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Abstract

A formal method for reasoning about knowledge in distributed systems is applied to
the analysis of decentralized discrete-event control problems. Solutions to this class
of control problems require that controllers achieve their control objectives without
communication. A necessary and sufficient condition is given (equivalent to one from
existing discrete-event control theory) to describe when decentralized controllers have

enough knowledge to find a control solution.

When controllers do not have sufficient knowledge, a solution where controllers
may communicate is presented. The relationship between communication and control
is difficult. Control decisions may be affected by information a supervisor received
from another supervisor. The content of the information that is communicated could
be affected by information the communicating supervisor previously received. Proce-
dures are derived for incorporating communication into decentralized discrete-event
control. These procedures yield a control solution while ensuring that supervisors

communicate in a consistent manner.



Chapter 1

Introduction

We live in a world where technology plays an increasingly crucial role in solving
complex problems. It seems somewhat irregular, though, to consider that a machine
or any other inanimate object has knowledge. We use machines as a tool to accom-
plish a task. Yet despite the fact that a machine lacks the ability for introspection
and self-awareness during the problem-solving process, it is still possible to describe
what that inanimate object knows. For instance, a robot arm that is controlled to
perform a task along a car assembly line “knows” when to reject a component. Fur-
ther, as part of the distributed assembly process, the information that a component
has been rejected may be of interest to another sector of the automated process.
Having knowledge about a task does not imply any anthropomorphic assumptions of
the system. In this dissertation, we are interested in understanding what it means for
decentralized—and quite inanimate—agents to “know enough” to solve control prob-
lems. In particular, we are interested in a class of problems where communication is

necessary to successfully achieve a control solution.

A discrete-event system (DES) is a set of sequences of events that describes the
behaviour of a physical process. A change in the system state of the process is not
time-driven, but rather, is precipitated by the occurrence of an action or event. A
discrete-event control problem arises when we want to restrict the system to per-
forming a specified subset of the overall behaviour of the system. A control solution
exists if we can construct an overseer, or supervisor, to achieve the set of desired
behaviour by either preventing some events from taking place (disabling an event) or

allowing—but not forcing—others to occur (enabling an event).



Decentralized discrete-event problems originate when more than one supervisor
is required to ensure that the system avoids undesirable behaviour. For this class
of problems no one supervisor has a complete view of the system behaviour. The
supervisors must coordinate without communication the disabling and enabling
of events to realize the desirable or legal behaviour. In other words, each supervisor
must know enough of what the system is doing to make correct decisions to turn

events off or on.

The framework for decentralized discrete-event control that we adopt for this
thesis is based on the theory of formal languages [28]. A discrete-event system is
viewed as a generator of a formal language and establishing control for the system
amounts to determining which sequences in the language should be recognized by each
supervisor. Intrinsic to the study of these processes is the informal argument that as
long as at least one supervisor knows the correct control action to take in preventing

illegal behaviour of the system, an overall control strategy may be synthesized.

At present, decentralized control decisions are based solely on what each super-
visor observes. A control solution cannot be constructed if after observing some
sequence of events there is no supervisor that “knows enough” to disable a particular
event. When such a stalemate is reached it means that in isolation a supervisor lacks
appropriate information to make the correct control decision. However, if supervisors
could access their collective knowledge about the situation thereby eliminating some
of the uncertainty in making the correct control decision it may be the case that a

control strategy can be formulated.

In this thesis, the decentralized discrete-event control framework is recast into
knowledge theory [16] where we formally reason about what supervisors need to know
to solve control problems. We use this knowledge formalism to characterize the nature
of knowledge in a discrete-event control system. Of equal importance is understanding

how and when the dissemination of knowledge among supervisors leads to control



solutions for a class of control problems that decentralized supervisory control theory
does not at present address. For our purposes, we consider communication between

supervisors as a means of improving the knowledge each supervisor possesses.

As noted above, informal reasoning about knowledge is already an integral part
of analyzing decentralized supervisory control problems. Thus it seems natural to
consider formally what it means for each supervisor to “know enough” to solve a
control problem. We use the model of knowledge (based on modal logic) formulated
by Halpern and Moses [16] to analyze distributed systems. The model is based on
the concept of possible worlds. The idea is that an agent (equivalent to the notion of
an overseer) has only a partial view of the distributed system and may be unable to
distinguish different system states from the true state of the system. In the knowledge
logic setting, the basic variables correspond to answers for questions like “is fact p
true?” or “does an agent know that fact p is true?”. An agent’s knowledge of the
system depends only on its local view of the system behaviour. As an agent acquires
knowledge about the system, it considers fewer “worlds” to be possible and the agent
is closer to determining the true state of the world. When an agent has insufficient
knowledge, the knowledge model allows us to consider the knowledge of groups of
agents. We consider this aspect of the knowledge model when we want to determine
if combining the knowledge of two DES agents will produce “enough” information to

reach a control solution.

Decentralized discrete-event control theory lends itself to the analysis of control
theoretic behaviour for many distributed systems applications, including manufac-
turing systems and telecommunication (network) problems. At the outset of this
research it was only possible to discuss deriving a control solution for these applica-
tions in the absence of communication between supervisors. In the past year, several
strategies, including some of the work in this thesis, have been proposed for incor-

porating communication into decentralized discrete-event control. We review these



models in section 1.1.

The relationship between communication and control in decentralized discrete-
event systems is complex and co-dependent. On the one hand, control decisions may
be affected by information a supervisor receives from another supervisor. On the
other hand, the content of the information that is communicated may be affected by

information the communicating supervisor has previously received.

A solution to this new class of decentralized discrete-event control problems not
only ensures that the correct control decisions are made. In addition, since a su-
pervisor has only a partial view of the system, if it communicates at a particular
place in the system, it must also communicate at every place it cannot distinguish
from that place. This property of supervisor behaviour is called consistency [31]. In
addition, communication may be costly, so we want to eliminate any unnecessary
communications without violating consistency yet still ensure that enough informa-
tion is available to a supervisor making a control decision. A set of communications
is called minimal if it (a) satisfies consistency, (b) provides enough information for
supervisors to solve the control problem and (c) no subset of it satisfies (a) and (b)
[31].

The contribution of this thesis is the introduction of a novel framework for rea-
soning about control and communication in decentralized control problems. In the
course of developing knowledge models for DES, we provide necessary and sufficient
conditions for the existence of control solutions in the new knowledge model (which
correspond to analogous properties in decentralized DES theory). When the condi-
tion for finding a control solution fails, we identify particular places where, subject to
certain conditions, supervisors could communicate information to other supervisors
and achieve the initial objective of reaching a control solution. We also present pro-

cedures to incorporate communication into the DES. We show that our procedures



meet the objectives of solving the control problem with communication while satisfy-
ing consistency. An algorithm for generating a set of minimal communications with
respect to the set generated by our previous procedures is also provided. Finally,
we propose an extension to our original knowledge model where places to communi-
cate are determined solely on whether or not an agent knows the other agent needs

information to make a control decision.

1.1 Related Work

Nearly twenty years ago, Ramadge and Wonham [28] introduced control-theoretic
strategies for discrete-event systems using automata and formal language theory. The
control objective was as follows: given a supervisor that sees the full behaviour of the
system and given a subset of behaviour (called the legal behaviour) that is deemed
desirable, produce a control solution that prevents the system from performing any-
thing but the legal behaviour. At present, solutions to discrete-event control problems
can be described under conditions of full and partial observability (when a supervisor
cannot see all system behaviour) and expressed across a range of system architectures
(e.g., hierarchical, modular, decentralized). In addition, the theory has been extended
to address control issues for nondeterministic systems. It is also possible to construct
control solutions that allow the exact legal behaviour to occur or a subset of behaviour
that lies within some tolerance of the legal behaviour. The control problem can also
be specified in alternate frameworks such as Petri nets [18] or as vector DESs [21, 22].
In particular, we are interested in decentralized discrete-event control problems ex-
pressed as finite-state machines under conditions of partial observation. References
for decentralized control without communication include [9, 23, 24, 32, 33, 36, 40].
This collection of work is representative of the research that led to the identification
of necessary and sufficient conditions for solving the class of DES problems where no

one agent has a complete view of system behaviour. Chapter 2 contains more specific



details about decentralized DES theory.

Recent work has explored the relationship between control and communication in
distributed discrete-event systems [3, 30, 31, 35, 39, 41]. As noted previously, the
basic idea of this class of problems is that no single agent in the multi-agent system
has a complete view of the system behaviour and a given co-operative task cannot be
completed without communication among the agents. (The models noted here with
the exception of [39] where three agents are considered—assume the existence of only
two decentralized agents.) Tt is clear when a control solution for a decentralized DES
cannot be achieved. What is less clear is the way in which the failure to reach a solu-
tion leads to (i) identifying places where agents could communicate; (ii) establishing
who should communicate; and (iii) determining what should be communicated to

realize a control solution.

The model proposed in [41] identifies a necessary and sufficient condition for the
existence of a solution which is similar to the notion of distributed observability we
independently formulated in the context of knowledge theory [30]. In [41] a con-
trol solution exists if and only if, after each supervisor—based on its partial view
of the system—discloses sequences it considers the plant could have generated, the

intersection of these sets does not contain both an illegal and a legal sequence.

A similar condition was introduced in [35] to understand how to perform failure
diagnosis in a distributed system. A decentralized diagnostic solution exists if and
only if whenever the local observations of a diagnoser at a remote site 4 is insufficient
to make the correct diagnosis, there exists another diagnoser at site j that observes

and communicates the information diagnoser 7 requires.

While the work mentioned so far provided insight into the role that communication
might play in decentralized control, a more formal specification of a communication
protocol for decentralized supervisors was required. More recent work [3, 39] intro-

duced models for communication that detailed a more specific role for communicating



agents. Interestingly, both approaches utilize information structures from stochastic

control to express the control solution.

For the models of [39] and [3] controllers (i) communicate every time an event
is observed; (ii) broadcast and exchange their observations; and (iii) communicate
the set of sequences they consider could have been generated by the system. The
model of [3] proposes an alternate formulation for communication where instead of
exchanging sequences observed, controllers exchange state estimates. Of more interest
in this approach is the motivation for communication: the notion of a conflict state. A
conflict state is a place in the system that leads to both a legal and an illegal sequence
and further, neither controller is able to determine the correct control decision from
its partial view of the system. The communication protocol is thus to communicate
to eliminate conflict states. That is, when a controller receives the observations of all
the other controllers, it is no longer confounded by the presence of the conflict state
and can make the correct control decision. Also discussed is the notion of “optimal”
communication, where optimal corresponds to “communicate as late as possible”.
Because there may be more than one conflict state for a given pair of illegal /legal
sequences, there exists a tolerance within which communication could occur. An
optimal solution picks the last possible place communication needs to occur to solve

the control problem.

The most recent model for communication [31] focuses on agents in a distributed
DES performing a monitoring or control task. In this scenario, agents need to know
where they are at every step of the system evolution and not which events to enable
or disable. This approach differs from the others because the original communication
set is refined to eliminate unnecessary communication. A communication is removed
from the initial set if the absence of that information prevents an agent from either
completing its task (i.e., it no longer knows exactly what state it is in) or violates

consistency.



Our work on decentralized control and communication uses the concept of min-
imality from [31] and our motivation for communication is similar to the idea of
avoiding the conflict states in [3]. One significant difference in our approach is that
our agents do not exchange observations: a two-way broadcast would occur only if
neither agent had sufficient knowledge to make the correct control decision and each
needed the information from the other to reach a control solution. In addition, we
represent the action of communication as an event in the DES and incorporate these

new events into the system.

Our use of a formal logic to analyze control problems is not novel to DES. Temporal
logic has been applied to the study of supervisory control problems [2, 26, 38| and
modal logic has been used as the basis for a computer language that simulates discrete-
event processes [27]; however, a formal model of knowledge using modal logic has yet
to be incorporated into the study of discrete-event control problems. Recently, modal
p-calculus has been introduced into the analysis of hybrid systems [11].

Reasoning about knowledge has been part of the analysis of a variety of applica-
tions in the areas of economics [1, 25], computer security [6, 13], distributed database

systems [14], robotics [4] and communication protocols [17].

1.2 Outline of the Thesis

The remainder of the thesis is organized as follows. In chapter 2 we review the rele-
vant definitions and results from supervisory control theory and knowledge theory. In
chapter 3 we present two knowledge models for analyzing decentralized discrete-event
control problems. We provide a necessary and sufficient condition for solving the con-
trol problem within this new framework. (This result is analogous to co-observability,
a condition needed to solve decentralized DES problems.) We also speculate on the
role knowledge and communication might play when this condition is not satisfied.

Chapter 4 contains our model for communication and control in decentralized DES.



We provide a description of places where agents could communicate to solve the de-
centralized control problem, subject to certain assumptions. We also prove that our
strategy for incorporating communication into the decentralized framework will both
solve the control problem and produce a set of consistent communications. Chapter
4 also contains a greedy algorithm for producing a set of minimal communications.

We summarize our results in chapter 5 and describe areas for further research.



Chapter 2

Background and Notation

In this chapter we describe the notation that is necessary to discuss discrete-event
control problems and concepts from modal logic. One of the difficulties in bringing
together the notation from two established fields is addressing the overlap of symbols
used to represent distinctly different concepts. Wherever possible, we have tried to
accommodate the more serious notational discrepancies, but also include references

that could be consulted for further clarification.

In addition, in sections 2.1.2 and 2.1.3 we describe variations on some standard
operators and structures from supervisory control. These new structures will be
useful when we want to describe how to avoid generating infinite-state structures for

reasoning about knowledge in discrete-event systems.

2.1 Discrete-Event Systems

This dissertation adopts the framework for discrete-event systems as developed by
Ramadge and Wonham [28]. A brief review of essential notation is provided in this
section. More comprehensive introductions to discrete-event control theory include

[7, 28, 29, 37].

2.1.1 Review

In the discrete-event control theory of Ramadge and Wonham [28], the system

requiring control (the plant) is described as a generator of a formal language (i.e.,

10



an automaton). The behaviour of the plant is represented by sequences constructed
from a non-empty set of symbols called an alphabet. The alphabet represents the set
of all possible events that can occur within the system. Transitions from one system
state to another do not depend on the passage of time, but rather, on the occurrence
of an event. The goal is to develop a control strategy for an overseer, or supervisor,
that will constrain the behaviour of the plant to that of a pre-specified sublanguage
(the legal language). The supervisor averts undesirable behaviour of the plant by
either preventing some events from taking place or allowing—but not forcing—others

to occur.

More formally, the plant is modeled by an automaton
G - (QG7 27 6G7 q[?)’

where QY is a set of states; ¥ is the alphabet; ¢ is the transition function, a partial
function §9: % x Q% — Q%; and ¢§ € Q¢ is the initial state. For any event o € X
and state ¢¢ € QU, if §%(0,q") is defined (i.e., there is some state in the plant
that we can reach from ¢© via event o), we write 6%(0,¢%)!. The definition for §¢
can be extended to a partial function for ¥* x Q% such that §%(e, ¢%) := ¢ and
(Vo € X)(Vt € £*) 6%(to) := 69 (0,69 (t, q)). The set X* contains all possible finite
strings (i.e., sequences) over 3 plus the null string £. The language generated by G,

denoted L(G), is also called the closed behaviour of G:
L(G) == {t |t € X" and §°(t,¢5)'}.

This language describes all possible event sequences that the discrete-event system
can undergo. Thus L(G) C X*. A marked language of G defines behaviour of the
system that corresponds to completed tasks. We do not consider marked languages
in this dissertation.

For any strings ¢,u,v € ¥*, we say that u is a prefiz of ¢ if t=uv. Thus every

string ¢ € ¥* (where ¢ # ¢) has at least two prefixes: ¢ and ¢t. If L C ¥*, the

11



prefiz-closure of L is a language, denoted by L, consisting of all prefixes of strings
of L: L :={u € ¥*:u is a prefix of t}. Because every string is a prefix of itself,
L C L. A language is said to be prefiz-closed if L = L. By definition, L(G) is

prefix-closed.

We assume that the legal behaviour of the plant may be described by an automaton
E = (QF,%, 6%, ¢F) and the legal language is denoted L(E). We assume that E is a
subautomaton of G as described in the context of supervisory control in [8] and [20].
That is, Q" C Q% ¢ = ¢§ and 6" (t,¢5) = 6°(t,¢5) for all t € L(E).

When QY is finite, the automaton G can be described as a finite-state automaton
and can be represented by a directed graph (see figure 2.1), where the nodes of the
graph are the states in Q, the arcs of the graph are the transitions defined by the
partial function ¢, and the set of labels for the arcs are the events in . Thus for
any event o € ¥ and state ¢ € Q, §%(0, q)! if there is an arc labeled by o from ¢
to some other state. The initial state is marked with a small entry arrow. Illegal
transitions are indicated with a dashed line. That is, the legal automaton FE is the

collection of solid-line transitions.

Informally, a supervisor is an agent that has the ability to control some events
based on a (partial) view of the plant’s behaviour. To establish such supervision on
GG, we partition the set of events ¥ into the disjoint sets X, controllable events, and
Yue. uncontrollable events. Controllable events are those events whose occurrence is
preventable (i.e., may be disabled). Uncontrollable events are those events which
cannot be prevented and are deemed permanently enabled. There are some systems
where not all events can be seen by the supervisor. A supervisor thus has only a
partial view of the system and can see only a subset of events in . The set of

observable events visible to a supervisor is denoted 3.

Formally, a supervisor S is a pair (7,¢) in which 7 is an automaton 7 =

(X, X, €, x0), where X is a set of states for the supervisor; ¥ is the alphabet used
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Figure 2.1: A plant G and its legal automaton F.

by G £ is the transition function, a partial function & : ¥ x X — X; x( is the initial
state for the supervisor; and 1), called a feedback map, is given by ¢ : ¥ x X — {0,1}
satisfying ¢(o,z) =1 if 0 € ¥, x € X, and ¢(o,z) € {0,1} if 0 € X,z € X. The
number 0 is interpreted as the command “disable” and the number 1 as “enable”.
That is, v is interpreted as a rule for disablement such that uncontrollable events are
never disabled. The automaton 7" monitors the behaviour of G and changes state
according to the events generated by G. The control rule ¢(o, z) indicates whether o
should be enabled or disabled at the corresponding state in G. The behaviour of G
when it is constrained by S is described by the automaton S/G, called a supervised

discrete-event system:

S/G=(Qx X, %, (6 x &), (a0, 20))-

The behaviour of §/G is described by L(S/G). The modified transition function

13



(6 x €)Y is defined as a mapping X x Q x X — @Q x X :

(6(0,q),& (0, 7)) if 6(0, q)!,
(6 % &) (0, (q,2)) := (o, 2)!,and Y(o,x) = 1;

undefined otherwise.

