issued, which would tell the user of the system that

there may be trouble down the road. Since the system is dynamic, it may be possible

that upon getting such a warning, the user can intervene and modify the system in

such a way that the RTE is avoided (for example, an actuator could be added so that

an uncontrollable event is rendered controllable). In order to implement this early

warning mechanism, the optimal control algorithm should be modified as shown in

Fig. 6.14.

After defining the optimal control algorithm and discussing some of its properties,

we will see how the different pieces can be brought together to accomplish the overall

control of DDESs.
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control step(h)
/* h is the event string executed so far,

E is the set of enabled events for the next step */

Σout = events going out of root

E = Σout ∩ Σuc

if 
 ∃σ ∈ Σout, v(hσ) 
= −∞
announce RTE

else

/* yσ is the state reachable from root via σ */

if cost to go(root, h) = −∞
warn about pending RTE

if maxσ∈Σout
{cost to go(yσ, hσ)} = −∞

return E ∪ {σ | σ ∈ Σout, v(hσ) 
= −∞}
m = maxσ∈Σout

{cost to go(yσ, hσ)}
E = E ∪ {σ | σ ∈ Σout, cost to go(yσ, hσ) = m}

return E

1
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Figure 6.14: Optimal DDES control algorithm for early RTE warnings



Chapter 7

Overall DDES control process

In this chapter we describe how the overall process of control of dynamic discrete-

event systems would function. The two main ideas behind the proposed method are

the persistence of supportive information combined with deferred evaluation. The

latter is borrowed from computing algorithms where it has been shown to allow the

efficient processing of large amounts of information [13]. The complexity of the DDES

control algorithm is also discussed.

7.1 Deferred evaluation

In the previous chapters we saw that, unlike the offline control of DESs (or standard

supervisory control), online control requires access to small parts of the DES at a

time. However, it was assumed that the model of the DES is readily available. If

the system in question is dynamic, this would require that the model is reconstructed

each time there is a change. The approaches described in Chapter 5 are designed

to alleviate this task, however, they require a lot of storage and may prove not to

92



CHAPTER 7. OVERALL DDES CONTROL PROCESS 93

be very useful in all cases. Furthermore, if the system is very large, it might be

very difficult, if not impossible, to create a complete model of the system even if

redundancy structures are not considered. How would an online supervisor be able

to operate with such systems?

The solution to this problem is the deferred evaluation, or evaluation-on-demand,

of the behavior of the complete system. Instead of calculating the synchronous shuffle

of all system modules, and then using the information from the gigantic system to

build the look-ahead tree, the supervisor may start building the tree using the infor-

mation from the separate modules without combining them explicitly. At each state

in the tree, the supervisor can scan all the modules and determine which events may

happen at this state, using the rule for the computation of the synchronous shuffle.

The online control algorithm is forward-searching, with limited depth, and thus it

will create and examine only the necessary part of the complete system. A branch

in the tree, and thus a part of the synchronous shuffle of all system modules, will be

constructed only if there is demand for it, resulting in a deferred evaluation technique.

7.2 State information

In order to support the deferred evaluation method as described in the previous

section, it is important that some supportive information is stored in the states of

the look-ahead tree.

If the supervisor needs access to all the events which may follow from a state and

the model of the complete system is not available, there should be a way to obtain

the set of possible continuations. Since the individual modules of the system are

accessible, it is sufficient to know which state of every module corresponds to the
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node of the tree. Thus, if there are n modules, a simple tuple q = [q1, q2, . . . , qn] can

be associated with each state of the look-ahead tree and qi would specify the state of

module i. The set Σout(q) of all events leading from this state can be constructed as

Σout(q) = {σ | σ ∈ Σ,∃i : δi(σ, qi) is defined}, where δi is the transition function of

module i. The state next(q, σ) which is reachable from [q1, q2, . . . , qn] via σ can be

constructed as follows:

next(q, σ) = [q1
σ, q

2
σ, . . . , q

n
σ ],

where qi
σ = δi(σ, qi) if δi(σ, qi) is defined

qi
σ = qi otherwise.

If the look-ahead tree is built using the above rules, the result will be equivalent to

the look-ahead tree constructed from the synchronous shuffle of all the modules (i.e.,

the complete system). The proof is trivial.

Once the look-ahead tree is constructed, it can be preserved throughout the pro-

cess of system control and only needs to be updated at each step. If there is a change

in the system, the look-ahead tree has to be rebuilt and this is done automatically by

the recursive search of the optimal control algorithm. However, if there is no change,

much of the information can be reused. The reusable information includes states de-

termined to have a value of −∞ and states which accomplish goals with determined

value. In both these cases, it is not necessary to re-evaluate the continuations beyond

these states, since the new evaluation will have the same outcome.

The last piece of information which needs to persist is the history of executed

events. The optimal control algorithm uses the value function v which requires this

history to compute correctly the value of string continuations. Thus, after an event

is executed, the history of events needs to be updated as well.
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DDES control()
h = ε /* initialize the history of events */

do

if there was system change

invalidate look-ahead tree /* will be rebuilt by the

control algorithm */

enabled events = control step(h)
if enable events = ∅

return

σ =event executed by the system

look-ahead tree root=state reachable via σ

h = hσ

if g(h) = 1
h = ε

while true
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Figure 7.1: Main algorithm for the control of DDESs

7.3 Main program

The main algorithm for the control of dynamic discrete-event systems is presented in

Fig. 7.1. Purging of the event history upon the achievement of a goal (lines 13 and 14

of the algorithm in Fig. 7.1) is optional. It will speed up subsequent computations,

however, if the goal is a part of another goal, this will remove information required by

the value function. The choice of whether the event history needs to persist depends

on the specific system design.

7.4 Complexity

The overall complexity of the algorithm depends to a great extent on the complexity of

the specific value and goal functions, v and g, used. The look-ahead tree exploration

algorithm (Fig. 6.2) is a minor modification of the original online control algorithm
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[7]; instead of using only 0 and ∞, event strings can be valued using any real number.

Thus, the worst-case complexity for the tree exploration is equivalent. It is of the

order of O(kN |Σ|), where k is the number of DES modules in the system and N is the

depth of the tree. However, this result has to be adjusted to account for the calls to

the value and goal functions. In the worst case, both functions may be called at each

node of the tree. Thus, the worst-case complexity at each step of operation of the

overall algorithm is O(kNC(s)|Σ|), where C(s) stands for the combined complexity

of the functions v and g, over an input string s whose length equals the number of

executed events since the start of operation. Computations with this complexity have

to be performed each time an event occurs and it can be argued that if the lifespan

of a system is very long, eventually the accumulated cost would surpass the cost of

performing an offline computation of a supervisor for the complete system. However,

since dynamic DESs are considered, such an offline computation will be invalidated

at each change in the system. Furthermore, the algorithm presented here attempts to

guide the system to achieve an event string with maximal value. This is not possible

using standard offline supervision.

The next chapter will provide an example of the use of the control method intro-

duced in this work.



Chapter 8

Example and simulation

In this chapter we will present the results of a proof-of-concept simulation which was

carried out to compare the true performance of the suggested control method to the

performance of the original online control method on which this work is based. For

this purpose, the example provided in [7] was used. This example was chosen for two

reasons: the system setup is such that it immediately fits in the DDES paradigm,

and it offers a very convenient way to compare the algorithms from this work to the

original algorithms.

8.1 System description

The system under consideration consists of a number of trains, each modeled as

a separate module. Each train can travel along tracks, which are connected in a

certain way (see Fig. 8.1). Each track is divided into four sections. All tracks are

unidirectional, except track 7 where trains can travel in both directions. There are

three stations (S1 to S3) and two junctions (J1 and J2). Additionally, there is a tunnel
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in section 2 of each of track 1 and 4. Trains can enter the system from stations 1

and 2 and can leave the system from stations 2 and 3.

S3

S1 J1 J2 S2

track 1

track 2

track 4

track 3

track 5

track 6

track 7

Figure 8.1: Train system

Each train i can execute the following events:

• tij,k: train i enters section k ∈ {1, . . . , 4} of track j ∈ {1, . . . , 6}

• tij,5: train i leaves section 4 of track j ∈ {1, . . . , 6}

• tlik: train i enters section k ∈ {1, . . . , 4} of track 7 traveling from S2 to J2

• tli5: train i leaves section 4 track 7 traveling from S2 to J2

• tri
k: train i enters section k ∈ {1, . . . , 4} of track 7 traveling from J2 to S2

• tri
5: train i leaves section 4 of track 7 traveling from J2 to S2

• lij: train i leaves the system permanently from station j ∈ {2, 3}

The movement of trains along tracks is controlled by lights, but not all sections have

such lights. Thus, the set of controllable events is

Σc = {tij,k, tlik, tri
k, l

i
m | j ∈ {1, . . . , 6}, k ∈ {1, 3, 5},m ∈ {2, 3}}.
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The number i ∈ N is a natural number, but the number of trains is not a priori

known and trains can enter and leave the system at different times, which makes

the system a DDES. The set of events in this example does not follow precisely the

original example, found in [7]. Namely, the events “train i enters the system” were

omitted to prevent the supervisor from having control over when new modules enter

the system. This modification does not otherwise have influence on the findings of

this simulation.