The centralized control problem introduced by Ramadge and Wonham|28] is as

follows:

Given a plant G over an alphabet ¥ (with controllable events ¥..) and given
some non-empty language L(E) where L(E) C L(G) find a supervisor S

such that

L(S/G) = L(E).

This formalism captures problems where we are given some process that can be de-
scribed as an automaton (in this case, GG), and some set of desirable (or “legal”)
sequences (in this case, L(F)), and a controller is sought to inhibit process behaviour

so that all and only the desirable sequences are generated.

A variation on the centralized control problem has a supervisor that no longer
sees every event in Y. Instead a supervisor observes events in some subset >, C .
Supervisory control under partial observation was initiated by Lin and Wonham [23].
To describe a supervisor’s view of sequences we use the canonical projection P, where
P is a mapping from X* to 37. This operator effectively “erases” those events o from

a string ¢ that are not found in the set of observable events X,:

Pe) =¢ (2.1)



Thus if the plant generates sequence ¢, then P(t) indicates the sequence of events
observed by the centralized supervisor. The inverse projection of P is the mapping
from ¥¥ to 2¥:

P '(t) ={u| P(u) = t}.
A prefix-closed language L is observable with respect to G, P if

(Vt,t' € ¥*)(Vo € ©)
P(t)=P(t")= (o€ LNt € LAto € L(G) = to € L). (2.2)
This condition indicates that an observer’s view of a string in L(G) is sufficient to
determine whether or not o should be disabled.

The decentralized control problem arises when more than one supervisor is in-
volved in coordinating control actions. This problem was first studied by Cieslak, et
al., [9] and Rudie and Wonham [33]. Each supervisor §; has a partial view of the
system and observes only events in 3J; , C ¥ and controls only events in 3; . C 3, for

1 =1,...,n. We consider here only two local supervisors.

To describe a decentralized supervisor’s view of the plant, the projection operator
of (2.1) is updated as follows: P, is defined for each supervisor and is a mapping from
¥ to X7, for i =1, 2:

Ple) =c (2.3
Pi(o) =e, oc€eX\¥,
P(o) =0, o€,
Pi(to) = Pi(t)Pi(0), teX* oeX.
As with the centralized version of projection, if the plant generates sequence t, P;(t)
indicates the sequence of events observed by supervisor i.

Let the two local supervisors acting on G be
Sl = (T17¢) and 82 = (TQaw)a
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where T} = (X,3,&,z0) and Ty = (Y, X, n,y0). The conjunction of S; and S, is the

supervisor
Si A8y = (Ty x Ty, ¢ % 1)),
where
Ty x Ty := (X x Y, %5, xn,(%0,%))

andoed ze X, yeVlY =

_ ) (&lo.x),mlo.y)) if &(o.2)! An(o,y)!
(€ xn)o,z,y) = { undefined otherwise

disable if either ¢(o,x) = disable or ¢(o,y) = disable
enable  otherwise.

@r o) = |

That is, the composite supervisor §; A Sy disables an event if either S; or Sy issues
a disablement command. When a supervisor § is the result of a conjunction of two

supervisors & and Sy, we write S = (851, Ss).

It is often convenient in the case of partial observability, to define a supervisor

S; only in terms of events in ¥, . and ;,. In this case S, can be extended to a
supervisor 3;-. The local supervisor §; acts only on events in ¥, . C ¥ and observes

events in Y; , C ¥ while [S';- takes the same control action as §; on Y, ., enables all

events in ¥\ ¥; ., makes the same transitions as S; on ¥, , and stays at the same state

for events in ¥\ X, ,. A supervisor gz that acts on all of ¥ and mirrors the control
actions of a supervisor §; that observes and controls only a subset of X is called the

global extension of S;.

The decentralized problem we consider is described in [33]:

Given a plant G over an alphabet ¥ (with controllable events 3 ., X, C

Y and observable events ¥y ,,%:, C X), and an automaton E, where
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L(FE) represents legal sequences, L(F) C L(G) and L(E) # 0, find local

supervisors 8 and Sy such that S AN Sy is a supervisor for G and such

that
L(§; AS,)G) = L(E). (2.4)

Here, for i = 1,2, local supervisor S; can observe only events in X; , and

can control only events in X; . and SN'Z is the global extension of S;. The

set of uncontrollable events, ¥, is understood to be ¥\ (X1.UXa.).

To describe a solution to the above problem, it is convenient to use the notion
of controllability [28]. Given G over an alphabet X, for a language K C L(G), K is

controllable with respect to G if
KY,.NLG)CK (2.5)

where KY,. := {to |t € K and 0 € ¥,.}. If we think of K as a set of “legal” se-
quences, then we want to know when it will be impossible to stop an illegal sequence
from happening. It must be that the introduction of an uncontrollable event into a
legal sequence results in another legal sequence. Therefore, to solve (2.4), it is nec-
essary that L(FE) be controllable. If L(F) is not controllable, a largest (or supremal)
controllable sublanguage of L(FE) (possibly 0)), denoted sup C(L(E),G), can always
be found [28]. The standard solution to the centralized control problem with full
observation produces a supervisor that acts on G to generate sup C(L(E),G). The
important point to note is that such a solution is said to be “minimally restrictive” in
that the supervisor disables events in G only when absolutely necessary to prevent an
illegal sequence from occurring. That is, the largest possible subset of legal sequences

is generated.

A necessary and sufficient condition for the solution to the above decentralized

problem can be found using the notion of co-observability. Given G over an alphabet
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Y, sets Xy, Mo, Y10, 22,0 & 2, projections Py @ XF — X

1,00

PYt =%, a

prefix-closed language K C L(G) is co-observable with respect to G, Py, Py if

Vi, t' " e XF Pi(t) = P (1), Pa(t) = Pa(t") =
(VoeX, . NSy )t € KAso€ L(G)At'o,t"0c € K = to € K conjunct 1
AN VoeX \Xo)te KANto € L(G)Ato e K =to € K conjunct 2

AN VoeXo \Si)te KANto e L(G)At"c e K = toe K conjunct 3

Just as with observability for the centralized case, we would like a decentralized
supervisor’s view of a string to be enough for it to take the correct control action.
If both supervisors can control the event in question (i.e., conjunct 1), then we just
need one of the supervisors to be able to have an unambiguous view of the strings
t,t',t" to make the correct control decision regarding o; however, when an event is
controlled by only one supervisor (i.e., conjuncts 2 and 3), then that supervisor’s view

of t,#,t" must be sufficient to decide on the control action for o.

It is now possible to discuss the existence of a solution to the decentralized prob-

lem. The following theorem (along with its proof) appears as Theorem 4.1 in [33]:

THEOREM 2.1 There exist supervisors gl and 52 that solve the above decentralized
supervisory control problem if and only if L(FE) is controllable with respect to G and

co-observable with respect to G, Py, Ps.

Thus we can find decentralized controllers that synthesize L(E) provided that the
legal language satisfies the properties of controllability and co-observability. While
it is possible to find the supremal controllable sublanguage of L(E), if L(E) is not

co-observable there is no unique supremal co-observable sublanguage of L(FE).
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2.1.2 A Projection Automaton

The projection operator in (2.3) assumes that a supervisor is tracking only the
partial view of the current sequence generated by the plant. Since a supervisor cannot
see every event, there may be uncertainty as to the exact state the plant is in. A
supervisor could keep track of the possible states the plant could be in, rather than
(or in addition to) a sequence. An example: The plant is in state z and the occur-
rence of event o would lead the plant to state y (i.e., 0%(0,7) = y). If a supervisor
cannot observe o, the supervisor will not know whether the plant is in state x or
y. Consequently, we could describe a supervisor’s view of the current state of the
plant as a set that includes x and y. To capture the view that supervisor ¢ has of the
plant, we use a projection automaton [34], based on an algorithm in [19] to translate a
nondeterministic finite-state automaton into a deterministic finite-state automaton:
PG = (QPGZ',ZLO, §F9 by where QP = 297 is the set of states, Yi, C X is the
set of events observable to agent i (and the set of events unobservable to agent i is

i

Yiuo). The transition function 6P and initial state 9% “ are defined as follows:

Gy *
g = gy 169t qf) = qf and t € (X \ Eiwo)*};

G; G; * Gy
6P (O—iaqu ) = {ql(i | 6G(Uita Q}?;) - Q}? y 04 € EZ',Oa t e (E \ Ei,uo) and C]/?f S C]]P }

i

The initial state g, “ of the automaton captures all the states reachable by unobserv-
able events (to supervisor 7) from the initial state of the plant. Subsequent states in
the projection automaton are generated by considering which states can be reached
next via an observable event o € ¥, , from the current state. The resulting set of
states includes all states reached by unobservable sequences from the state to which
the observable event o leads.

Figure 2.2(a) contains a plant where & = (51,82), X1, = %1 = {a1,¢} and

Y9, = Ya. = {bg,c}. The projection automata of the plant for each supervisor
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Figure 2.2: The projection automata of a DES plant: (a) the plant G; (b) P%?; (c)
P,

are shown in figure 2.2(b) and (c¢). For example, because S; does not see event by
happening, if it initially sees “nothing”, then it does not know if the plant is in state
0 or state 2. If no events have yet occurred, then the plant will indeed be in state
0; however, if by happens, S; still sees nothing—despite the fact that the plant is
really in state 2. Once &; observes its first occurrence of event aq, it still does not
know the true plant state. Assume the plant was previously in state 0 and now a;
happens. The plant is currently at state 1. But S; considers it possible that the plant
could have been at state 2 before a; happened. This uncertainty is reflected in the

transition from state {0,2} to state {1,4} via event a; in figure 2.2(b).

2.1.3 A Monitoring Automaton

We will also find it necessary to be able to simultaneously track the current state
of the plant and the current state of each supervisor’s projected view of the plant (via
the projection automaton). Such a structure, which we call the monitoring automaton
A, is a deterministic version of the nondeterministic automaton M described in [32].

The monitoring automaton is formally defined as follows: A = (Q*4, ¥, 64, ¢¢'), where

QA C QF x QY x QP (Q# will be fully defined below), the initial state is ¢! =
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(¢, qF",qF"*), and 6* is defined below. When 6%(0,¢%) is defined, we have four

cases to consider for the construction of the transition function:
o0 ¢ 21,0, o ¢ 22,03
(0. (¢% 0" q") = (690009, g™,

© 0EXY I, 0¢& X,

6o, (4%, a"" a") = (89(0.49). 8" (0,4"),a"),
¢ 0 &Y, 0€ X,

6o, (4% a"" a") = (590009, a" 07 (0.0,
® 0E X, 0E€ Xy,

6%(0, (4,47, 4")) = (69(0,4%), 6" (0,477,677 (0,4"7)),

where ¢ € Q% ¢"" € QY ¢"* € Q. When 6% (0, ¢%) is not defined,
54 (o, (q9, g’ qPGQ)) is also not defined. The set of states Q* is the set of states in
Q% x QP x QF reachable from the initial state via the 64 defined above.

For example, if the plant is at state x and an event occurs that only Sy observes,
taking the plant to state y, the next state in the monitoring automaton reflects the
fact that the plant state changed, S; has seen nothing and its estimate of where it is

in the plant has therefore not changed, and S, has updated its estimate to its view

of the plant at state .

Note that a state (¢, ¢7"",¢""®) € Q" is only reachable if there exists ¢ € L(G)
such that 69(t, ¢5') = ¢©. Thus, L(A) = L(G) by construction.
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(2.{0, 2}, {2, 4}) (1,{1,4},{0, 1})
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(2,{0, 2, 3}, {2,4})

1(3,{0,2,3},{3}) |

Figure 2.3: The monitoring automaton A for G, P91, P%2 of figure 2.2.

We illustrate the construction of A by revisiting the example of figure 2.2. Recall
that the two supervisors of this plant see the following events: ¥, = {a;,c} and
Y9, = {bs,c}. At each state of the monitoring automaton we want to determine
the current plant state and, based on the partial view each supervisor has of the
plant, the set of states each supervisor considers to be the current plant state. To
build the states in Q4, we begin by examining transitions from the initial state in the
automaton ¢ = (0,{0,2},{0,1}). Subsequent states are constructed in a breadth-
first manner by following the transitions of the plant and simultaneously determining
how the supervisors advance through the projections of the plant, P%, i = 1,2. For
instance, at state 0 in the plant, transition a¢; may occur and would lead to state 1. At
plant state 0, S; is at state {0,2} in P9 and a transition of a; takes S, to state {1, 4}
in P%. In P%, though, S, makes no such state change since it does not see event
a;. The resulting state is thus (1, {1,4},{0,1}). We continue in this fashion until the
calculation of 64 yields no more new states. The complete monitoring automaton A
for this example system is shown in figure 2.3.

There may be two distinct states g, ¢’ in Q4 that have the same state as the first

entry of the state label. This reflects the fact that there could be more than one way
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of reaching a plant state x. For instance, if 09(¢,¢5') = 6(¢',q§') = z, t # t' and
Pi(t) # Pi(t'), i = 1,2, there will be two distinct states ¢, ¢’ in @ with state z as the
first entry of the state label. The second and third entry in the state label for state
g record the state-based view &7 and S, have of sequence t. Similarly, the state label
of state ¢' stores the state-based view &; and S, have of sequence #'. In figure 2.3,

states (2, {0,2},{2,4}) and (2, {0,2,3}, {2,4}) are two such states.

The creation of a monitoring automaton yields a finite structure that can be used
to track the progress in the plant and the projection automata of the plant. No matter
how the plant arrives at a particular state ¢—even when the corresponding sequence
observed by a supervisor is arbitrarily long—a supervisor will make the same control
decision every time it arrives at state ¢. This is a characteristic of the structure we
will exploit when we discuss communication in decentralized control problems. For
example, if the plant in figure 2.2 is in state 4, and if transition ¢ out of state 4 is
illegal then we do not care if the current sequence is byay, aicbyachobsa; or aychobsay
and so on. We are only concerned with the fact that every time the plant reaches

state 4 event ¢ must be disabled.

2.2 A Model for Knowledge

The framework for modeling knowledge that we use is based on a knowledge logic
for distributed systems [16], where multiple agents reason about their knowledge of
the world. An agent could be a human, a machine (e.g., a robot) or even a component
of a machine (e.g., an electrical circuit). Unless otherwise indicated, the definitions
and results in this section are adopted from [12]. The model assumes that if an agent
does not have complete knowledge of the true state of the world, it assumes a number
of worlds are possible. Worlds are described in terms of a non-empty set ® of facts or
primitive propositions. More complicated formulas are constructed using expressions

from propositional calculus: — (negation) and A (conjunction). In addition, ¢ V 9
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represents —(—p A =),

The system model is conceptually divided into two components: the agents and
the environment. The latter captures the relevant aspects of the system that are not
part of the description of agent behaviour. We assume that there is a set of agents

G= {1,...,n} to which we ascribe knowledge about the system.

The system behaviour is captured by a global state. A global state is an (n+1)-
tuple, denoted w, that records the state of the environment and the local state an
agent’s set of possible worlds—for each of the n agents. Formally w = (we, wy, ..., w,).
We can further refer to individual components of w: w, and w; represent the state of
the environment and the local state of agent ¢ (fori € {1,...,n}), respectively. When
we introduce our knowledge model for DES in chapter 3, we use the terms “world”

and “global state” interchangeably.

We will reason about what an agent knows about the truth of facts in the system
at global states. Knowledge of a fact is expressed using modal operators (one for each

agent) Ky,..., K,. Thus K;p, where p € ®, is interpreted as “agent 1 knows p”.

The semantics of the possible-worlds model is formalized using Kripke structures.
A Kripke structure M is an (n+2)-tuple containing a set of worlds (e.g., global states),
an interpretation function 7 that assigns truth values at each world w to the primitive
propositions in ® (e.g., m(w)(p) = false), and possibility relations, one for each agent,
that define binary relations on the set of worlds. That is, the relation defines the (set
of) worlds that look alike to an agent at any world of the system. For purposes of
this discussion, the possibility relation is always an equivalence relation and therefore,
it is always the case that reflexivity and symmetry hold. The possibility relation is
typically not defined for the environment since we are not interested in ascribing

knowledge to the environment.

A Kripke structure is also expressible as a labeled graph. In particular, nodes are

worlds and edge labels (sets of agents) capture the possibility relation. For instance,
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Figure 2.4: A simple Kripke structure.

worlds that look alike to agent ¢ are joined by an edge with a label “i”. Each world
is also labeled with the truth values of all primitive propositions p € ®, where we use

4

the notation “—p” to indicate that the truth value of p is false and “p” corresponds

a value of true.

The following example illustrates a simple Kripke structure and is adapted from
[12]. The graphical representation of this system is shown in figure 2.4. Suppose
® = {p} and n = 2. Let the set of worlds be {A, B, C} and the interpretation function
defined be such that proposition p is true at states B and C but false at state A
(i.e., 7(A)(p) = false, 7(B)(p) = n(C)(p) = true). The possibility relations for the
agents are defined as follows: agent 1 cannot tell the difference between A and B while
states B and C look alike to agent 2. These relations are captured in figure 2.4 by
the edge label of “1” joining states A and B and the edge label “2” joining states B
and C. The self-loops at all three states with edge label “1,2” indicate that a given
state cannot be distinguished from itself. For example, in addition to state B looking
like A to agent 1, state A also looks like state A. Note that because we assume that
the possibility relation is an equivalence relation, reflexivity and symmetry always
hold. Therefore, from now on, self-loops and arrows will be omitted from diagrams

of Kripke structures.

We now have all the components we need to reason about knowledge: a set of

worlds describing the behaviour of the system and an interpretation 7 to analyze
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truth values of the propositions at states of the system. Together the set of worlds

and 7 define an interpreted system and is denoted by Z.

To discuss knowledge in an interpreted system, we assume that the possibility
relation is defined as follows. Let w,w’ be two global states in Z. We say w and w’
are ndistinguishable to agent i if the local state according to agent ¢ is the same at

both global states:
w ~; w'if w; = w;. (2.6)

To discuss what it means for a fact p to be true at a particular global state in Z,
we use the notation (Z,w) = p, which can be read as “p is true at (Z,w)” or “p holds
at (Z,w)”. A fact p holds at a world w if the truth value as defined by 7 is true at w.
For example, at state B in figure 2.4, we can say p is true because 7(B)(p) = true.

More formally:
(Z,w) =p (for p € @) iff 7(w)(p) = true.