The legal constraints K considered in the original simulation are:

1. At most one train can occupy any section of the track

∀s ∈ K,∀t prefix of s, j ∈ {1, . . . , 6}, k ∈ {1, . . . , 4} :

(#ti
j,k

(t) − #ti
j,k+1

(t) ≤ 1) ∧ (#tli
k
(t) − #tli

k+1
(t) ≤ 1)∧

(#tri
k
(t) − #tri

k+1
(t) ≤ 1)

2. At least one section is free between trains on the tracks

∀s ∈ K,∀t prefix of s, j ∈ {1, . . . , 6}, k ∈ {1, . . . , 3} :

(#ti
j,k

(t) − #ti
j,k+1

(t) = 1 ⇒ #ti
j,k+1

(t) − #ti
j,k+2

(t) = 0)∧
(#tli

k
(t) − #tli

k+1
(t) = 1 ⇒ #tli

k+1
(t) − #tli

k+2
(t) = 0)∧

(#tri
k
(t) − #tri

k+1
(t) = 1 ⇒ #tri

k+1
(t) − #tri

k+2
(t) = 0)

3. At most two trains can occupy every junction

∀s ∈ K,∀t prefix of s : (#ti1,5
(t) + #ti2,5

(t) − #ti3,1
(t) − #ti4,1

(t) ≤ 2)∧
(#ti3,5

(t) + #tli5
(t) − #ti5,1

(t) − #ti6,1
(t) − #tri

1
(t) ≤ 2)

4. All trains traveling simultaneously on track 7 have to travel in the same direction

∀s ∈ K,∀t prefix of s : (#tli1
(t) − #tli5

(t) = 0) ∨ (#tri
1
(t) − #tri

5
(t) = 0)
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5. The use of tracks 6 and 7 is balanced with a maximal error of 10

∀s ∈ K,∀t prefix of s : abs(#tli1
(t) + #tri

1
(t) − #ti6,1

(t)) ≤ 10

6. The use of the two tunnels is balanced with maximal error of 10

∀s ∈ K,∀t prefix of s : abs(#ti1,3
(t) − #ti4,3

(t)) ≤ 10

Furthermore, marking in the system is considered: for every train, the stations, the

junctions, and the exit points of the system are marked states. In [7] it is determined

that a sufficient bound on the depth of the look-ahead tree to ensure correctness of

the control for this system and legal language does not exist in general. If we are

interested in the prefix closure of the legal language (without the marking), however,

choosing N equal to the number of trains in the system would ensure correctness,

since the maximal length of a substring of uncontrollable events that can be executed

is equal to the number of trains.

8.2 DDES control specifications

In light of the discussion in this work, the following changes were considered when the

DDES control method was applied to this example. Instead of marking, goals and the

value function were used. A goal was defined as the state when all trains in the system

are at a station or the exit states. This does not reflect the marking precisely, but in

real life one would not like to have trains in junctions midway to their destinations.

Formally, g(s) = 1 ⇔ ∀i ∈ T : last(i, s) ∈ {ti4,5, t
i
5,5, t

i
6,5, tr

i
5, l

i
2, l

i
3} where T is the set

of indexes of all trains in the system and last(i, s) returns the last event for the train

i in the string s. The new legal language K ′ is defined as the prefix closure of the

language K without constraint (6). This constraint was omitted because we would
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like to show how it can be substituted with a suitable value function. The value

function returns −∞ for all strings which do not satisfy the new legality constraints.

Furthermore, it is used to attempt to fulfill the following specifications:

1. Trains should move through the system aiming to reach stations, since this is the

task in real life. Furthermore, it is not desirable that a train reaches the same

station from which it started or that it leaves the system without performing

any action. Thus, trains which arrive at a station different from their starting

station contribute the value 200 to the overall value of the string, while arrivals

at the starting station (this is possible only for station 2) contribute negatively

with a value of −200. Similarly, if a train executes li2 and station 2 is its starting

station, i.e., it leaves the system from station 2 without visiting other stations,

the value 200 is subtracted from the overall value of the string.

2. The use of the tracks should be balanced. For every use of a section of a track,

a junction or a station (i.e., for every event tij,k, tlik or tri
k), the value of 1+ ln m

is subtracted from the overall value returned by the function v, where m stands

for the number of times such an event appears in the prefix of the string.

3. Trains should move in an interweaved fashion, i.e., trains should not wait for

too long before they move. This is achieved through the use of a priority queue.

For each train it is calculated how many time intervals have passed since it has

moved last and then all these intervals are summed up and subtracted from

the overall value returned by v. Thus, if the train which has waited longest

moves, this will minimize the number subtracted (and achieve a better overall

value). Since the value function v cannot determine when a train has entered

the system simply by examining the event string, it assumes that every train
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in the system has waited since the last time it has moved (or from time 0 if it

has not moved at all). Thus, trains which enter the system later may have an

advantage over trains already in the system. However, we deemed this is not a

very serious issue.

4. The use of the two tunnels should be balanced. Instead of using a hard restric-

tion coded in the legality constraints, we decided to demonstrate how the value

function can be used for the same purpose. Thus, for every string the difference

between the tunnel usage times 10 is subtracted from the overall value of the

function v. This method is used to replace legality constraint (6).

All these specifications are reasonable expectations a user of the system would have,

however, none of them is strong enough to be defined as a legality constraint (and

thus produce a very limited system). Before we define the value function v formally,

let us specify the following notation:

• last(t) stands for the last event of the string t,

• last(t, ti∗,1) stands for the last event of the string t which belongs to the set

{tij,1, tli1, tri
1 | i is an index of a train, j ∈ {1, . . . , 6}} and

• last without(s, S) = t stands for the longest suffix of the string s such that it

does not contain events from the set S, i.e., s = rt, r ∈ Σ∗, t ∈ (Σ \ S)∗ and

|t| = max{|v| | s = uv, u ∈ Σ∗, v ∈ (Σ \ S)∗}
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Then, the value function v is defined as follows:

v(s) = −∞ if s /∈ K ′,

v(s) = 200×
∣
∣
∣{t | last(t) ∈ {ti4,5, t

i
5,5, t

i
6,5, tr

i
5} for some i ∧ last(t, ti∗,1) ∈ {ti1,1, t

i
2,1}}

∣
∣
∣ +

200 ×
∣
∣
∣{t | last(t) = ti5,5 for some i ∧ last(t, ti∗,1) = tli1}

∣
∣
∣−

200 ×
∣
∣
∣{t | last(t) ∈ {ti6,5, tr

i
5} for some i ∧ last(t, ti∗,1) = tli1}

∣
∣
∣−

200 ×
∣
∣
∣{t | last(t) = li2 for some i ∧ last(t, ti∗,1) = tli1 or is ndef}

∣
∣
∣−

∑
t

∑
i

∑
k∈{1,...,5}(2 + ln #tli

k
(t) + ln #tri

k
(t) +

∑
j∈{1,...,6}(1 + ln #ti

j,k
(t)) )−

∑
i

∣
∣
∣last without(s, {tij,k, tlik, tri

k, l
i
2, l

i
3 | j ∈ {1, . . . , 6}, k ∈ {1, . . . , 5}})

∣
∣
∣−

10 × abs(
∑

i #ti1,3
(s) − ∑

i #ti4,3
(s))

otherwise,

(8.1)

where all prefixes t of the string s are considered in the sets and the sum.

8.3 Simulation

The simulation consisted of two parts. First, the original online control algorithm

was run to collect performance information not collected in [7] but important for the

comparison of the two methods. Then, the algorithm introduced in this work was

run to collect the same performance information.

Both algorithms were implemented in the Java programming language. Other

implementations may offer better performance (for example using the C language)

or, conversely, worse performance, as is the case with the LISP implementation in

[7]. Thus, the time spent by the algorithm at each control step should be used for
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comparative purposes within this simulation only. The computer used was running

the Microsoft Windows XP operating system on a VIA C3 766MHz processor. The

Sun Java VM was used which ran with the default 64MB memory allocation pool

that fit entirely in the machine RAM.