The clause for negation indicates that —p is true at w exactly if p is not true:

(I= w) ): —p iff (I, w) bé b-

In figure 2.4, at state A, we can say —p holds because p is not true at A.

We can consider more than one fact holding at a world:

(Z,w) =p1 Apo iff (Z,w) = py and (Z, w) = po.

Thus, the conjunction of two propositions holds at w if it is the case that each

proposition is true at w.

What does it mean for an agent to know facts in the system? An agent knows a

fact p at w if p holds at all worlds that the agent cannot distinguish from w:

(Z,w) = Kip iff (Z,w") E p for all w' such that w ~; w'. (2.7)
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Referring to figure 2.4 again, we can now describe the knowledge of agents at any
world in the system: e.g., at world B the formula =K;p A Kyp holds. That is, at B
agent 1 does not know whether p is true, while at B agent 2 knows that p is true. At
world B, agent 1 considers the existence of two possible worlds: A and B. It considers
both p and —p to be possible because p is false at world A while p is true at world B.
Agent 2 also considers the existence of two possible worlds: B and C. However, since

p holds at both those worlds, at B agent 2 knows that p is true.

It follows that if an agent knows p at w, it also knows p at all other worlds it

considers possible at w:

for all w' such that w ~; w'. For instance, agent 2 considers that worlds B and C
“look alike”. Since p is true at both these states, we can say that at B, agent 2 knows

p. Similarly, we can say that at C agent 2 also knows p .

Finally, we note a property, called the Knowledge Aziom, that states that if an

agent knows a fact, then the fact is true:
(Z,w) E Kip= (Z,w) = p. (2.9)

Note that if K;p holds at some world w, we know by (2.8) that K;p holds at all
worlds that agent ¢ cannot distinguish from w. Since p is true in all worlds that agent

¢ considers possible, in particular, p is true at w.
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Chapter 3

Using Knowledge for Control

In this chapter we describe how to recast decentralized supervisory control prob-
lems as interpreted systems. We do not claim that the reformulation of this problem
provides a more efficient solution but, rather, suggest that knowledge theory provides

a more natural way of thinking about discrete-event control problems.

We introduce two knowledge models: control decisions in the first model are made
by an agent on the basis of a partial view of a sequence of events generated by the
plant, while control decisions in the second model are made based on the set of plant
states an agent considers possible. The latter model allows us to avoid generating an
infinite-state Kripke structure, whereas the first model is more faithful to the DES
theory of [29]. Most of the material in this chapter first appeared in a joint paper
with K. Rudie[30].

3.1 Sequence-Based Knowledge Model

We denote our “sequence-based” interpreted system as Z”"5(G, E), where G is the
plant and F is the legal automaton. Like local supervisors in the decentralized DES
formulation of [9, 33], the agents in this interpreted system make control decisions
based on their partial view of the event sequences generated by the DES plant G.

The environment of TPES

is the prefix-closed language generated by the plant and
the agents play a role equivalent to that of decentralized DES supervisors.

A global state for n agents in ZP£9(G, E), which records the environment state,

w,, and the local states of each agent, w;, captures a “snapshot” of a sequence from
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the plant language L(G). The set of states for the environment is the set of se-
quences in the plant language L(G), while the set of local states for the agents is
the set of sequences each agent observes according to the projection operation of
(2.3). More formally, a global state for n agents is defined as w = (we, wy, ..., w,) =
(t, Pi(t),...,P,(t)) for t € L(G). We assume that n = 2 so that the group of agents,
denoted by G, is {1, 2}.

In addition to consisting of a set of global states, Z"*S(G, E) is also associated

PES captures the notion of

with an interpretation function. The interpretation =
whether or not an event in X is permissible as sequences evolve in the plant. To
form @, the set of primitive propositions for ZP#5(G, E), we want to associate with
each o € ¥ two distinct propositions: one to represent the fact that at a particular
state in the plant the event is defined (i.e., is possible), and another to represent
the fact that at the corresponding state in the legal automaton state the event is
defined. The propositions are defined in terms of events because we want to reason
about the knowledge an agent has of the occurrence of an event, instead of, for
instance, a certain sequence. If ¥ is finite (i.e., |X| = N), it can be written as
Y ={01,09,...,0n}. Welet ® = {c% oF|i =1,...,N}. We also partition ® into
two disjoint sets: &g = {oFi = 1,...,N} and & = {oF]i = 1,..., N} where &
and @y are sets containing N symbols. Because we will frequently want to associate
aiG with its counterpart o, we define the relation Ry such that Ry, C ®; x ®5 and
Ry = {(0g,0r)|30; € ¥ where 0¢ = 0F,0p = oF}. For convenience, we will use
the notation og (respectively, o) without explicit reference to Ry, when we mean

G

o;" (respectively, o

F). The proposition o is “event o can occur” and op is “event
o is legal”. For convenience, we will refer to ®,. when we need to identify those

propositions in ® which represent events in 3, (as defined in section 2.1).
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The interpretation for the propositions in ® is defined for all o € :

true if 6%(w.o,q)!,
false otherwise.

7S (1) (o) = { (3.1)

: E By
TPES (1) (o) ::{ true if 0" (weo,qy)!,

false otherwise.

In other words, a proposition og is true at a global state w if the event ¢ can happen
directly following the event sequence described by w,.. A proposition og is false
(denoted —o¢) at a global state w if the event o is not defined directly following the
event sequence described by w,. Similarly, a proposition og is true at a global state
w if the event o can happen directly following the event sequence described by w,
and w,o is part of the legal behaviour of the plant. A proposition o is false (denoted
—0p) at a global state w if either o = false or if the sequence w,o is part of the

illegal behaviour of the plant.

Because the set of global states in Z”"%(G, E) and the truth values assigned by
7PES to the primitive propositions in ® are derived from the legal automaton E and
the plant GG, we can consider that Z”*9 has implicit parameters G and E. Thus, for
ease of notation, we drop these arguments for the remainder of the chapter since GG

and FE are understood.

We illustrate the sequence-based knowledge model by constructing a Kripke struc-
ture for the plant and legal automaton in figure 2.1. In this example, suppose that
agent 1 sees and controls events a and « while agent 2 sees event # and controls

events 3 and 7.

The complete Kripke structure contains ten states, corresponding to the ten se-
quences in L(G). We show a representative portion of the structure in figure 3.1.
The set of propositions is ® = {ag, ag, O, B, Ve, Ve } and the truth assignments for

7PES are made according to (3.1). For example, at state (o, «, ), proposition ¢ is
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Figure 3.1: A portion of the Kripke structure for G in figure 2.1.

assigned a value of true because there is a transition of v from sequence « in the
plant; however, v has a truth assignment of false because this same transition is not
defined in the legal automaton. The possibility relations describe how agents view
the world. In this model, the possibility relation for each agent is defined using the
indistinguishability relation ~; of (2.6). That is, two global states look alike to agent
1 if the global states have the same local state according to agent ¢. For instance, the
possibility relation for agent 1 would contain the pair of states ((v,v,¢), (67,7, 3))

because these states have the same local state according to agent 1, namely ~.

The top half of a node in figure 3.1 contains one of the global states in the system
and the bottom half of the node shows the truth values for the primitive propositions
at that global state. The diagram exactly describes the states of the plant where we
want to impose control (as constrained by the legal language) and what each agent
believes are the possible worlds of this system. For example, in figure 2.1 after a occurs
in the plant, event v is not legal and therefore must be disabled. This information
is captured by the node labelled (o, a, ) in figure 3.1. At this state the primitive

proposition 7 is true, meaning that a<y is part of the plant language; however, vz is
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false, which means that -y is not part of the legal language. By following the edges
connecting the nodes, we can also determine what each agent believes are its possible
worlds. For instance, the node labelled (3, e, #) looks the same to agent 2 as the node
labelled (57,, #) because the local state of agent 2 is  in both the global states.

This is indicated by an edge labelled “2” joining these nodes.

We can describe the knowledge of each agent at a particular state in the interpreted

system. For example, at w = (g,¢,¢):
(Z”"5,w) = Ki(ag A ag Aye) A Ke—ye.

At state w the set of worlds that agent 1 considers possible is {(¢,¢,¢2), (8,¢,3)}.
At both these states the truth values of ag, ap and 74 are true. Therefore we say
that “Agent 1 knows a can happen and is legal at (¢, e,¢) and that v can happen at
(e,e,e)”. Similarly, we say that “Agent 2 knows that it is not the case that = is legal
at (g,£,2)” because at all states indistinguishable from (e,¢,¢) to agent 2—namely
(e,e,8), (v, a, €), (ay, ay, €) and (7, v, £)—the formula —yg is true. We can also make
note of the lack of knowledge an agent has: at w, agent 1 does not know whether ~y
is legal because at (e, ¢, ¢) the formula —yg is true while at (3, ¢, ) the formula g is
true. This is denoted by (Z”"% w) = =K, vy and is read as “Agent 1 does not know

whether v is legal at (g,£,¢)”.

3.2 State-Based Knowledge Model

The previous knowledge model assumed that agents made decisions based on their
recorded observations of event sequences generated by the plant. If the language
requiring control has an infinite number of strings, the Kripke structure for a system
with such a language would have an infinite number of worlds. To exploit the finite
representation of a regular language, in this section we introduce a model where agents

now monitor the set of states the plant could be in.
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We construct our “state-based” interpreted system Z”"5" as follows. The environ-
ment component of this interpreted system is set of plant states Q, while the agents
are a slight variation of the DES local supervisors & and S;. Each supervisor still
has only a partial view of the complete system behaviour, but these views are based
on the projection automaton of section 2.1.2, rather than the projection operator of
(2.3).

The worlds in the system are no longer composed of sequences from the plant
language L(G), but rather the worlds describe plant states in Q¢ and the respective
views of those states for the group of agents G. The global states are constructed
according to the stategy for generating states in Q4 of the monitoring automaton A

as described in section 2.1.3. Consequently, a global state w has the form (w,, wy, wy)

where w, € Q%, w, € QY% and w, € QF%2.

The interpretation 7255 changes slightly for the state-based knowledge model.
Instead of determining if a sequence t € L(G) precedes event o, we want to check to

see if o is defined at the current plant state (as recorded in w):

' true if 6% (o, w,)!,

L (w)(oe) = { false otherEzvise. ) (3-2)
! true if 6%(o,w,)!,

e (w)(op) = { false otherEzvise. ) (3-3)

Since we assume that the legal automaton can always be expressed as a subautomaton
of the plant automaton, the seemingly ambiguous reference to w, (which is a plant

state) in (3.3) is a consistent reference to the same state in both automata.

3.3 Knowledge-Based Protocols and Kripke-observability

The interpreted systems ZP#S and ZP¥S" describe the knowledge that each agent

has concerning the validity of a particular sequence. We need to associate actions with
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an agent’s knowledge for instance, if an agent knows that a particular proposition
is possible but not legal for a set of possible worlds, then we want it to disable the
corresponding event. A knowledge-based protocol [15] is a strategy that links actions
and knowledge for agents (and the environment). We believe that it is natural to
think of a supervisor basing its control actions on what the supervisor “knows” about
the present state of the system. Even though we depart from some of the specifics
of the formalism for knowledge-based protocols in [15], we incorporate the idea that

there ought to be a connection between action and knowledge.

We examine knowledge-based protocols where actions to disable or enable an event
are based only on local state information and where an uncontrollable event cannot
be disabled. We describe protocols for agents but not for the environment, which we
view as incapable of taking control actions. For the decentralized DES we consider,
when we say that a supervisor § = (87, Ss) solves a problem, we mean that when G
is under the control of S, the resultant language generated, namely L((S; A Sy)/G),
equals the legal language: L((S1AS2)/G) = L(E). Solving the decentralized problem
with a knowledge-based protocol amounts to constructing a protocol that will ensure

that only legal sequences and all legal sequences are generated.

3.3.1 Knowledge-based protocols for decentralized control

A local supervisor in a decentralized DES system disables controllable event o
if the supervisor is able to determine that the occurrence of o will lead to illegal
behaviour; otherwise event o is enabled. An event o is disabled if at least one local

agent takes a “disable ¢” action at w.

The actions that drive the global state changes of the system are performed ac-
cording to a selection rule or protocol. A knowledge-based protocol is a protocol
where actions are taken on the basis of the local knowledge of an agent. We define a

knowledge-based protocol as a mapping that characterizes which events are disabled
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KP; : L; x> — {enable, disable}, where L; is the set of local states for agent 7. Since
the knowledge-based protocol is defined on the local view of an agent, the actions of
agent 7 are applied at all w' that are indistinguishable to agent 7 at w. Just as a local
decentralized DES supervisor makes control decisions based on its partial view of a
sequence, we want an agent to use knowledge and its local states to determine if a
given event should be disabled. A joint knowledge-based protocol is the collection of

the knowledge-based protocols for all agents in G.

We identify the group of agents that can control a given event as G, := {i : 0 €
Yot le,foralloe ¥ MYy, G, ={1,2}; forallo € ¥y, \ Xy, G, = {1}; for all
0 €Y.\ X1 G, ={2}; and for all 0 € 3., G, = 0.

A joint knowledge-based protocol KP = (KP;, KP;) solves the decentralized prob-

lem if for all w € ZP"5 and all (0g, 0p) € Ry:

(i) (Z”"% w) | og A -0 = (Fi € G,)KPi(w;, o) = disable;

(i)  (Z”P°,w) E og Aog = (Bi € G,)KP;(w;,0) = disable.

That is, solving the problem amounts to allowing only legal sequences and all legal
sequences to occur. Note that since we assume that E is a subautomaton of G, it will

never be the case that (ZP"% w) | —og A og.

To solve the decentralized control problem using knowledge-based protocols we
must formalize what it means for agents to “know enough”. We describe several con-
ditions that ZPP% (equivalently Z”"%") must satisfy before a solution can be achieved.
In particular, we present a necessary and sufficient condition so that our knowledge-

based protocol admits only (and all) the legal sequences in L(E).

We define a property equivalent to co-observability [33] and controllability [29]
that characterizes the nature of knowledge an interpreted system requires to yield a

decentralized solution to the DES control problem.
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Figure 3.2: A plant G and legal automaton E.

DEFINITION 3.1 An interpreted system IP¥S (respectively, IDES') 18 Kripke-observable
Vw € %% VY(og, 08) € Ry,
(ZPES w) | —og Vog (3.4)

V(i € G,) such that (IPF5 w) E K;—op.

That is, if an illegal event o is about to occur, at least one agent that can control o
knows that it should be disabled. We note here that co-observability is a condition on
set membership and set containment for sets of sequences while Kripke-observability

involves logic tests on propositions.

The condition we were initially trying to capture in the definition of Kripke-
observability was that for every event that can occur, at least one agent knows whether

or not that event is legal. Our intuition led us to the following logic formulation:
Yw € IP%9 Y(og, o) € Ry,
(3i € G,) such that (Z”% w) = Kyop V Ki—op. (3.5)

However, this is actually too strong a condition as the following example will illustrate.

The plant and legal automaton in figure 3.2 represents a co-observable language

(with supervisors Sy and S,) if 3y, = {a} = X, Xy, = {#}, and Xy, = {a, }.
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Figure 3.3: A plant G and legal automaton E.

Thus a control strategy for this decentralized problem is as follows: &; disables «
after seeing o and Sy disables « after seeing #3. If we were to use the condition
in (3.5), then the condition would fail at w = (g,£,2). At this state, the possible
worlds of agent 1 are (g,¢,¢), (8,¢, (), and (60, , 33). Both disjuncts of (3.5) fail for
event o at w since (Z”"% w) = ap, whereas at w' and w”, when w' = (3, ¢, 3) and
w" = (8B, ¢, 33), we have (ZPP5 w') = —ap and (TPP5,w") = —ap. The possible
worlds for agent 2 at w = (g,¢,¢) are states w' = (o, a,¢), w" = (aq, aq,e) and w

itself. Asit did for agent 1, both disjuncts fail on event « at all states indistinguishable

IDES IDES IDES

from w since ( ,w) = ag while ( ,w') = —agp and ( ,w") = —ap. In
fact, the failure to meet the condition of (3.5) was because we required an agent to

know when an event should be enabled.

This observation led to a revised definition:

vw € IP"° VY(0og,0r) € Ry,
(ZPP5, w)  op (3.6)

V(3 € G,) such that (ZPF5 w) E K;—op.

Now that the condition in (3.6) does not insist on knowledge if the event is legal,
this updated condition is satisfied for event « at all states in figure 3.2. However,
figure 3.3 shows another co-observable system where (3.6) also fails. Let ¥, , = {a},

Y. ={a, B}, 8o = {1}, ¥o. = {u}. There is a problem with event p, even though
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this event never needs to be disabled. At state w = (a, a, £), agent 2 neither knows
that u should be disabled nor that it should not be disabled since (ZP%% w) = —ug,
while at w' = (g,¢,¢) it is the case that (ZPF% w') = pp and w ~y w'. Therefore,
at w neither disjunct of condition (3.6) is satisfied. Since pu cannot actually happen
after a occurs, it is too strong to require than an agent possess any knowledge about

woat w.

If we use the definition of (3.4), the system of figure 3.3 is Kripke-observable.
In particular, at state w = (o, a,¢), the first disjunct for event p is now satisfied:
(ZP75, w) = ~pe.

Note that even though the definitions in (3.5) and (3.6) fail on this example
system, there is still a solution to the problem. This is because the default action is
to enable an event when no agent knows whether or not to disable that event. The
requirement in the first disjunct of (3.5) to know that the event should be enabled is
too strong. Similarly (3.6) fails as we neglected to notice that we can omit knowledge
tests on “do not care” states, that is, states where events are not even defined in the
corresponding DES plant states. Hence this knowledge condition can be relaxed so
that a test for knowledge is only performed when an event o is possible but is not

legal (i.e., when the disjunct —o¢g V o does not hold).

THEOREM 3.1 Given G, E, there exists a joint knowledge-based protocol KP = (KP;y, KP;)

that solves the decentralized problem iff T”"5 (G, E) is Kripke observable.

Proof: (<) Suppose ZP"% is Kripke-observable. Define the following knowledge-

based protocol:

(Vo € X)) (V0 € L;)
disable , if Jw such that ¢ = w;
(VZ € Ga) K:Pl(g, O') = VAN (IDES, ’U)) ‘: Ki_|O'E, (37)
enable , otherwise.

(Vj ¢ G,) KPj(l, o) = enable. (3.8)
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If an agent knows than an event is illegal, it will disable the event. Therefore, unless
an agent knows that an event is illegal, the event will be enabled. Note that for an
event controllable by agent i, the definition of KP; in (3.7) is robust to the choice
of w in (3.7) (i.e., if a different w’ were chosen such that ¢ = w}, then by (2.8),
(ZPES w) = Ki—og iff (ZPE5 w') | Ki—og).

We want to show that P = (KPy, KPs) solves the decentralized problem.

(i) Suppose (Z”"5 w) = (0 A —oy). We want to show that this implies (3i € G,)
KP;(w;, o) = disable.

IDES IDES

Since ( ,w) = og A—og, we have ( ,w) ¥ —ogVog. Thus, since Kripke-
observability holds, it must be the case that 3i € G, such that (Z”"% w) | K;~op.

Therefore either KP;(w;, o) = disable or KPy(w;, o) = disable.

(ii) Suppose (ZPF% w) | oG A 0. We want to show that this implies (7 i € G,)
KP;(w;, o) = disable.

IDES

The requirement for KP;(w;, o) = disable for some i € G, is that ( Lw) =

IDES IDES

K;—og. However, since ( ,w) = o, we cannot have ( ,w) E K;—og for any
i (by (2.9)). Therefore KP;(w;, o) = enable for all i € G,. By (3.8), for all i ¢ G,,
KP;(w;, o) = enable.

(=) We need to show that if ZP£9 is not Kripke-observable then there is no joint

knowledge-based protocol P that solves the decentralized problem.

IDES

Suppose that some P solves the decentralized problem. Since is not

Kripke-observable, there must exist w € ZP"9 such that 3(og,0r) € Ry where

(Vi € G,) (TPPS, w) £ —0q V op V K;~op. That is,
(TP, w) ¥ —oa V o; (3.9)
and for all i € G,,
(ZP55 w) = Ki—og. (3.10)
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The expression in (3.9) implies that (Z”" w) = (6g A —og). Since KP solves the
decentralized problem, and since (ZP%%, w) = (06 A —og), it must be the case that
3j such that KP;(w;,o) = disable. Note that (3.10) holds for agent j and implies
that Jw’ such that (ZP#* w') = o and w ~; w'. Since KP solves the decentralized
problem, KP;(w}, o) # disable. However, since KP;(w;, o) = disable, this means
that KP;(wj,0) = disable (since w ~j; w' means that w; = wj), which leads to a

contradiction.
0 THEOREM 3.1

Note that this result also holds for Z°#%'(G, E). We are checking the knowledge
that an agent has about events at its possible worlds. What is important is that the
possible worlds capture the knowledge of an agent for a given system. Therefore,
as long as the knowledge of the agents is described accurately, it does not matter
whether the possible worlds be described as sequences of the plant language or as
plant states. Note also that Kripke-observability is equivalent to controllability and

co-observability taken together.

We want to ensure that the actions taken by agents as a result of executing the
knowledge protocol exactly permit the legal language of the DES plant. In what
follows, we are referring only to the sequence-based model Z”F9 not the state-based
model ZPPS" | Therefore, we make precise the set of sequences that are generated by

the supervised interpreted system ZP%,

DEFINITION 3.2 The language that contains all sequences determined by the actions

of the two knowledge-based protocols is KL(KP,G), defined as follows:
e € KL,

weo € KL ifw, € KLAwe.o € L(G) N KP;(w;,0) = enable , (i = 1,2).

Thus a sequence is in KL if its prefix is already in KL, the sequence is actually

generated by the plant, and the control action at the corresponding global state is
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to allow o to happen. If the knowledge-based protocol takes a “disable” action with
resepct to o at global state w, it is because at least one agent knows that w.o is not

part of the legal language and is therefore, by the above definition, not included in

KL.

3.3.2 Example: a Kripke—observable system for ZPFS

We return to the plant and legal automaton of figure 2.1 where agent 1 sees and
controls events o and v while agent 2 sees 3 but controls both § and . Part of the

Kripke structure associated with the plant is shown in figure 3.1.

We want to show that ZPF% is Kripke-observable. Let w = (g,£,£). We want to

ascertain that at this state either agent 1 or agent 2 knows to disable v:

(ZP5%, w) =16 V e (3.11)

Therefore, for Kripke-observability, we must find an agent i such that (Z”"°

,w) =
Ki—vg.
We first check to see if agent 1 has the appropriate knowledge about event . At

w = (e,¢,¢), agent 1 considers one other world to be possible: (3¢, 3).

Recall that knowledge of a fact at w requires that the fact hold at all states
indistinguishable from w. Thus if agent 1 has knowledge that event ~ is not legal at
this part of the plant, it must be the case that —vyg holds in the two worlds noted
above. Agent 1 fails to have the required knowledge at state w’ = (f3,¢,3), since
(ZPES w') = yg. Thus, (IPP5, w) = —K,—yE and we must check to see if Kripke-

observability is satisfied by agent 2’s knowledge at this state.

There are three other possible worlds agent 2 cannot distinguish from (g,¢,¢):
(o, ), (7,7,¢) and (ay,ay,e). As was the case for agent 1, we need to determine

that agent 2 knows —yg holds at w. This means that =g must hold in all worlds
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that look like (£,£,¢) to agent 2. Note that because —yy holds at all four possible
WOI"ldS, (IDES,U)) ‘: KQ_V)/E.

A similar check can be performed at every other state in Z”"% to show that this

system is Kripke-observable (summarized in Table 3.1).

Table 3.1: Checking Kripke-observability.

w Disjunct of Kripke-observability satisfied
(€,€,€) (Z7"°, w) | Ka=ve (ZV"°, w) = ag (Z7"°, w) = B
(8,2, ) (ZPF5 w) = g (ZPF5 w) = ag (ZPF5 w) = —fg
(7,75 €) (ZPP5 w) = Ky=ye  (IPP%w) | —ag (ZPP°, w) |= =0
(o, €) (ZPES w) = Ky—ve (ZPES w) | —agq (ZPES w) = Br
(87,7, ) (ZP"% w) = 6 (ZPP5 w) = —aq  (IP75,w) = —f
(a7, a7,¢) (ZPP5 w) = Ky=ye  (IP7%w) | —ag (Z77°, w) = —fq
(Oéﬂ, «, ) (IDESJ w) ): YE (IDFSJ w) ): lete (IDESJw) ‘_ —Ba
(Ba, a, B) (ZPES w) = g (ZPES w) | —agq (ZPES w) = —fg
(aBy,av,B8) | (ZP"% w) F e (ZPF5 w) = —ae  (ZP"5,w) = =B
(Bay,av,B) | (Z""% w) E 6 (ZP%% w) E —ag  (IPP5,w) = —fa

Table 3.2: A joint knowledge-based protocol for G and E and event v in figure 2.1.

w KP1(ws,7) KPa(ws, )
(g,¢,¢) enable disable
(B,¢e, ) enable enable
(7,¢,¢€) enable disable
(a, o) enable disable
(B7,¢, ) enable enable
(ay, a, €) enable disable
(af, a, B) enable enable
(Ba, a, B) enable enable
(af, a, B) enable enable
(Bary, a, B) enable enable

The joint knowledge-based protocol for events a and 3 in this system is straight-

forward: both events are enabled by both agents at every state in ZP#%. To realize
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the legal language, however, the control decisions for v must ensure that v is disabled
before either agent sees any event occur and that 7 is disabled after « is generated
by the plant. At w = (,¢,¢) agent 2 does know to disable v and thus KPy(e,v) =
disable. This action occurs at all global states where wy = £, namely (o, a,e)  which
makes certain that oy will not occur—and at (v,e,¢) and (a7, a,g). The “disable
~v” action at the latter two states is irrelevant since the previous disablement actions
will guarantee that we never reach these states. The complete set of control actions
for event v is summarized in Table 3.2. Note that as long as agent 7 takes a “disable”
action for some event at w;, this action takes precedence over any other agent’s “en-
able” action for the same event at any global states w’' ~; w, thereby ensuring that
the event is disabled in all possible worlds of agent i at w.

3.3.3 Example: a Kripke-observable system for ZP£5

The definitions of Kripke-observability, a joint knowledge-based protocol and The-

orem 3.1 also hold for ZP#% —simply replace ZP#$ with ZP#5" in all relevant places.

Figure 3.4 (a) shows a plant G and a legal automaton E, where ¥, = X, =
{a,v} and Xy, = X9, = {f,7}. The projection automata of the plant are shown
in (b) and (c) of figure 3.4. Thus when agent 2 initially sees “nothing”, i.e., the
empty string ¢, it cannot determine if the plant has generated a or if no event has yet
occurred. Thus agent 2 considers the plant could be in plant states 0 or 1. Similarly,
when agent 1 sees ay, it cannot determine if the plant has generated a3y, afv( or

a7y. Thus it considers the plant could be in plant states 1, 2 or 3.

To determine if ZPF5" satisfies Kripke-observability, we still defer to Definition 3.1
and check the truth values of the primitive propositions at each state of the system.
The Kripke-structure of Z”?% is shown in Figure 3.5. Let w = (3,{1,3},{3}).

Since the only event defined at this state in the plant is , we have 7”7% (w)(ag) =
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Figure 3.4: The automata for a state-based DES: (a) G and E; (b) P%; (¢) P%2.

PP (w)(Bg) = false. Thus the truth values of the propositions for events o and 3
satisfy the first disjunct of Definition 3.1. While 7 is defined in the plant at state 3, it is
not part of the legal automaton and therefore 777 (w)(v¢) = true and 7% (w)(vyp)
= false. If the interpreted system of G and F satisfies Kripke-observability, one or

the other or both agents will know to disable v at w.

In figure 3.5, agent 1 considers two possible worlds at w = (3, {1, 3}, {3}), namely
w and w' = (1,{1,3},{0,1}), and hence the two states are joined by an edge with
the label “17. It is not the case that agent 1 knows that v is not legal at w since

PP (w)(vg) = false but 7”7 (w')(vg) = true.

Agent 2, on the other hand, considers that w looks like global states
(3,{1,2,3,4},{3}) and (3, {1, 2,3}, {3}). Note that agent 2’s local state contains only
one plant state, and therefore the only state agent 2 considers the plant to be in is
plant state 3. The multiple global states with the same state of the environment

reflects the different paths the plant could have taken to reach state 3. Thus the
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multiple possible worlds for agent 2 at w simply indicate that agent 2 does not dif-
ferentiate among the paths to plant state 3 and regardless of the path, it only ever
considers it possible that the plant is in state 3. Since 7°"% (w)(vz) = false, then by
definition of 7P"%" the truth value for vy is clearly false at (3,{1,2,3,4},{3}) and
(3,{1,2,3},{3}). Therefore we have (Z,w) = Ky—vg.

Checking the rest of the points in the system reveals that the system is indeed
Kripke-observable. Table 3.3 contains a summary of the test for Kripke-observability

for the entire system.

Table 3.3: Checking Kripke-observability for G and E in figure 3.4.

w Disjuncts of Kripke-observability satisfied
(0= {0}7 {0= 1}) (IDES, > w) |: Qg (IDES, > w) |: —Ba (IDES, 3 w) |: G
(1= {17 3}= {07 1}) (IDES, > w) |: nag (IDES, > w) |: BE (IDES, ’ w) |: TE
(1={172=374}={1}) (IDES,/[U) |: ete (IDES,/[U) |: BE (IDES,/[U) |: TE
(1={172=3}7{1}) (IDES,/[U) |: nag (IDES,/[U) |: BE (IDES,/[U) |: TE
(2={172=3}7{2}) (IDES,/[U) |: nag (IDES,/[U) |: —Ba (IDES,/[U) |: TE
(27{1727374}7{2}) (IDES,vw) |: nag (IDES,vw) |: —Ba (IDES,vw |: TE
(3,{1,3}.{3}) (ZPES w) | —ag (ZPES w) | —Ba (ZPES w) | Ky—ye
(37 {172/3}7{3}) (IDESva) |: nag (IDESva) |: —Ba (IDESI7U)) |: Ky—E
(37 {1727374}7 {3}) (IDESva) |: nag (IDESva) |: —Ba (IDESI7U)) |: Ky—E
(47 {17 2,3, 4}7 {4}) (IDESI > ’Ll)) |: ~ag (IDESI ) ’Ll)) |: —Ba (IDESI ; U)) |: G

The joint knowledge-based protocol for this system, as with the previous example,
is straightforward for events o and (3: both agents enable these events at all points
in ZPFS'. The control actions for v must have at least one agent disabling 7 at
plant state 3. That is, for each point in the interpreted system where w, = 3, at
least one agent must take the control action “disable 4”. In fact, agent 2 is never
uncertain about the plant being in state 3 since, whenever w, = 3, it is always the
case that wy = {3}. For instance, at w = (3, {1, 3}, {3}), agent 2 knows —y and thus
KPs(ws,v) = disable. Since every point where wy = {3} is also every point where
w, = 3, the joint knowledge-based protocol prevents v from occurring at plant state

3. The complete set of control actions taken by each agent for v is shown in Table 3.4.
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Figure 3.5: The Kripke structure for GG in figure 3.4.
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Table 3.4: A joint knowledge-based protocol for G and E and event 7 in figure 3.4.

w KPi(wy,7) KPs(ws, )
(0,{0},{0,1}) enable enable
(1,{1,3},{0,1}) enable enable
(1,{1,2,3 4}, {1}) enable enable
(1,{1,2,3},{1}) enable enable
(2,{1,2,3},{2}) enable enable
(2,{1,2,3,4},{2}) enable enable
(3,1, 3} {3} enable disable
(3,{1,2,3},{3}) enable disable
(3,{1,2,3,4},{3}) enable disable
(4,{1,2,3,4},{4}) enable enable

3.4 Distributed Observability

Previously we considered what it means for an agent to know a fact; however, what
does it mean for a group of agents to know a fact? To find a joint knowledge-based
protocol that solves the decentralized control problem, we require that the interpreted
system be Kripke-observable. But even if the system is not Kripke-observable, it may
be the case that the group of agents has the combined knowledge to generate the
correct control strategy. We call this notion of successfully pooling information to

generate a control decision distributed observability.

Distributed observability is based on the concept of distributed knowledge (taken
from [12]). Distributed knowledge is the weakest form of group knowledge: in essence,
a group has distributed knowledge of p if after combining all the knowledge of the
group, p holds. This amounts to taking the intersection of all sets of worlds each

agent in the group considers possible at a given state in the system.

DEFINITION 3.3 A group G of agents has distributed knowledge of p € ® at state w,
denoted (Z,w) | Dg p, iff (Z,w") = p for all w' where, for all agents i in a group G,

w; = wj.
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The modal operator Dg means “it is distributed knowledge among the agents in G”
[16]. Tt could be the case that no individual agent knows p, but after combining their
possible worlds (i.e., take the intersection of the possible worlds for the agents) the
group of agents knows p only if p holds in all the remaining possible worlds of the

‘intersection’.

Stronger assertions about group knowledge include “everyone in the group knows
p” and common knowledge, where “everyone in the group knows p, everyone in the
group knows that everyone in the group knows p” etc. We do not consider these
states of knowledge here, but merely note that there exists a hierarchy of states of

group knowledge for distributed systems.

Distributed knowledge is the key to a concept we introduce, called distributed

observability:

DEFINITION 3.4 An interpreted system TP has distributed observability with re-

spect to a group of agents G if

Yw € ZDES,V(Jg,O'E) S RZ

(ZPES w) = —og V op V Dg—op.

That is, at all states in the interpreted system where an event would need to be
disabled, there is distributed knowledge about whether to disable that event. Note
that if ZPFS is Kripke-observable then by definition Z”#* has distributed observability
since at every state, for each event in 3., at least one agent (even before pooling

knowledge) will know the correct control decision to make.

Intuitively, to solve a decentralized problem, even with communication, it would
have to be the case that what one agent lacks in knowledge or information, the other
can supply. Consider the case of sequences ¢t and ¢’ which look alike to both agents
where ¢ is legal and #' is illegal. If agent 1 were to communicate to agent 2 that it

(agent 1) knows that one of ¢ or # has occurred, or if agent 2 were to communicate
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Figure 3.6: The combined DES plant G and its legal automaton F.

similar information to agent 1, communication will not help the agents make a control

decision.

Using the knowledge framework we can exploit the possible-worlds model to iden-
tify system states that are indistinguishable to both agents (and where, therefore,
information pooling would be of no help). Further, we can identify states where an

agent’s ability to make control decisions would be improved by communication.

We present two examples where the two agents have partial observation of a
system: one where the pooling of possible worlds is not enough to achieve control and

one where we believe that combined knowledge can achieve control.

3.4.1 Example: when pooling knowledge is not enough

In figure 3.6 the language generated by the legal automaton is not Kripke-observable'
if ¥, = {a}, X1 .= {a,v}, Lo, = {8}, and Xy . = {#}. When agent 1 sees o (equiv-
alently, agent 2 sees (3), it does not know whether or not a8 or Sa has occurred. Thus
a control decision about vy cannot be reached. The Kripke structure in figure 3.7 shows
that ZPF9 is not Kripke-observable. To see this, suppose the system were Kripke-
observable. Then when w = (fa, «, 3), it must be that agent 1 knows —yg in its set

of possible worlds at w since (ZP%° w) = —vg V 7. In fact, this is not the case

! This example arose from discussions K. Rudie had with S. Lafortune, F. Lin, A. Overkamp and

D. Teneketzis.

49



because (Z7"%, (af3, o, §)) k= -

If both agents were to pool their knowledge at a state where agent 1 sees o and
agent 2 sees 3, so that the resulting possible worlds are (a3, «, ), (B, «, 3), and
(af7,a, 3), the Kripke structure indicates that still there is no distributed knowl-
edge about vy for the same reasons that the system is not Kripke-observable: the
conflicting truth value of vy at states (a3, «, §) and (B, «, 3). That is, distributed

observability is not satisfied.

When distributed observability is not satisfied this tells us that at some place,
pooling information does not help. In this example, by the time agent 1 sees «
and agent 2 sees [, the relative ordering of o and ( has been lost, i.e., even if at
that point agent 2 were to tell agent 1 that it has seen (3, that would not convey to
agent 1 whether a3 or fa had occurred. This would suggest that the agents must

communicate prior to agent 1 seeing o and agent 2 seeing (3.