Every simulation started with a train in station 1 and a train in station 2. After

each time interval (the execution of an event), a random number was generated from

a uniform distribution in the interval 0 to 1. When the value was greater than 0.8,

a new train was introduced in the system if there were fewer than ten trains already

in it. Otherwise (when the value was smaller than or equal to 0.8), a new train was

introduced if there were fewer than two trains in the system. The newly introduced

trains entered the system from station 1 or 2 with equal probability. The trains were

taken in order from a pool of trains. When a train left the system, it was returned

to this pool, so it was possible that a train with the same index could enter the

system numerous times. A train was removed from the system immediately after the

corresponding lij event was executed.

For both methods the following performance information was collected:

1. Average number of trains during the simulation.

2. The value of the generated strings at the end of each simulation.

3. The number of trains which arrive at a station during each simulation.

4. The maximal difference in the usage of the tunnels during each simulation.

5. The decision time for every control step in milliseconds.

6. The number of tree nodes inspected at every control step.
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7. The number of tree nodes whose value was reused (i.e., it has been computed

previously) for every control step. Please note that this is different from the

re-utilization statistic provided in [7], where the average ratio of the survived

portion of the look-ahead window between steps is shown.

For each pair of tree depth and simulation length, a number of simulation runs were

executed and the results were averaged for these runs. The only exceptions are the

minimal and maximal values which reflect the overall minimal or maximal value for

the given set of runs.

8.4 Results

When the original online control method was simulated, we adopted the optimistic

attitude for the algorithm, since it is naturally closest to the actions of the optimal

control method. Three sets of runs were performed: ten runs with a simulation length

of 40 and a tree depth of 10; ten runs with a simulation length of 40 and a tree depth

of 20; and five runs for a simulation of length 100 and a tree depth of 10. The

information gathered is shown in Table 8.1(a). The results observed are comparable

to the results presented in the original paper [7] with the notable exception of the

decision time per step, which improved dramatically with the new implementation.

At the end of each run, the produced string was evaluated with the function v to

serve as a basis for comparison with the control method proposed in this work. It can

be seen from the newly collected data that in terms of our “non-hard expectations”

(i.e., the specifications encoded in the value function), the produced strings have little

value (the average value of the strings is negative). This is due to the randomness in

the execution of events—as long as an event is legal, it is considered for execution and
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there is no attempt to guide the system along a path, valuable for the user. Naturally,

the increase of tree depth does not have a beneficial effect on the performance of the

algorithm.

When the newly proposed control method was simulated, six sets of runs were

performed: five with a simulation length of 40 and tree depths of 1, 2, 3, 5, and 7,

consisting of ten runs each; and one set of five runs with a length 100 and a tree

depth 5. The information gathered is shown in Table 8.1(b). Of the ten (40,7)

runs, only two completed successfully. In the other eight cases the Java VM ran

out of memory before the completion of the simulation. Information only from the

two successful runs is included in the table. Overall, the optimal control algorithm

outperforms the original online control algorithm. The execution of events is targeted

and thus the resulting value of the event strings is much greater than the one obtained

using the original algorithm. Furthermore, as expected, the greater the depth of the

look-ahead tree, the better is the performance of the algorithm—both in terms of

the string value and the average number of arriving trains. The average number of

arriving trains is also greater than the average achieved with the original algorithm.

The simulations show that moving the requirement for the balanced use of the tunnels

from the legality constraints to the value function was successful. Not only was the use

of the tunnels very balanced, but it was even more so than when the legality constraint

was used in the original control algorithm. On the other hand, the optimal control

algorithm requires many more computational resources than the original algorithm,

both in terms of time and space. Almost every branch of the look-ahead tree has to

be examined fully and thus the decision time and the number of nodes created are

considerably greater than the corresponding values for the original control algorithm.



CHAPTER 8. EXAMPLE AND SIMULATION 107

This is an expected consequence of the new method, however, and the values are still

good enough for the practical use of the system in this example. Furthermore, as seen,

the proposed control algorithm performs well even with very shallow look-ahead trees;

this all depends on the specific value function used. An interesting fact to note is that

the average number of trains is much higher in the simulations with the new control

algorithm. This is because the value function does not give any incentive to trains

exiting the system. Thus trains usually just wait once they reach their destination

and exit only when a sufficiently long time period passes and their priority in the

queue increases.