One possible communication protocol could assume that an agent sends a query
as soon as it is uncertain about whether to disable an event. Unfortunately, such a
strategy is highly sensitive to small communication delays. In this example, because
agent 2 sees and controls only 3, there is never a situation when agent 2 is confused
about its control decisions. So it never sends a query to agent 1. Agent 1 would need
to submit a query when it sees «. If only « has happened and agent 1 sends a query
to agent 2, then it would appear that a decision about v can be made since the pooled
information would indicate that the only possible world is (a, «, €). However, if 3 had
taken place before agent 2 receives the query, agent 1 would not know whether or not
to disable v since it would not know if § had occurred just before a or just after «
happened. That is, the usefulness of pooled information depends on whether 3 can
occur after a has occurred but before agent 2 receives the query. In other words, even
if a query results in a response, the solution is sensitive to the precise moment the

query is received.
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Figure 3.7: The Kripke structure for the plant in figure 3.6.
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Figure 3.8: A combined DES plant G and legal automaton F.

3.4.2 Example: when pooling knowledge is enough

The legal language corresponding to the legal automaton illustrated in figure 3.8
is not Kripke-observable. Let ¥, , = {a}, ¥, = {a,7}, X9, = {f, 1}, and Xy, =
{B,1,7}. Upon observing «, agent 1 (which sees only «) does not know if af or
afu has occurred and hence does not know whether or not to disable . Similarly by
observing [u, agent 2 would not know whether aGu or Byu had occurred and could
make no decision about disabling v. However, we can check the Kripke structure and
see that distributed observability is satisfied. That is, when an agent is unable to
make a control decision, pooling information will help. In fact, an agent has more
flexibility: to submit a query every time it is stuck is possibly unnecessary. If each
agent has available to it a record of the history of its queries then it may be possible to
deduce further information based on queries it has not received from the other agent.
We illustrate this below. In addition, there remains the issue of when information
should be pooled. There may be several states where pooling is beneficial and it may
be possible to ascertain whether communication should be delayed to the last possible

moment or should occur as early as possible.

In this example, as soon as agent 1 sees « it does not know whether or not

to disable 7. At what state should it communicate or query agent 2 so that they
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can pool their knowledge? We can assume here that communication between agents
occurs instantaneously so that as soon as one agent cannot continue, the other agent
receives a query to pool knowledge. In this case, agent 2 can continue making control
decisions until it sees Bp at which point it must submit a query to pool knowledge.
On the other hand, if agent 2 sees Su but has already received a query from agent
1 (after agent 1 sees «), then agent 2 no longer needs to query as it knows that
previously agent 1 did not know what to do about . Therefore agent 2 can deduce

that v must have occurred.
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Chapter 4

Communication and Decentralized DES

In chapter 3 we used knowledge models to analyze decentralized discrete-event
problems that satisfied specific conditions to generate a control solution. The solution
precluded the possibility of agents pooling or communicating information regarding
their partial view of the system. The notion of distributed observability for inter-
preted systems provides a starting point from which we begin our understanding of
how agents might communicate to solve a particular class of decentralized control

problems.

This chapter introduces our approach to incorporating communication into de-
centralized discrete-event control problems. The problem that we are interested in
concerns interpreted systems that do not satisfy Kripke-observability. Since an agent
bases its actions on the information it has, if an agent does not have “enough” in-
formation to know that event o should be prevented from occurring, under what
conditions would information from other agents give that agent the knowledge to

make the correct control decision about o?

4.1 Knowledge, communication and control

In this section we present a broad overview of the motivation explaining why we
want to introduce communication into decentralized DES. As well, we indicate the
underlying assumptions we make regarding the nature of communication in decen-

tralized systems.
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4.1.1 Why communicate?

When the correct control decision cannot be reached in the absence of communi-
cation, as was the case for the example in figure 3.8, sharing information with other
agents could lead to a control solution. Thus an agent may communicate to allow
another agent to reach the correct control decision. Because an agent has a partial
view of the system, if a communicating agent shares information with another agent
at state z, it is also communicating at every state that it finds indistinguishable from
x, a notion termed consistency [31]. Therefore communication occurs for two reasons:

to solve a control problem, and to satisfy consistency.

The strategy for communication we present in this chapter does, by definition,
satisfy consistency. In the construction of the communication protocol we instead
insist that our procedures (1) render the protocol well-defined in the sense that there
is no ambiguity when an agent must communicate (this is described in more detail
in section 4.4); and (2) when taking into account any prior information that an
agent could receive, the agent’s view of the world in light of this new information
is correctly refined. As an example of this latter point, suppose that our strategy
determines that agent i communicates at one of its local states w; = {z,y, 2}, where
2,y,2 € QY and w; € QPGi for some plant GG. That is, with its partial view of the
world, agent ¢ cannot distinguish between plant states x, y and z. Further suppose
that a prior communication from another agent allows agent ¢ to distinguish x from
y (i.e., w; should really be {z,2} ). We want our protocol to ensure that agent i

communicates its updated view of the world as refined by this additional information.

4.1.2 Who communicates?

In the previous chapter we described how to ascribe knowledge to agents in a

decentralized discrete-event control problem. As long as at least one agent has enough
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knowledge to make the correct control decision and takes the correct control action,

a solution to the control problem is achieved.

When an agent does not have sufficient knowledge to make the correct control
decision and there is no other agent capable of making the decision we assume
that another agent in the system communicates information to facilitate the correct

control decision.

4.1.3 What to communicate?

At any point in the interpreted system an agent has access to two pieces of infor-
mation: its local state (i.e., the set of states it considers the plant could be at) and
its knowledge of the system at that local state. We assume that the communicating
agent sends its local state to the agent that lacks knowledge. An agent receiving
communication then updates its own local state by intersecting its local state with

the communicated local state.

For example, suppose an agent must make a control decision to disable event o at
plant state ¢, but o is allowed to happen at plant state ¢'. If the agent considers it
possible that the plant could be in either state ¢ or ¢’, then it cannot make the correct
control decision to disable o if the plant is actually at state ¢. Suppose another agent
considers it possible that the plant is either at state ¢ or state ¢"” and o is not defined
at state ¢”. Therefore, if the agent lacking knowledge about ¢ is sent the information
{q,4¢"}, it updates its own local state to {q,¢'} N {q,¢"} = {q}. Now the correct
control decision (i.e., to disable o) can be made since after communication the states

g and ¢' can be distinguished.

4.1.4 Where to communicate

An agent is confused if it must make a control decision and cannot distinguish be-

tween a state leading to a legal sequence and a state leading to an illegal sequence. In
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section 4.2 we describe our strategy for identifying places (e.g., states) where commu-
nication to achieve a control solution occurs. These are places in the system where the
information an agent receives leads to a situation where the agent makes the correct
control decision. As noted earlier, we also must formulate a communication protocol
that takes into account the effects of prior communication from another agent. A
procedure for ensuring that an agent’s view of the world is refined appropriately is

presented in section 4.3.

4.1.5 When to communicate: a communication protocol

We represent the action of agent ¢ communicating with agent j at some state
¢ in the plant (for purposes of solving the control problem) by the event com;;:q.
Therefore, when a place where agents “communicate for control” has been identified
(e.g., state q), we insert a communication event into an updated version of the plant
at that state. Subsequently, communication events must be incorporated at all states
that an agent finds indistinguishable from the places it communicates for control (e.g.,
states that look like ¢). Once all the communication events have been incorporated
into the plant, the communication protocol for each agent is derived by calculating
its projection automaton of the augmented plant. To ensure that the projection
automata reflect the effects of communication on an agent’s view of the world, we must
ascertain that the communication events have been added to the augmented plant at
the appropriate states. The updated plant can then be translated into our knowledge
model where we can determine whether or not the addition of communication now

renders the system Kripke-observable.
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4.2 Communication for Control

In section 3.3, solving the control problem in our knowledge model amounted to
each agent having enough information to make the correct control decisions. We char-
acterized an agent’s inability to make such a decision as a place in the interpreted
system that contributes to the system not being Kripke-observable. We then specu-
lated in section 3.4 about the role distributed observability might play in providing
agents with more information to make the correct control decisions. The notion of
distributed observability suggests that pooling takes place just before a control de-
cision needs to be made. However, it is possible to come up with examples where
a control solution exists but where pooling possible worlds under the conditions of
distributed observability does not lead to an agent having the knowledge to make the
correct control decision. Therefore, in our strategy for communication, we identify

places where pooling information at that place is helpful.

We have established that an agent requires extra information, for example, com-
municated from another agent, when it cannot distinguish an illegal sequence from a
legal sequence and it must make the correct control decision. We have yet to establish
how to identify specific places where communication will give agents the knowledge to
solve the control problem. In this section we claim that, subject to certain conditions,
we can always find a place for agents to communicate so that a control solution will
eventually be reached. At such a place in the interpreted system, the communicating
agent ¢ can provide agent j with information that allows j to distinguish whether the
system is along a sequence where j will have to make a control decision. We begin by
introducing some terminology we will need to identify places where communication

occurs to solve the control problem.

DEFINITION 4.1 A communication state is a state ¢ € Q¢ where agent i commu-

nicates to agent j (fori,j € {1,2} and i # j) so that agent j will know whether it is
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observing states along a legal sequence or an illegal sequence.

This definition is intentionally imprecise at this stage and will be updated later.
For now, we consider a communication state to be a state where information from
one agent is imparted to the agent responsible for making a control decision. The
communicated information allows the latter agent to enable or disable the appropriate

event at a subsequent point in the system.

P(t) = P(t') and Ao € ¥ such that P(to) = P(t') or P(t) = P(t'0).

Recall that the canonical projection operator P in (2.1) effectively erases the unob-
servable events in a sequence ¢. In this case P is a mapping from X* to (X, ,UX,,)*.
Thus, a maximal-P pair pinpoints the last place two sequences look alike to an ob-
server that sees all observable events. We will use maximal-P pairs to identify com-
munication states by locating the places in the interpreted system where an illegal

and a legal sequence in L(G) look alike using canonical projection.

DEFINITION 4.3 The local view (; of a state { € QF reached via sequencet (i.e.,3t €
S* where 6%(t,q5') = () is the set of all the states in the plant that supervisor/agent

i considers the plant could be in upon seeing P;(t):
li=1{q% | ¢° € QY A Ju € P/ (Pi(t)) such that 6(u,qS) = ¢°}.

Thus if agent ¢ cannot determine if £ or ¢’ has occurred in the plant (i.e., P;(t) = P;(t"))
and if §9(t, q§') = q while 6%(',¢§) = ¢/, the local view of agent i at state ¢ will

contain ¢ and ¢'.

DEFINITION 4.4 Ift € X* and 0 € ¥, state ¢ € QY is called a good state with
respect to to if Ju,v € X* such that t = uv, §%(u,q5) = ¢ and 6" (to,qf) is
defined.
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That is, a good state is one that occurs along a path of a legal sequence.

DEFINITION 4.5 Ift € ¥* and 0 € X state ¢¥ € ¢q“ is called a bad state with
respect to to if Ju,v € X* such that t = uv, §%(u,q§) = ¢© and 6% (to,qf’) is

defined but §¥(to, q") is not defined.

Similarly, a bad state is one that occurs along a path of an illegal sequence.

We will want to be able to draw conclusions about what an agent sees if the
canonical projections of two sequences are equal. For instance, if P(t) = P(t'), we
want to conclude that P;(t) = P;(¢'). In the lemma and corollary that follow, we use

P4 to identify a canonical projection operator from X* to A*, where A is a subset of

3.

LEMMA 4.1 Let B C A C Y. For canonical projection operators P4 : ¥* — A* and
PB .Y — B*, if PA(t) = PA(t'), where t,t' € ¥* then PB(t) = PB(t).

Informal Proof. Let A’ ={o|oc € X and 0 ¢ A} and B' = {0 |0 € £ and 0 ¢ B}
(i.e., A’ is the complement of A, B’ is the complement of B). Since B C A, therefore
A" C B'. Note that P# will replace events in A’ by . Then P? will replace events in
the larger set B’ by e. Thus PA(t) = PA(#') implies that P?(t) = PB(¢'). The result
can be proved more formally using induction on the length of strings.

O LEmMA 4.1

Thus sequences that are indistinguishable to an agent are also indistinguishable to
other agents that observe fewer events.

We prove here that under a certain condition we can find places where a com-
municating agent can eliminate the confusion of the agent incapable of making the
correct control decision. The confused agent simply needs to be able to tell bad states
from good states.

In the following theorem, observability is a hypothesis because observability means

that a centralized observer (one that could see all the events that both agents see)
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could solve the control problem. Otherwise one agent lacks observations that could

not necessarily be supplied by the other agent.

THEOREM 4.1 Given G, E and let i € {1,2}. If E is observable with respect to G, P
and 36 € ¥, ., t,t' € L(G) such that t6 ¢ L(E) and t'6 € L(E) and Pi(t) = Pi(t')
then 30 € QY where  is either a good state with respect to t'6 or a bad state with
respect to t6 and Ay,y € €1 Nty (for y # y') where y is a bad state with respect to

to and y' is a good state with respect to t'G.

Proof. There exists u,u’ € ¥* such that v € 7, ' € ¥ and (u,u’) is a maximal-P
pair. Since F is observable with respect to G, (¢,%') is not a maximal-P pair and
therefore either u is a proper prefix of ¢ (i.e., u # t) or u’ is a proper prefix of t'.
Without loss of generality, let u be a proper prefix of ¢ (i.e., do € ¥, v € £* such that

t = uov). Let 6%(u,qS) = z and 6 (uo, ¢§) = 2.

We consider the following two cases:

Case A: (u,t') is a maximal-P pair.

Let 6¢(t',¢5) = 2'. Refer to figure 4.1 (a) for a graphical representation of this case.
(i) 0 € Xy

The next event after u cannot be unobservable. If o is unobservable, then (u,t)

would not be a maximal-P pair because we could extend u by o.
(11) o€ Zi,o

We will argue that this scenario is not possible. It suffices to argue as follows:

E(t) = P(t)

= Pj(u)Pi(0)P;(v) (4.1)

Since (u,t') is a maximal-P pair, P(u) = P(t'). Since ¥,,U%;, C 3,, by Lemma 4.1
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@ (b)

Figure 4.1: Identifying a communication state.

P;(u) = P;(t'). Therefore (4.1) holds only if P;(c)P;(v) = €. This leads to a contra-
diction as P;(0) # e.
(iii) o € 3,

Claim 1. State z is a state where x; N x; does not contain distinct states y and y'

where y' is a good state with respect to ¢'6 and y is a bad state with respect to t5.

Note that x; N x; already contains a bad state, namely x. Therefore we just have to

show that there is no prefix of # that has the same projection as some prefix of uo.

At z, z; already contains bad state x. The only way z; could also contain a different

good state with respect to ¢’ is if there is some prefix of ¢/, say w’, where P;(w') =

Pj(uo). 1f it did, x; would additionally contain the good state 6%(w’,¢%). Assume

t = w''":

Pi(w") = Pj(uo)
— PwP0)
= P;(t")Pj(0) (since ¥;, CY;,UX,;, and P(u) = P(t),
by Lemma 4.1, P;(u) = P;(t'))

= Pi(w)P;(v') Pi(o) (4.2)
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For (4.2) to hold, P;(v")P;(0) = € which leads to a contradiction as Pj(0) # ¢ (since

o€ Zj,o)-
Case B: (u,t') is not a maximal-P pair.
Then u' is a proper prefix of #'.

Let t' = w0’y for o' € X, v € ¥* and 6% (v, ¢§') = 2’ and §%(u'0’, ¢§) = ', as shown

in figure 4.1 (b).
(i) 0,0" € Xy

This scenario is not possible. A next event along ¢ after u (respectively, along " after
u') cannot be unobservable, otherwise we would be able to extend u or u' and violate

the fact that (u,u') is a maximal-P pair.
(ii) 0,0 € 3, and 0 = o'

This scenario is not possible. The next event along t after v cannot be identical to

the next event along ' after «', otherwise (u,u') would not be a maximal-P pair.
(111) o€ 21’070', € Ej,o
Claim 2. State 2’ is a state where x; N 2, does not contain distinct states y and y'

where ¢’ is a good state with respect to ¢'6 and y is a bad state with respect to t&.

We will first show that from state z there is no sequence v = ow, where v € ¥*, such

that P;(uv) = Pi(u'0"). That is, if 2, contains any bad states (distinct from 2') with

respect to to that occur after z along ¢, these states are not in ;.

We need only show that P;(uv) # P;(u'c’). Suppose it were. Then

= Pi(u)Pi(c") (since ¥;, CX;,UY,,,

by Lemma 4.1, P;(u) = P;(u')) (4.3)
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For (4.3) to hold it must be the case that P;(cw) = P;(¢') = ¢ (since o’ € %, ,), which

leads to a contradiction since P;(0) # ¢.

As for Case A (iii), we have a situation where at state z', z already contains the
states z, 2, 2’ since Pj(u) = Pi(u') and Pj(u'o’) = P;(u) (because o’ € 3,,). At a/,
), already contains good state z'. Now, the only way z; could also contain a bad

state (distinct from 2') with respect to td is if there is some prefix of u, say w, where

Pj(w) = Pj(u'0"). Thus 2, would also contain a bad state 6“(w, ¢5). Suppose that

such a ¥ exists (i.e., u = w0 and 0 € ¥*). Then

j(0) = Pi(uo’) (4.4)
(

= Pj(u)P;(0') (since ¥;, C3,;,UY,,, by Lemma 4.1, P;(u) = P;(u"))
(
(

= Pj(w)P;(0)P;(c") (4.5)
which leads to a contradiction since Pj(0') # ¢ (since o' € ¥;,).
(iv) o € ¥j,,0' € 3,
Analogous to Case B (ii). In the current scenario, the claim to be proven becomes:

The state x is a state where x; N z; does not contain a good state y' with respect to
t'6 and a bad state y with respect to to.
(v) 0,0 € ¥, and 0 # o
We will argue that this scenario is not possible. We have that P;(t) = P,(#') and
substituting for ¢ and t':
Pi(uov) = Pi(u'o"')
Fi(u)Pi(o)Pi(v) = Pi(u')Pi(o’) Fi(v")
= Pi(u)Pi(c")P;(v") (since X;, C %, ,UX;,,

by Lemma 4.1, P;(u) = P;(u"))
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which leads to a contradiction because P;(0) # Pi(o’) (since o # o).

(vi) 0,0" € £, and 0 # o'

Claim 3. States = and z’ are both states where x; N z; and z; Nz do not contain

distinct states y and y’ where y is a good state with respect to t'6 and 3’ is a bad

state with respect to to.

We want to first illustrate the case for ' by showing after state z there is no sequence

v = ow, where v € ¥*, such that P;(uv) = P;(u'0’).

Suppose that such a v exists. Then

= Pj(u)P;(0') (since X;,CE;,UX,,,

by Lemma 4.1, P;j(u) = P;(u')) (4.6)

Since v = ow, for (4.6) to hold it must be the case that P;(cw) = P;j(¢’), which leads
to a contradiction since Pj(o) # Pj(o’).

To show that there is no sequence @ leading to state z where Pj(w) = P;(u'c’), we

follow the same procedure presented in (4.4).

Similar reasoning shows that if we instead select = as our state, that there is (a) no
v' = o'w' such that P;(u'v") = Pj(uo); and (b) that there is no & along t' leading to

state ' such that P;(w) = P;(uo).
O THEOREM 4.1

The idea of Theorem 4.1 is that when agent ¢ cannot make the correct control
decision about o € ¥;,, (i.e., 3t,t' € L(G) such that t'oc € L(E), to ¢ L(E) and
P;(t) = P,(t')) we can always find a place somewhere along either ¢ or ¢ where

agent j can distinguish between ¢ and #'. At this place or communication state, agent
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j sends its local state or local view to agent 7. Prior to receiving the communication,
agent ¢ does not know whether or not the current state of the system leads to an
illegal sequence or a legal sequence. When agent 7 updates its own local state with
the communicated information, agent ¢ can tell the difference between the legal and

the illegal sequence.

4.2.1 Avoiding unintentional communication

We make an assumption regarding the structure of the automaton . In partic-
ular, we want to avoid situations where the identification of a communication state
results in unintentional communication. This corresponds to the case in Theorem 4.1
where the place we want to communicate is the state reached by both uo and u'c
(where (u,u') is the maximal-P pair for a pair of sequences we want to distinguish).
When an intention to communicate is thwarted by the structure of the plant, we

assume that we can “split” that state in the sense described below.

We will use Theorem 4.1 to identify states where communication will be inserted,
as follows. For every t, t' satisfying the hypotheses of Theorem 4.1 for agent i, we
find a maximal-P pair (u,u'). From the construction in the proof of the theorem,
we know that after either u or «’ (or after both), there is an event in ¥, ,, called o,
leading to state x along ¢ (or o7 leading to state 2" along t'). That state x is a state
where the intersection of the agents’ views (i.e., ;N ;) does not contain states along
t and states along t'. That is, it definitively indicates to agent ¢ that the system has

progressed along ¢ and not along ¢’ (respectively, along ¢ and not along t).

Actually, so far we have hidden a subtle possibility. If after both u and u', there
are events o and o' (as in figure 4.1(b)), leading to the same state (i.e., z = 2’ in
figure 4.1(b)) or if after u there is an event o leading to the same state that ¢’ leads to
(i.e., x = 2" in Figure 4.1(a)), then state x itself is such that = is good with respect to

t'6 and is bad with respect to t. So, a communication from agent j to agent i that
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Figure 4.2: Splitting G: (a) intention is for communication to occur at state x after

uo; (b) rewrite G and split state x to find a definitive communication state z'.
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it is at state & would not yield any helpful information for agent :. Consequently, for
those cases, we “split the state” x into two different states with distinct labels. That
is, we make two copies of x. An illustration of what we mean is shown in figure 4.2.
In figure 4.2(a), assume that the intention is for communication to occur at state x
either after uo or u’'c’ but not after both. Suppose it had been determined that agent
j—after seeing Pj(uo)—communicates its local view of state z, with the intention
of allowing agent i to distinguish between uo and u'c’. But communication occurs
whenever agent j believes the plant to be at state x. This happens not only when
agent j sees Pj(uc) but also when it sees P;(u'c’). Yet we only want agent j to
communicate after P;(uo) or P;(u’'c’) and not after both. In figure 4.2(b) we rewrite

G and split state z to find a definitive communication state z'.

Now, either state x! or state 22 in figure 4.2 would be a state that does not contain
both a good state with respect to t'6 and a bad state with respect to to

We identify a finite number of states, say n, where communication is necessary
to solve the control problem. As a result, the strategy of splitting states is one that
terminates. In the worst case, if we have to perform a split at every state (where a
split would entail two copies of the plant to be created) there would be 2" iterations
of the process (a finite number since n is finite).

Note that the language generated by an automaton where some states have been
split as described above is the same as the language generated by the original automa-
ton. From here on, we assume that the plant G has been rewritten to accommodate

all occurrences of the above scenario.

4.2.2 Finding a place to communicate: picking control com-

munication pairs

In the Kripke structure, a global state where Kripke-observability is not satisfied

corresponds to a world w where for all i € G, the following holds: IPES = ogNA-opA

68



(o wyw) | (g, wyyw) |

o, "0 0. &

| DES
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Figure 4.3: Reasoning about knowledge in the Kripke structure associated with
ZIPES allows us to identify where agents do not have enough information to solve
the control problem. The diagrams above (in the knowledge theory framework) and

below (in the DES environment) the line are equivalent statements about what it

means to not solve the control problem.

= K;—og. That is, agent 7 does not have the knowledge to disable event o. Therefore
there exists a state w’ that is indistinguishable from w to agent ¢ where o is allowed
to happen (i.e., oG and op hold at w'). Figure 4.3 shows equivalent notions of what
we mean in the knowledge world (top of figure) for agent 1 to not have the knowledge
to disable o at global state w and its equivalent translation into DES theory (bottom
of figure). To find a place to communicate, we will want to find the sequences ¢ and
t" as noted in the figure. A communication state will be identified as a state that

occurs somewhere along the path from ¢ to 6% (to, ¢§) = w, or 6% (t'0’, ¢§) = we.

Thus, using the Kripke structure we can identify a state, say ¢, in the plant where
without communication a decentralized agent might not be able to make the correct
control decision. If communication from agent j to ¢ occurs somewhere along the
paths to state ¢, agent j could give agent ¢ the knowledge to disable o at state ¢ of
the plant. Thus we need to identify those paths along which communication could

occur.
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First of all, we identify all pairs of global states w, w’ in the Kripke structure
where for some o € ¥, the propositions og and —op are true at w but og and op
are true at w'. Suppose that w, =y and w, = ¢/, i.e., y and y' are the plant states

associated with global states w and w'.

The idea is that we want to insert communication to distinguish every sequence
that leads to y from every sequence that leads to y'. Since there may be infinitely
many sequences leading to y (due to cycles in the plant), it appears on the face of it

', respectively, is an intractable

that comparing all pairs t, t' that lead to states y, y
task. However, we can exploit the finite-state representation of a Kripke structure
by making the following observation. We conjecture that when there are infinitely
many sequences leading to state y, we need only reconstruct those paths that satisfy
the following (i)a path from the initial state to y that contains no cycles; (ii)a path
from the initial state to y that contains one iteration of cycles that has embedded
in it one of the paths identified in (i); (iii)those paths that contain just one instance
of any self-loops or cycles that extend from y and return to y. The identification of
such paths (including those with cycles) in a directed graph can be performed using
a dynamic-programming algorithm in O(n?) time, where n is the number of nodes in
the graph[10].

We describe our intuition via the example in figures 4.4 and 4.5. Suppose that
agent 1 sees and controls a and b while agent 2 sees b and ¢. The states of the Kripke
structure for the plant shown in figure 4.4 are simply the states of the monitoring
automaton for the same plant. The monitoring automaton of interest is shown in fig-
ure 4.5. In the associated Kripke structure (not illustrated here) Kripke-observability
fails at state (6,{1,4,6},{2,5,6}) because agent 1 does not have enough knowledge
to make the correct control decision about event b. At this state the truth values of

the primitive propositions associated with event b are by = true and by = false.
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There are two other states (1,{1,4,6},{0,1,3,4}) and (4,{1,4,6},{0,1,3,4})

that agent 1 cannot distinguish from (6,{1,4,6},{2,5,6}). At both these states (
(1,{1,4,6},{0,1,3,4}) and (4,{1,4,6},{0,1,3,4}) ) the truth values of the primitive
propositions associated with event b are by = true and by = true, thereby giving

rise to agent 1 not knowing —bg at state (6, {1,4,6},{2,5,6}).

We use the monitoring automaton (shown in figure 4.5) to reconstruct the ¢
and t' sequences, such that ¢ = b, that will satisfy the hypothesis of Theorem 4.1.
Thus we want to find paths to state (6,{1,4,6},{2,5,6}) that correspond to some
to ¢ L(F). In addition, we want to find paths to states (1,{1,4,6},{0,1,3,4}) and
(4,{1,4,6},{0,1, 3,4}) that correspond to some t'6 € L(FE) where P;(t) = P;(t').

We begin by looking at state (6,{1,4,6},{2,5,6}). Our conjecture says we first
look at the paths to this state that contain no cycles: thus ¢t = daba or t = abcdaba
or t = abcabcdaba. There is a path that contains one iteration of a cycle: ¢t =
abcabcabedaba. There are no paths extending from and returning to (6, {1,4,6}, {2,5,6})
so we are done.

Similarly we examine the paths to state (1,{1,4,6},{0,1,3,4}). There is one
path with no cycles: #' = abca. Additionally, there is a cycle that extends from
(1,{1,4,6},{0,1,3,4}) and returns to (1,{1,4,6},{0,1,3,4}). We need only recon-
struct one iteration of the cycle: ¢ = abcabca.

Finally, the paths to state (4,{1,4,6},{0,1,3,4}) yield two possibilities that do
not contain cycles: t' = abcda or t' = abcabeda. There is another path that does
contain one iteration of a cycle: t' = abcabcabeda.

In this example we have five possibilities for ¢ and only four possibilities for ¢;
however, we need only consider five ¢, ¢ pairs, namely those pairs that have the same
projection according to agent 1. For example, one pair of sequences would be t = daba
and ' = abca because P;(t) = P(t') = aba. Our claim is that the identification of

these five pairs of ¢t and t' sequences is sufficient to determine where communication

71



Figure 4.4: Finding places to communicate in the presence of cycles.

should be added for purposes of solving the control problem.
The proof of Theorem 4.1 yields the following update to our definition of a com-

munication state:

DEFINITION 4.6 Given t,t' satisfying the hypotheses of Theorem /.1, sequences u, u’'
where u € T, u' € t' and (u, ') is a mazimal-P pair, define a communication state

q to be
(a) 6C(W'o;,qf) if ' = v'ojv for some o; € 8,0 € X% and t = uow for
some 0; € ¥, ,,v € X* (by Claim 1 on p. 62);

(b) 6% (uc;,q) if t = uojv for some o; € ¥;,,v € X% and t' = u'o;v’ for some

0; € Xi 0,0 € X* (by Claim 2 on p. 63);

(¢) 6% (uoj,qf) or 6¢(W'6;,q5) if t = uojv, and t' = u'6;0" for some 0,6, €

Yo, 0,V € X% and 0 # 6; (by Claim 3 on p. 65).
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Figure 4.5: The monitoring automaton for the plant in figure 4.4.

In the definitions that follow, the sequences t and t' are those satisfying the hy-

pothesis of Theorem 4.1.

DEFINITION 4.7 A control sequence for communication state q is the finite
sequence along which a communication state has been identified. If t is the control
sequence for q then t' is a control twin for t. (Equivalently, if t' is a control sequence

for q then t is the control twin for t'.)

That is, these are two sequences that an agent cannot distinguish but one leads to
an illegal sequence and the other leads to a legal sequence. Communication that
will allow an agent to distinguish between these two sequences and make the correct

control decision occurs along the “control sequence”.

DEFINITION 4.8 A control communication pair for agent i is a pair (¢,t) and

Communication from agent ¢ that allows agent j to make the correct control decision
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about an event o after sequence ¢ occurs, happens along sequence ¢ at state q.

DEFINITION 4.9 A communication sequence s for a control communication
pair (q,t) is a prefiz of t if q is a bad state with respect to to (or s is a prefiz of t

if q is a good state with respect to t'o) that leads to q (i.e., 6%(s,q§) = q).

We can now uniquely identify when and where agents communicate to solve the
control problem: communication from one agent to another occurs at a communica-
tion state ¢, after the communication sequence s is observed by the communicating
agent, say agent 7. The idea is that agent ¢ communicates its local view ¢; to agent j
when the plant is at state ¢. The sets Ci» and Cy; store the control communication

pairs for agents 1 and 2, respectively.

DEFINITION 4.10 The communication event associated with a control communi-

cation pair (q,t) € C;j is com;;q.

This notation represents the action of agent ¢ communicating its local state to agent
j at communication state ¢. That is, communication occurs after the communication
sequence s for (g,t) occurs. A communication event com;;:q is observable by both

agents ¢ and j but is controllable only by agent 1.

We illustrate our strategy for choosing communication states with the plant shown
in figure 4.6 (a). In this example, agent 1 sees a; and controls events a; and ¢ while
agent 2 sees and controls by. The interpreted system constructed from this plant and
legal automaton is not Kripke-observable because agent 1 does not know that event
¢ should be disabled at state 4. In particular, agent 1 cannot distinguish among the

following global states (which correspond to the sequences in which agent 1 sees a;a;):
e (3,{3,4,5,6,7},{3,4,5,6,7}) where ¢ and c¢g hold;
e (4,{3,4,5,6,7},{3,4,5,6,7}) where cg and —cg hold;

e (5,{3,4,5,6,7},{3,4,5,6,7}) where —c and —cg hold;
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Figure 4.6: The projection automata of a DES plant G: (a) the plant G; (b) P¢;
(c) P%,

e (6,{3,4,5,6,7},{3,4,5,6,7}) where ¢ and —cg hold; and
e (7,{3,4,5,6,7},{3,4,5,6,7}) where —cg and —cg hold.

Because of the conflicting truth values for cg at the first two global states, agent 1

does not have enough knowledge to make the correct control decision about c.

Back at the plant in figure 4.6(a), agent 1’s lack of knowledge in Z”"5(G, E)
corresponds to the existence of sequences t,t', event 6 € ;. and Py(t) = Pi(t')
where t'6 is legal but to is illegal: t = byay, t' = a1b; and 6 = ¢. Therefore, by
Theorem 4.1 we can find a communication state ¢ where agent 2 can communicate ¢,
to agent 1, allowing the latter agent to distinguish between t'6 and t6.

The good states with respect to t'6 are 0, 1 and 3, while the bad states with
respect to t6 are 0, 2 and 4. A maximal-P pair (in fact, the only maximal-P pair in
this case) for ¢t and #' is (u,u') = (g,£). The communication state is determined by

the nature of the events that directly follow u and u’.
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The next event after u is by and the next event after «’ is a;. This corresponds to
the second category of states described in definition 4.6. Therefore, agent 2 commu-
nicates along the illegal sequence ¢ where the communication sequence has the form
uos and the communication state is 6% (uos, ¢§'). Since u = € and g9 = by, the control

communication pair for agent 2 is (2, bya; ), where the communication sequence is bs.

We use the same procedure and find another ¢t = abycbsay, t' = aibscaiby and
6 = c. This leads to another control communication pair for agent 2: (6, a;bychyay),

where the communication sequence is a;bychs.

4.2.3 How to incorporate communication into G“™

We represent the action of communication from one agent to another as a new
event that is added to the plant. To this end we define a set ¥ to store events that
represent communication and a set Q" to keep track of all new states we will need

to incorporate the events of X°™ into the plant.

Formally, to incorporate communication into our system, we create a new automa-

ton:
Gcom — (QGCOTTL, Z U Ecom’ 6GCOTTL, qU com)

where the set of states Q9" := Q% U Q®™, the alphabet is ¥ U ¥®™ and the initial
state g5 := ¢§’. The identification of a communication state ¢ € Q° (where agent i
communicates to agent j) and a communication sequence s gives rise to the creation
of a new state ¢° which is added to Q“™ and a new event com,;:q which is added
to X" We will sometimes want to refer to those communication events where
agent ¢ communicates to agent j. Thus we partition 3™ into disjoint sets 377, for
i,j7 € {1,2} and i # j. Prior to incorporating communication, G is simply a copy

of G. That is, Q™ = ), 2" = () and 5™ = §C.
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Figure 4.7: Adding a communication event to an automaton: (a) before communi-

cation; (b) after communication.

Figure 4.7 illustrates how a communication event is added to G™. Let (y, af7y) €
C;i be a control communication pair for the sequence in figure 4.7(a). That is, state
y is a place where agent j communicates to agent i. For the pair (y, a37v), we create
a new state y© and a communication event com,;:y. The communication event is a

transition from state y© to y (shown in figure 4.7(h)).

To accommodate the new communication event, the transition function for G“™
must be updated and extended. Update the transition function 69" by removing

69" (B, x) = y. Add the following transitions:
8 (B, 1) = S,
" (comyiy,y®) = . (4.7)

In addition, we update the communication alphabet " = ¥*™ U {com;;:y} and

update the state set Q" = Q™ U {y°}.
OBSERVATION 4.1 Suppose a sequence v € L(G®™) leads to a state g € Q"™ but q &
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Q™. That is, 60" (v,q0) = q. Then by the way in which G°™ is constructed from G,
the version of this sequence that appears in L(G), say v', (i.e., all the communication

events have been removed from v) also leads to state q. That is, 6% (v', qy) = q.

We can now describe what sequences agents would see after communication events
are added to the plant in figure 4.6(a). For the first ¢ and ¢', without communication
agent 1 sees a;. With the addition of the communication event at state 2, either
agent 1 sees coms;:2a; and knows the plant is along a path to an illegal sequence, or
it sees a; (with no communication event) and knows that plant is along a path to a

legal sequence.

For the second t and ', without communication agent 1 sees aya;. With the
addition of the communication event at state 6, either agent 1 sees aycoms;:6a; and
it knows that plant is along a path to an illegal sequence, or it sees a;a; and knows

that the plant is along a path to a legal sequence.

4.2.4 Formally adding control communication pairs to G

We present the first of three main procedures that transform G into G*°*. Pro-
cedure 4.1 describes how to incorporate the control communication pairs into G°™.
The second and third procedures, presented in section 4.3, render the communication

protocol derived from G well-defined.

Procedure 4.1 : Identifying Communication for Control

1. Initially G™ = G, 2" = (), Q" = QY and 69" = §“. We also initialize
C12 - CQl - @

2. Identify those states at which Kripke-observability fails for Z#% (G, E), i.e., a

state in the monitoring automaton A.
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3. Using Theorem 4.1, identify control communication pairs (g, t) and their corre-
sponding control twins ¢’ for agent 1 and for agent 2. We use the monitoring
automaton A to identify ¢ and #'. Update the appropriate set of control com-

munication pairs C;; = C;; U {(¢,t)}, for ¢,5 € {1,2} and i # j.

O Procedure 4.1

Procedure 4.1 identifies the control communication pairs (g, t) that indicate where
an agent discloses its local state to another agent. This information must now be
translated into places where we add communication events to the augmented plant
G°™. The following procedure elucidates a strategy for incorporating the communi-
cation event associated with each (gq,t) € Cio UCyy. That is, a communication event

is added, after sequence s occurs, at state g in G°™.