The implemented algorithm was capable of early detection of runtime errors as

discussed in Section 6.8. It was observed that runtime errors occurred only when

the tree depth was 1. During the ten (40,1) simulation runs there were seven RTE

warnings and four RTEs were announced. Our suggestion that pending runtime errors

are not always critical proved to be correct. Three of the times there was a runtime

error warning, the system continued execution and the runtime error did not occur

at all. In another case, there was one legal event which was executed between the

runtime error warning and the occurrence of the runtime error, possibly giving an

opportunity to a human controller to intervene in time to prevent illegal behavior in

the system.

Even though the complexity of the system in this example is such that it may

be almost impossible to provide a solution using standard supervisory control (there

may be up to 3510 states in the complete model), the system is still not compre-

hensive enough when compared to very large and complex systems in real life. The
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DDES optimal control algorithm performs well in this case, however, its computa-

tional demands may render it inapplicable to larger systems. On the other hand, the

original online control method may still perform well with larger systems. This leads

me to believe that ultimately a combination of the two approaches would offer the

best performance. The original algorithm may be used to verify the legality of very

long event strings, while the optimal control algorithm may work with a very limited

look-ahead window and be used to select the best path from the verified paths.
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Chapter 9

Conclusion

In this work I have presented a method for the control of dynamic discrete-event

systems. The definition of dynamic systems and the suggested optimal control algo-

rithms are novel work, aimed at solving some of the underlying issues in the standard

supervisory control theory for discrete-event systems. The major goal was to adapt

the concepts of this field and make them more applicable to real-world problems.

There are numerous types of real systems which can be modeled discretely and

thus different approaches are needed to control different systems. I focused on a

solution for the control of a specific class of discrete-event systems. I considered

systems which are dynamic, which are relatively large, which continuously attempt

to achieve different goals, and for which the users would wish to have requirements

with different levels of stringency. Systems which naturally fit this class are, for

example, operating systems and dispatching centers.

Two major topics were discussed: redundancy structures for the efficient recon-

struction of the complete system models when constituent modules change, and the
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use of online control to optimize the supervision of dynamic systems. Three re-

dundancy structures were proposed: stack redundancy, tree redundancy and hybrid

redundancy. Their characteristics and their applicability in different scenarios were

discussed. The control algorithms were designed to address the specific requirements

of the class of systems considered. The online control paradigm was used since it

can adapt automatically to the changes that occur in dynamic systems. A value

function was used to guide the supervision of systems, allowing for optimal control

and for a flexible way to set requirements on the expected system behavior. This

function, combined with the definition of goals, was shown to successfully replace

marking in automata and to support the work of continuous-life systems using infi-

nite goals. Additionally, deferred evaluation techniques for online control allow the

effective supervision of systems much larger than what would be achievable with stan-

dard control. The algorithms were tailored to be easily implementable as modular

computer software and separate parts of them can be user-replaced as needed. An

extensive example was also provided, illustrating the use of this control method and

comparing its performance to that of online control without optimality information.

It was shown that the proposed modifications offer a significant improvement in the

quality of control of dynamic systems.

This work is only a first attempt at solving the problem of the control of dynamic

discrete-event systems. Further research is needed to make this method more effective.

One area that can be addressed is setting tighter limits on the exploration of the look-

ahead tree. Currently, branches with nodes with a value of minus infinity and nodes

which achieve a goal with determined value are not explored further. However, there

may be other reasonable conditions under which it is not necessary to explore tree



CHAPTER 9. CONCLUSION 112

branches further. It is also possible that some combination of the proposed method

and the original online control method may help in the decision process when the

look-ahead tree is too large for an exhaustive exploration.

During this work, I noticed that two aspects of the method seem to be able to

benefit from the employment of a hierarchical architecture and this may be another

area that future research can address. The storage of optimality information to

guide the supervisor has high memory demands. One solution is to limit the storage

and recompute information on demand. In many cases the information pertains to

some higher-level processes, rather than the very low-level event strings which the

supervisor controls directly. Thus, one can imagine that abstracting the optimality

information to a higher level will reduce the requirements on memory space. The use

of a hierarchical architecture for the system supervisor may be a solution. Further-

more, the nature of the online control scheme provides some limited error-prediction

capability. Since these errors occur due to insufficient information to take the correct

control action, they cannot be prevented without additional intervention. If the su-

pervisors are constructed hierarchically, error notifications can be propagated up until

they reach a level capable of making the right intervention. The building blocks are

separate modules, thus the actions of higher levels might be the removal or addition

of a module so that the problem is solved. This would be a novel approach to the

control of discrete-event systems, since so far supervisors have been considered very

passive and not able to modify the structure of the controlled system.
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Glossary

C

conservative policy A policy under which all strings in a look-ahead tree which

cannot be determined to be legal are considered illegal, p. 27.

controllable events (Σc) Events which can be enabled or disabled (prevented from

occurring), p. 10.