Procedure 4.1a : Steps to Building G from G
For each (q,t) € C;;, for 4,5 € {1,2} and i # j:

e Create a new state ¢°. If ¢° ¢ Q“™, update the state set: Q™ = Q™ U {¢°}.

e Create a new event called com;;:q which represents the action of agent 7 com-
municating local view ¢; to agent j. If com;;:q & 3™, update the alphabet:

yeom = 3 J {comy;:q}.

e Update the transition function §“™. Suppose the communication sequence for
state ¢ has the form s = uo where 6%(u,q§) = ¢ and §(0,¢') = ¢. Then
if 0" (0,¢') = q (i.e., no communication has been added at state ¢ yet) we
must first remove this transition from 6", The following transitions are then

added to 69" (see figure 4.8 for an example):

" (o,d) = ¢,

5" (comijiq, ¢°) = q.
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Figure 4.8: Adding a communication event to G®™ to state ¢. (a) Before commu-

nication for communication sequence s = fa for agent i. (b) After communication

added to state q.

It could be the case that a communication event representing communication
from agent 7 to agent j has already been added to state ¢ in G*°™. That is, more
than one communication sequence associated with the elements of C;; leads to
state ¢. A communication event com;;:q is added to state g only once. Or it
could be the case that a communication event representing communication from
agent j to agent ¢ has already been added to state ¢ in G°°™. This scenario is
shown in figure 4.9(a). If a communication event from agent j to agent i has
been added to state g already (i.e., 09" (0,q¢') # q), we create a new state ¢°¢

and update Q“":
QCOm — QCOm U {qCC}
This situation arises if (¢,t) € Cj; N C;j, where the communication sequence is

s = uo such that o € X;, N ¥;,, since a communication state where agent :

communicates to agent j occurs only after an event that agent ¢ sees. Then we
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Figure 4.9: Adding an additional communication event to G™ at state ¢°. (a)
Another communication event has previously been added at state ¢q. (b) After adding

a second communication event.

remove the following transition from G“™:
6Gcom (O_J q,) _ qc_

Add the following transitions to §¢"" (see figure 4.9(b) for a graphical repre-

sentation):

6Gcam (O’, ql) — q(:(:

C

6Gcom ((j()mi]':q, qcc) = ¢°.

O Procedure 4.1a

We interpret the appearance of two consecutive communication events in G as a
two-way broadcast between agents ¢ and j. That is, each agent communicates its
local state to the other at the same time. Note that, by construction of G°™, one

event will always correspond to a control communication pair in C;; and the other
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to an element of C;;. We elaborate on the effect this has on the construction of a

well-defined communication protocol in section 4.4.

The time complexity of Procedures 4.1 and 4.1a is dominated by step 3 of Pro-
cedure 4.1: finding the control communication pairs. The other steps in the pro-
cedures can be accomplished in constant time. We use our knowledge model to
identify states where Kripke-observability fails, and thus where we can reconstruct
sequences that give rise to control communication pairs. As noted previously, a
dynamic-programming algorithm to find the paths of these sequences takes O(n?®)

time, where n is the number of states in the monitoring automaton.

4.2.5 Communication that solves the control problem

We must formally show that when agent ¢ finds a control sequence indistinguish-
able from its corresponding control twin, the addition of a communication event along
the communication sequence allows agent 7 to distinguish these two sequences in G“™.

We begin by describing what it means for a sequence in GG to be translated into G“".

We define an operation that “erases” communication events and extend our def-
inition of P; in (3.3) as follows. Let P be a mapping from (¥ U £")* to ¥* and
therefore (£°™)* — ¢. Similarly, P, becomes a mapping from (XU X™)* to ¥, and
again (X™)* — e. Despite expanding the domain of P;, P, recognizes the same set

of sequences as its predecessor. The only difference is that now B; “erases” not just

the events in ¥, \ 3; , but also those events in ¥ from a string ¢.

We will want to describe a sequence in L(G) when it is transformed by communi-

cation events and appears in L(G“™) after following Procedure 4.1.

DEFINITION 4.11 For two sequences t € L(G) and t¢ € L(G®™™), we say t° is a

communication-equivalent sequence for t if L(G“™) is the language generated
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by the G that results from the completion of Procedure 4.1 and

and

P(t) = .

Thus, a communication-equivalent sequence contains any communication events that
occur along ¢ and any communication events that occur directly after . From now
on we use t° to refer to a communication-equivalent sequence for ¢ generated by the

G°™ produced by completing Procedure 4.1.

We define a mapping PF (for ¢ = 1,2) to be a canonical projection from (3 U
Xeomy* to (X, U X™)*. We want to use this mapping to show that if we add a
communication event along a control sequence ¢ and not along its control twin ¢
(according to Theorem 4.1) the two sequences will no longer look alike to the agent

making the control decision at t or t'.

LEMMA 4.2 For a control sequence t and its control twin t' defined with respect to

agent i (i.e., P;(t) = Pi(t')), after following Procedure 4.1, PF(t®) # PS(t').

Proof. Since P;(t) = P;(t') we know that agent j will be communicating at least
once to agent ¢. Let comj;:q be such a communication event added to ¢. Since the
plant has been rewritten such that ¢ and #' do not share communication states, the
state ¢ does not appear along t'. Therefore, after Procedure 4.1 is complete, com;;:q

will not be added along t'. Therefore PS(t) # PF(t'°).
O LEMMA 4.2

It remains to be shown that after adding the remaining communication events to
the rest of the plant (i.e., for consistency), the communication-equivalent sequence
for control sequence t remains distinguishable from the updated communication-

equivalent sequence for the control twin ¢'.
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4.3 Communication for Consistency

Our communication goal is two-fold: (i) to have agents communicate at some place
that will lead to a control solution we identified this place as the state after a com-
munication sequence occurs; and (ii) to have the plant reflect the intent of each agent
to communicate at all places that they cannot distinguish from the communication

state.

This seems like a straightforward process. We proceed naively and add a commu-
nication event to the plant for each control sequence ¢ that appears in (¢,t) € C;;.
But we must take into consideration that as we take care of adding communication
events with respect to one control sequence, the addition of a new communication
event may alter the situation for other control sequences. This was a point that was

first raised in [31]. We will return to this observation shortly.

We formally define what we mean for G to satisfy consistency:

DEFINITION 4.12 A system G is said to be consistent if for all (q,t) € C;; (where
i,j € {1,2} and i # j), and for all ¢¢ € Q™ such that 6" (¢%, com;;:q) = q, and
for ally € Q™ such that y; = qf, 6" (y, com;;:q) must be defined, where y;, qf are

agent i’s local views of states y and q°, respectively.

That is, whenever we identify a communication state ¢ from a control communication
pair (g, t) for an agent, not only does a communication event exit from state ¢° (e.g.,
69" (g%, com;j:q) = q)) it must also exit all states y € Q" when agent 7’s local
view of y is equal to agent ¢’s local view of ¢°.

Figure 4.10 illustrates a scenario we must preclude. Suppose that agent 1 sees and
controls events a; and d while agent 2 sees and controls events by, co and d. The left
hand side of figure 4.10 contains a G°™. The right hand side of figure 4.10 contains
the projection automaton of G with respect to agent 2. This particular G*“™ is

not consistent. Note that the local view of communication state 4¢ for agent 2 is
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Figure 4.10: A G°™ that does not satisfy consistency.

{3,4¢}. Similarly, the local view of state 3 for agent 2 is {3,4°}. Our definition of
consistency says that the communication event coms;:4 must exit from every state in
G°™ that shares that same local view as the communication state 4°. There is no

communication event defined at state 3, thus violating consistency.

The reason that we will want to preclude this type of scenario (the projection
automaton on the right hand side of figure 4.10) is because the projection automaton
will form the basis of an agent’s communication protocol. The idea is that if a
communication event occurs at a particular state, an agent must communicate. If
more than one event is defined at that state, an agent would not have a clear directive
as to when communication should happen. For example, when agent 2 is at state
{3,4°} it is not straightforward when communication should occur. We clarify this

notion, which we refer to as a well-defined communication protocol, in section 4.4.

One option for adding additional communication events to G’ would be to
identify all the states in G that are indistinguishable from state 6%(s, ¢) (for all s
corresponding to the control communication pairs in C;; U C;;). Then add commu-
nication events to the corresponding states in G°”. This is the correct strategy if
none of the communication sequences contain communication events. However, the

following scenario could unfold: suppose that agent j must communicate for control
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to agent ¢ at state x and suppose that its local view of = is z; = {z,y,2}. Thus,
in (&, agent j is unable to distinguish plant states x, y and z. Further suppose that
because of some prior communication from agent 7, agent j can distinguish x and y
in G, In this case, z; really just consists of the plant states x and z. An intent to

communicate at plant state y constitutes a communication that is unnecessary.

Our strategy refines the local views of communication states calculated for each
agent with respect to the original plant G' by taking into account the effects of prior
communication along a communication sequence. We identify the relationships be-
tween the control communication pairs by building a dependency graph for the ele-
ments of C;; UCj;. A dependency graph of an object graphically illustrates all of its
relations to other objects. The relationship of interest here is whether communication
sequence s for a control communication pair (g, t) contains a prefix that either looks
like another communication sequence to the appropriate agent or that is another
communication sequence. We use the dependency graph to identify which communi-
cation events should be added to the communication sequences before any new events
are added to G°". We describe this approach in section 4.3.1. Our strategy con-
cludes by considering the rest of the sequences in the plant (i.e., all the sequences
that are not communication sequences). For all sequences v € L(G) (such that v
is not a communication sequence) that are indistinguishable from a communication
sequence s (according to communicating agent i), we will add a communication event
to the G™ at state 0%(v,¢f’) only if v has identical dependencies on the control

communication pairs to s.

We begin by introducing some terminology we will need for describing how we

refine the agents’ local view of G“™.

DEFINITION 4.13 A pair (z,v) consisting of a state & € Q% and a sequence v € X%,

such that 6% (v, q') = x, is compatible with a control communication pair (q,t)€
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where s is the communication sequence for (q,t) and v # s.

That is, prior to incorporating communication events into G, we identify any se-
quence v that leads to state x and is indistinguishable to agent ¢ from communication
sequence s. Note that by not permitting v = s, we eliminate (¢, s) from being com-

patible with (q,t).

Let X(q,t) = {(z,v) | (z,v) is compatible with (gq,t) € C;;}. We want to be
able to identify places in the plant where we add communication events to produce
well-defined communication protocols: sequences that are indistinguishable to the
agent sending a communication for control after it observes s. Moreover, we want
to narrow down our set of such places agents communicate and omit any pairs (z, v)
such that v ends in a sequence unobservable to the communicating agent. We remove
these pairs because we assume that an agent communicates the instant it observes

the communication sequence.

DEFINITION 4.14 A pair (xz,v)€ X(q,t) is called a compatible communication

pair for (q,t) if Aw € ¥*\X} ) such that v =uw (i.c., the last event in v is in ¥;,).

We state our assumption regarding where we place communication events along
sequences that are indistinguishable from a communication sequence to a communi-

cating agent.

ASSUMPTION 4.1 If the system is at a communication state, we assume that commu-
nication from one agent to another happens the instant the communication sequence
occurs and thus before the system makes any more transitions including transitions

that are unobservable to the communicating agent.

We want to apply this assumption to any sequences that look like the communi-

cation sequence. This means that if two pairs (z,v) and (2',v") are both compatible
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with a control communication pair (¢,t) € C;; and v' = vw, where w is a sequence
that is unobservable to agent 7, then we want to communicate after v occurs and not
after v’ occurs. In fact, as will become apparent, when the appropriate communi-
cation event is added to state x in G sequence v’ (previously indistinguishable
from both v and s) will no longer look like either v or s to the communicating agent.
Subsequently, (z',v") will no longer be compatible with (q,1).

If (x,v) is a compatible communication pair for (¢,t) € C;;, then (z,v) is added to
a set C;"P" (for i, j € {1,2} and i # j). The communication event com;:q is added
to G™ at state z according to step 3 in Procedure 4.1 (substituting = for ¢ and v
for s).

In the following subsections, we formally describe the two stages involved in adding

communication events to G so that the effects of prior communication can be

incorporated into the final communication protocol.

4.3.1 Refining local views of control communication pairs

When we say G“™ satisfies consistency, we want to make sure that the appropri-
ate communication event for agent ¢ is added at states in G that agent ¢ cannot
distinguish. We want to make sure that an agent’s local view of a state in G“™
is correct. That is, there are some situations where we may be required to update
the local view an agent has of a particular state from G to G™. If there are any
prior communications from another agent that occur along the communication se-
quence, then an agent’s local view of state ¢ could change. We want to look at
sequences identified by Procedure 4.1 as requiring communication and see if there
are earlier communications that occur along those sequences. We first will see if the
communication-equivalent sequence s could contain any communication events. This

is because an earlier communication may have altered an agent’s view of a sequence.

There are two situations that give rise to a communication sequence containing
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more than one communication event. For instance, after Procedure 4.1, if a control
sequence s' € L(G) is a prefix of another control sequence s € L(G), then s¢ €
L(G™) will contain the communication event associated with the identification of .
Therefore we do not want to add communication events everywhere a communicating
agent 7 sees Pf(s). Rather, we want to add communication events to G°™ when
agent 7 sees PF(s¢).

The other circumstance where a communication sequence could contain more than
one communication event is shown in figure 4.11. Suppose that we have two commu-
nication sequences s and s’ corresponding to communication states ¢ and ¢', where
(q,t) € Cij and (¢',t") € Cj;. Assume that no communication events were added along
s or s' during Procedure 4.1 (see figure 4.11(a)). The communication event associ-
ated with (¢, '), namely com;;:¢' is added to state ¢' as described in Procedure 4.1.
Similarly, com;;:q is added to state ¢ (see figure 4.11(b)). Further suppose that there
exists a prefix v of communication sequence s (i.e., v € 5) such that P;(v) = P;(s').
That is, in the original plant, agent j cannot distinguish states ¢’ and x. Therefore,
a communication event comj;:¢' should be added to the plant after v occurs (see
figure 4.11(b)). Similarly, when adding communication events after those sequences
that to agent j look like s € L(G), we really mean that we append communication
events only to sequences that agent j cannot distinguish from the updated version of
s, namely s©.

This example illustrates some of the subtle issues involved in incorporating com-
munication into the analysis of decentralized control problems. The situation in
figure 4.11 would be more complicated if s’ contained an additional communication
event. Would agent j still find v indistinguishable from the updated s'? If not,
then we would have to update §" by removing transition 6Gwm(comﬁ:q’,x°) and

removing state x¢ from Q™.
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Figure 4.11: Communication sequences can contain communication events: (a)
Suppose that s,s' € L(G) are communication sequences such that s = vw and
P;(v) = Pj(s'") where agent i communicates after s, agent j communicates after s';

(b) The updated version of the communication sequences s, s¢ € L(G“™).

We can resolve some of these issues if we establish the relationships that the con-
trol communication pairs have with respect to each other. Does the communication
sequence for a control communication pair (g, ¢) contain a prefix that is indistinguish-
able from the communication sequence for the pair (¢',t')? How do we communicate

9

for control at “every state that looks like ¢'” and “every state that looks like ¢” if, at
the same time, the communication sequence for (¢’,¢') also contains a prefix that is

indistinguishable from the communication sequence for (g, t)?
We introduce some terminology to identify when a communication event is pre-

ceded by another communication event:

DEFINITION 4.15 We say that a control communication pair (q,t) depends on con-
trol communication pair (q@',t") if we can find a compatible communication pair (x,v)

for (¢, ') such that v € 5 and §%(v,q') = x, where s is the control communication
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sequence for (g,t).

That is, a communication sequence for (g, t) potentially contains another communica-
tion event, namely the event associated with the control communication pair (¢’, ).
In Procedure 4.2 we restrict our attention to whether a control communication pair

depends on any other control communication pair.

To detect some of the potential “dependencies” between control communication
pairs, we build a dependency graph D. We use D to clarify the form of the communi-
cation sequences for the control communication pairs. That is, we want to determine
how many (if any) and in which order other communication events could occur along
a communication sequence. The graph consists of all the communication pairs in
C12 UCy;. There is a directed edge from (q,t) € Cj; to (¢, t') € C;; if (¢, t) depends on
(¢',t"). The edge is labeled “(z,v)” if state x occurs somewhere along s (the control
communication sequence for (¢,t)), v € 5 and agent i cannot distinguish state x from
state ¢' (i.e., (z,v) is a compatible communication pair for (¢',¢'). This edge labeling
is unique for each pair of control communication pairs. It is not possible to have both
(z,v) and (z',v") compatible with (¢’,¢') such that v and v are prefixes of s. That
is, if P;(v) = P;(v') and v,v' € %, such that §%(v,¢§) = x and §%(v', ¢§) = 2/, then
x = ' and v = v (since neither v nor v’ can end in events that are unobservable to
agent 7).

For the remainder of this discussion, we represent D as a matrix. The dependency
graph contains n; + ny nodes, where |C12] = n; and |Cy;| = ny. Thus D is an
(n1 + ng) X (ny + ng) matrix.

The first ny row and column entries contain information pertaining to the depen-
dencies of the control communication pairs in Ci5. The next n, rows and columns

contain dependency information about the control communication pairs in Co;.

For convenience, we do not refer to the entries of the matrix by the numerical row

and column (i.e., D[3,4] indexes the entry in row 3 and column 4 of D). Instead, we
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use the notation D[(q,t), (¢, t')] to refer to the row and column in D that contains
information about the control communication pairs (¢,t) and (¢',t'), respectively.
For DI(q,t),(q',t")] corresponding to DJi, j|, if i < n; then (q,t) € Cy» (otherwise
(q,t) € Cy1) and if j < ny (¢',t') € Cio (otherwise (¢',t') € Ca1). If D[(q, 1), (¢, t")] =0,
then (g, 1) is not dependent on (¢, t'). That is, none of the states x that occur along
the path to sequence s at state ¢ coupled with any of the prefixes of s (i.e., v € 3)
forms a pair (z,v) that is compatible with (¢',¢). If D[(q,t), (¢',t')] # 0, then (g, 1)
depends on (¢, t') and DJ[(q,t), (¢',t")] contains a compatible communication pair for

(¢', ') that satisfies Definition 4.14.