D

discrete-event system (DES) A system of discrete states where events (changes of

state) happen spontaneously and are not tied to a continuous global time,

p. 6.

dynamic discrete-event system (DDES) A discrete-event system which can vary

with time: consisting of modules which can appear or disappear as time

progresses, p. 36.
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F

finite-state machine (FSM) A system of states with labeled transitions between

them, p. 6.

G

goal An event string which accomplishes some task specified by the user of a

discrete-event system, p. 65.

goal function (g) The function used in the control of dynamic discrete-event sys-

tems to identify event strings which accomplish a task. It returns 1 if the

string accomplishes a task and 0 if it does not accomplish a task, p. 65.

L

legal language (K) A sublanguage of the language generated by a discrete-event

system, containing the acceptable strings, p. 9.

look-ahead tree (look-ahead window) A tree structure containing all event paths

which can possibly be executed in the future by a discrete-event system,

p. 24.

M

marked state (final state) A state belonging to the set of final states in a finite-

state machine, p. 6.
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module A small discrete-event system which can be assembled together with other

such systems to build a larger discrete-event system, p. 15.

O

offline control Control of discrete-event systems as defined in [23], p. 10.

online control Control of discrete-event systems where the executed events are mon-

itored and guidance is applied as the systems evolve [6], p. 23.

optimistic policy A policy under which all strings in a look-ahead tree which cannot

be determined to be illegal are considered legal, p. 28.

P

prefix-closed language A language which contains all prefixes of its strings, p. 7.

R

runtime error (RTE) A condition in online control in which the execution of an ille-

gal string in the look-ahead tree cannot be prevented with the disablement

of controllable events, p. 28.

S

supervisor (controller) A unit which is responsible for the guidance of the behavior

of a discrete-event system. The supervisor may have different forms. In

offline control it is in the form of a finite-state machine. In online control

it is in the form of an event monitor, p. 11.



GLOSSARY 121

supremal controllable sublanguage The largest sublanguage of a given language

which is controllable with respect to a given discrete-event system, p. 13.

synchronous shuffle A parallel composition of discrete-event systems where events

can happen in an interweaved fashion and are executed synchronously

when possible, p. 16.

U

uncontrollable events (Σuc) Events which cannot be prevented from occurring,

p. 10.

V

value function (v) The function used to optimize the control of dynamic discrete-

event systems. It assigns a real number to every string according to its

“value” for the user, p. 63.

Common symbols

⊗ A generic commutative and associative binary operation, p. 39.

#σ(s) The number of occurrences of the event σ in the string s, p. 74.

δ The transition function of a finite-state machine, p. 6.

ε The string of length zero, p. 7.

g The goal function used in the control of dynamic discrete-event systems

to identify event strings which accomplish a task, p. 65.
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K A sublanguage of the language generated by a discrete-event system, con-

taining the acceptable strings; the legal language, p. 13.

L A language containing all prefixes of the strings in the language L; the

prefix-closure of L, p. 7.

L(G) The language generated by the finite-state machine G, p. 7.

Lm(G) The language accepted by the finite-state machine G, p. 7.

N The depth of a look-ahead tree, p. 26.

Nu The length of the longest substring in a language, containing only uncon-

trollable events, p. 28.

Q The set of states in a finite-state machine, p. 6.

q0 The initial state in a finite-state machine, p. 6.

Qf The set of final (marked) states in a finite-state machine, p. 6.

Σ The set of events which can happen in a discrete-event system, p. 6.

Σc The subset of the set of events Σ containing all controllable events, p. 10.

Σout(s) The set of events leading out of the state s (or, if s is a string, out of the

state to which s leads), p. 70.

Σuc The subset of the set of events Σ containing all uncontrollable events,

p. 10.

v The value function used to optimize the control of dynamic discrete-event

systems, p. 63.
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