The dependency graph could contain cycles. We say an undesirable cycle occurs
in D when there are control communication pairs (q,t) € Cia, (¢',t') € Cy and
(4,1), (¢",t") € Ci12 U Cyy such that D[(q,t), (¢',t)] # 0 and D[(¢, "), (q,t)] # 0 (a

cycle involving just two states) or a longer cycle such as

D[(q.1), (4,1)] # 0,
o D[(4,1), (¢, 1)] # 0,
° D[((]’, t’), ((]”, t”)] 7& 0 and

o D[(¢",t"), (q.1)] # 0.

The form of the cycle is important: there must be an alternation of a pair in Cy5 and
a pair in Cy; or a pair in Cy; and a pair in Cy5 to constitute an undesirable cycle.
We use the dependency graph to determine if any other communication events could
occur along a communication sequence (as identified at the completion of Procedure
4.1). Figure 4.12 shows a scenario that would give rise to a cycle of length 2 in the
dependency graph. This represents a situation where somewhere prior to reaching
state g along sequence s there is another sequence v (i.e., v € 5) that agent 1 cannot

distinguish from s’ (i.e., Py(v) = Pi(s')). Therefore communication event coms;:q’

92



. e~
com,:q com,:q

@ (b)

Figure 4.12: A scenario that results in a cycle in D. Let P;(v') = Pi(s) and
Py(v) = Py(s'): (a) event comy;:q' could occur before event comgy:q; (b) event comis:q

could occur before event coms;:q’.

could be added at state x prior to comip:q. At the same time, there is another
sequence v’ € s’ such that agent 2 cannot distinguish v from s (i.e., Py(v') = Py(s)).

Similarly, comys:q could be added at state x’.

We break cycles in D as follows: resolve the mutual dependency by choosing a pair
(g,t) € Cjj in the cycle that depends on the fewest number of control communication
pairs in the other set of control communication pairs (i.e., the fewest non-empty
column entries for pairs in Cj;). Note that we can break the cycle by randomly
choosing any of the control communication pairs involved in the cycle. We choose
here to break a cycle by fixing a communication event for an agent at a control
communication pair that has the fewest number of potential communications from
another agent preceding its own occurrence. This corresponds to picking the pair that

has the fewest non-empty entries in its row of the dependency graph. By selecting
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(g,t) to be the place where the cycle is broken, we indicate that communication
with respect to the communication event for (¢',t') will not occur along s and “fix”
communication by setting D[(q, ), (¢, )] = (). We consider that the non-empty entry
at D[(¢',t'), (q,t)] is an entry that cannot be changed. It is now the case that (g, 1)
no longer depends on (¢’,t') but (¢',#') still depends on (g,t). An example of how to

resolve cycles in D is presented after Procedure 4.2.

The following procedure identifies states in the plant where a communication event
(other than the one associated with control communication pair (g,t)) occurs along

the path to state ¢ via communication sequence s.

Procedure 4.2

1. Let XV be the set of all compatible communication pairs (z,v) for all control
communication pairs in C;; UCj;. We only want to consider a particular subset of
X'V at this point, namely the subset that contains the (z, v)’s such that v occurs
along a communication sequence s. Let XV o = {(z,v) | (z,v) satisfies Definition

4.15 and gives rise to a dependency of (g¢,t) on (¢',t'), for (¢,t),(¢',t') € C;; U

C;i}. Initialize all entries of D to 0.

2. We indicate possible dependencies as follows. For (g, t), (¢',t") € Cio U Cay:

Di(g, ), (¢, #)] = (z,v)

if (¢,t) depends on (¢’,#') and (z,v) is a compatible communication pair for

(¢',t") of the form in Definition 4.15.

3. Detect and resolve cycles in D. A cycle of length two, for instance, occurs when
3(g,t) € Cij and 3(¢', t') € Cj; such that D[(q, 1), (¢',t')] # 0 and D[(¢',t'), (q,t)] #
(). Algorithms to detect cycles of length greater than 2 exist [5]. We will choose
to break the cycle with the control communication pair that is part of the cycle

such that if the pair is in C;; (respectively, C;;) it depends on the fewest number
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of other control communication pairs in Cj; (respectively, C;;). For instance,
if we choose (¢,t) € C;; we tally the number of non-empty entries along row
(g,t) in the columns corresponding to all (¢',t') € C;;. Do this for all pairs
involved in the cycle and pick the pair with the fewest number of dependencies.
Set D[(q,t),(¢',t')] = @ and consider that the communication represented by
DI(¢',t), (g, t)] # 0 is communication that must occur. If more than one cycle
is detected, then after each cycle is resolved check the updated D to see if the

previously-detected cycles still exist.

4. Mark all control communication pairs (q,t) € Cio and (¢',t') € Co; “incompati-

ble”.

5. If a row of D contains all () entries, mark the corresponding control communi-

cation pair “compatible”.
6. While there still exist “incompatible” control communication pairs:

e Choose an “incompatible” control communication pair that depends on
only “compatible” pairs. That is, pick a row of D corresponding to an “in-
compatible” control communication pair where all the non-empty column

entries correspond to pairs already marked “compatible”. Let (q,t) € Ciy

be the chosen row of D. Find the control communication pair (g, t) associ-
ated with the communication event that occurs just prior to the occurrence
of comyq:q along t (i.e., D[(q,t),(q,1)] # (). Using D, we want to find out

if it is possible that s would contain the same communication events (in

the same order) as 5. Because (g, ) is marked “compatible”, the number of
communication events that occur along its communication sequence s has
already been determined. To see if (g,t) still depends on (g, %), compare

the entries in the corresponding rows of D. Because we are not interested

in the dependency that a control communication pair has with itself (by
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definition D[(q, 1), (¢,t)] = ), we block out the column entries for (¢, t). In

addition, we block out the column entries for (g,#) because we are trying

to ascertain whether or not this dependency is still valid. That is, if all the

other entries in the two rows corresponding to (g,t) and (¢, %) coincide, we

assume that (g,t) still depends on (g,7) and therefore D|(q, 1), (¢,1)] # 0.

(2)

If the remaining entries in the two rows do have the same pattern
of empty and non-empty entries, then we are done examining this

communication control pair. We have found a valid dependency.

If the remaining entries in the two rows do not have the same pattern
of empty and non-empty entries and if row (¢,%) contains non-empty
entries that row (g,t) does not, then set D[(q,t),(¢,#)] = @. This

means that control sequence ¢ contains communication events that ¢
does not—and will not since we do not add entries to D at this point.
If the remaining entries in the two rows do not have the same pattern
of empty and non-empty entries and if row (g, ) contains non-empty
entries that row (§,7) does not, then check the other dependencies for
(q,t) before deciding that D[(q,1),(q,1)] = 0. this means that control
sequence ¢ contains fewer communication events than ¢, but until we
check the rest of the dependencies for (g,t), we do not know whether
or not ¢ still depends on t.

Repeat from (a) until all dependencies for (gq,t) have been checked
or until a valid dependency is found. Note that if (¢,¢) has an ad-
ditional dependency, for example (g,1), then rows (q,t) and (4,t) of
D are compared as described above except that the row entries for

previously-checked dependencies, such as (g, 1), of (¢,t) are ignored.
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We do this because we are checking the potential placement of com-
munication events along ¢ in the reverse order of appearance. That is,
since the row for (¢,¢) in D indicates that the communication event
associated with (g, ) would occur after the communication event asso-
ciated with (¢, 1), we can disregard the entry for (g, ) when comparing

rows (g, t) and (g,f). Mark (g,t) “compatible”.

7. Initialize C{5™P* = €57 = (). These are sets that store the compatible com-
munication pairs (z,v) as identified by the non-empty entries in the final version
of D. For (q,t) € Cio UCy and (¢',t') € C;;, where s’ is the communication
sequence for (¢',t'), if D[(q,1), (¢',t')] = (z,v) and if P¢(v®) = PF(s'°) then:

Cicjompat _ Cicjompat U {(x, U)}

O Procedure 4.2

Procedure 4.2 identifies compatible communication pairs (z, v), for each control com-
munication pair (g, ¢) found in Procedure 4.1, that occur along control communication
sequences. The purpose of this procedure is to refine if necessary an agent’s local
view of communication states in light of any communication it receives from another

agent prior to reaching a communication state.

This procedure will always terminate because we break any cycles that occur in
the dependency graph. In addition, we only remove dependencies from D. Thus we do
not need to worry about inadvertently introducing new cycles into D when we break
existing cycles. At the conclusion of Procedure 4.2, we have the sets of compatible
communication pairs that give rise to dependencies between control communication
compat | | compat

pairs. We must next translate the entries in Cj, 21 into communication

events that are added to G™.

Procedure 4.2a : Steps to Building G from G, Part 2
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1. For each (z,v) € ijomp“t, for i,5 € {1,2}, i # j and (x,v) is a compatible

communication pair for (¢,t) € C;;:

e Create a new state x€. If ¢ € Q°™, update the state set: Q™ = Q™ U
{z°}.

e Update the transition function ", Suppose that v has the form v = v'o
where §%(v', ¢§) = 2’ and 6%(0,2') = x. Then if 6" (0,2') = x (i.e., no

communication has been added at state z yet) we must first remove this

Geom

transition from § . The following transitions are then added to 6¢°"

5 o,2") = af,
59" (comyjiq, ) = w.

As in Procedure 4.1a, if there is already a transition of com;;:q at state z°,
we do not add the same event more than once as a transition out of z¢. If
the communication event comj;:q has already been added to G™ at state

2, then create a new state x°¢ and update QQ“°™:
Qeom = Qeom U {z°¢Y,
Update 64" as follows. Remove
5§ (0,2') = a°.
and add the transitions

6Gcom (0_, .’I,‘,) — xcc

5" (comyjiq, 1°°) = 1.

The two consecutive communication events are added to state x if (z,v) €
CirmPt N 5P for 4,5 € {1,2} and i # j.
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O Procedure 4.2a

Note that when a compatible communication pair (z, v) is identified for a control
communication pair (g, t), with which we associate the communication event com;;:q,

the communication event that is added to G*™ at state x is also com,;:q.

We make a similar assumption regarding the structure of G as described in sec-
tion 4.2.1. We want to add a communication event com;;:q at state x in G™ corre-
sponding to an (z,v) identified in Procedure 4.2. If sequences other than v lead to
state z (i.e., there exists v’ € L(G) such that §%(v', ¢f') = ) and these sequences are
not associated with a compatible communication pair for (g, t), we want to split state
x into 2! and 2. We split z as follows: for all v such that 6% (v, ¢¥) = =, if (z,v) is a
compatible communication pair for (g, t), update 6% so that §% (v, ¢§) = z'; otherwise
6% (v, q§’) = 2. We assume that the plant G has been rewritten to accommodate all
occurrences of the above scenario. The same comments about time complexity for

this procedure made in section 4.2.1 apply here.

The time complexity for Procedure 4.2 is dominated, as was Procedure 4.1, by
step 1: finding the set of compatible communication pairs. Once again we can use an
O(n?) dynamic-programming algorithm to reconstruct the paths of these sequences,
where n is the number of states in the monitoring automaton. Initializing the matrix
in step 2 takes O(n?) time and we can use a depth-first search algorithm (O(n + e)
where e is the number of transitions in the plant) to detect cycles. Breaking cycles
simply involves removing an edge. Steps 6 and 7 also take O(n?) time. Overall, the

procedure is, because of step 1, O(n?).

The final step, as given further on in Procedures 4.3 and 4.3a, is to find the
remaining compatible communication pairs for the updated version of the control
communication pairs.

We first consider an example of resolving cycles in the dependency graph. Fig-

ure 4.13 contains part of a plant GG, where the control communication pairs have been
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Figure 4.13: A portion of a plant that would give rise to cycles in a dependency
graph.

100



a priori established as: Cio = {(11, agbycidics), (12, crasdibseras)} and
Co1 = {(13, c1dyazerbacaar)}. For this example, D is a 3 x 3 matrix (i.e., ny = 2 and
ny = 1). The rows and columns of D correspond to the following control communi-

cation pairs:

e row (and column) 1: (11, asbycyidicsy);
e row (and column) 2: (12, ¢jasdibsejasy); and
e row (and column) 3: (13, ¢;djazerbacoay).

From the plant in figure 4.13 we identify the compatible communication pairs for

the control communication pairs noted above:

e (4,c1dy) and (6, cjasd;) are compatible with (11, asbecidics), where its commu-

nication sequence is s = aybycidy, since Py(c1dy) = Py(cia9dy) = Pi(s);

e (10, c1dyage;) is compatible with (12, ciasdibyeras), where s = cjasd;byeq, since

P1(61d1a2€1) = Pl(S), and

e (5,a3b9) and (9, cjasdiby) are compatible with (13, ¢;djase bycoay), where s =

Cldlagelbg, since P2(a2b2) = PQ(Clagdle) = PQ(S).
The following dependencies between control communication pairs exist:

e (11, asbycidicy) depends on (13, ¢idyaseibacaay) because there is a compatible
communication pair (5, asby) for (13, cidiase;bacsar) that is a prefix of the

communication sequence for (11, asbycidycy);

o (12, crazdybyeray) depends on (11, asbacidicy) and (13, ¢idiaserbacaar) because
of the compatible communication pairs (6, ciasd;) and (9, cjasdiby), respec-

tively; and
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[ ] (13,cld1a2616202a1) depends on (11,a2b261d102) and (12,Cla2d1b2€1a2) because

of the compatible communication pairs (4, ¢;d;) and (10, ¢1dyaze ), respectively.

The dependency graph for Ci5 U Cy; contains several cycles:

(Z] (Z] (5,&2[)2)
D = (6,cla2d1) (Z] (9,cla2d1b2)
(4, Cldl) (].0,(316110,261) @

In particular, there is a cycle involving communication states 12 and 13:
D[(l?, Cla2d1b2€1a2), (13, cld1a2616202a1)] = (9, Clagdle)

and

D[(13, CldlageleCQCLl), (12, Cla2d1b2€1a2)] = (10, Cld1a2€1).

That is, the communication event comq9:12 that occurs for communication pair
(12, crasdybyeras) could be preceded by comsyi:13 at state 9 because agent 2 can-
not distinguish state 9 from 13. At the same time, agent 1 cannot distinguish state
10 from state 12, and comq5:12 could occur at state 10—just before coms;:13 happens
in accordance with the control communication pair (13, ¢c;dyaseibycaay).

If both compatible communication pairs (9, ¢iasdby) and (10, ¢1dqaze;) are added

. . . . t t
to the set of compatible communication pairs Cy;"** and Ci5" """, one of the com-

munication pairs constitutes unnecessary communication. Figure 4.14 shows what
(12, crasdibyeras) and (13, ¢idiase;bycsar) would look like if the two compatible com-
munication pairs mentioned above were added to G at states 9 and 10. The
communication sequences become ¢yasdybycoma:13¢y and cidyase;comyo:12by. If we
then go back and check the compatible communication pairs, it is the case that neither
(9, crasdyby) nor (10, ¢1dyazer) are compatible with the new version of their respec-
tive control communication pairs. For instance, (9, cjasd;by) is no longer compati-

ble with (13, ¢;djaseibycaay) because after adding the communication event comyy:12
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Figure 4.14: Adding unnecessary communication.

to state 10, the communication sequence for this control communication pair be-
comes ¢ djaye;comiy:12bycoa; and since the communication event comiy:12 is not
added to cjagdibs, it is the case that Py(ciasdiby) # Pa(cidiaseicomia:12by). 1If
the no-longer-compatible communication pair (9, ¢;asd;by) is removed from C57"***,
the control communication pair at state 12 is once again (12, ciasdibsejas). At
this point, (10, cidyaze;) is also once again a compatible communication state for
(12, crasdybyeray). Note that if (9, cjasdiby) is not removed from Cy; and is added to
G all that happens is that agent 2 sends its local state to agent 1 even though agent

1 does not need this additional information (i.e., to satisfy consistency or to solve the

control problem). An analogous situation occurs if we instead remove (10, ¢;djageq)

t . . . .
from Ci5""*" and update the communication pairs accordingly.

To break the cycle involving states 12 and 13, we will choose one of these states
to communicate at and update the dependency graph. We choose state 12 because,
according to the row for (12, c;asd;beeqaz) in D, it depends on only one pair in Cy; (one

non-empty entry in the last n, entries of the row) while the corresponding calculation
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for state 13 reveals that state 13 depends on two pairs in C15. We update D as follows:
D[(12, Clagdlbgelag), (].3, Cldlagelbg(fgal)] = @,

and therefore communication at state 13 must depend on state 12 and we do not

allow the corresponding entry to change from
D[(].S, CldlageleCQ(Ll), (]_2, Clagdlbgelag)] = (].0, cldlagel).
The updated dependency graph is

@ @ (57(1‘262)
D = (6,(:1(1,2d1) @ @
(4, Cldl) (].0,(31(110,261) @

We cannot mark control communication pair (12, ¢;asd;bseay) “compatible” because
this pair still depends on an “incompatible” pair (11, asbycidics).

Of the remaining incompatible control communication pairs, a cycle exists between
communication states 11 and 13. By breaking the cycle between states 12 and 13,
state 12 now does not depend on state 13 but state 13 does depend on state 12. That
is, there will be a communication event com,:12 along the path to state 13. We
need to see if this change to the dependency graph in any way affects the cycle we
initially detected between states 11 and 13 (since the path to state 13 will contain a
communication event not originally considered when we first listed the dependencies
that formed D). Since state 13 depends on state 12, for state 11 to depend on
state 13 it must be the case that state 11 also depends on state 12 (i.e., the event
comiz:12 would have to appear at the same place with respect to projection). Since
D[(11, asbycidicy), (12, ¢rasdibyeray)] = ), state 11 does not depend on state 12 and
hence it now does not depend on state 13. We remove the potential dependency of

(11, CLQbQCldlCQ) on (13, cld1a2616202a1):

D[(].]_, (LQbQCldlCQ), (]_3, Cldlagelbg(fga,l)} = @
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The dependency graph becomes

0 0 0
D= (6,cla2d1) @ @
(4,Cld1) (10,61611&261) @

The row (11, asbycidicz) now contains all () entries and we mark this pair “compati-

ble”.

We now go back and revisit the row for pair (12, ¢c;asd;beeqaz) the only non-empty

column entry is for the “compatible” pair (11, asbocidicsy):
D[(l?, cla2d16261a2), (11, CLQbQCldlCQ)] = (6, Cla2d1).

To see if this dependency is still valid, we block out the column representing

(11, agbycidico) and compare the rows of these two control communication pairs (i.e.,
the first and second rows minus the first column). Both rows contain ) in the second
column, and () in the third column. Therefore, comi5:11 does occur in conjunction
with communication pair (6, c;asd;). We mark (12, ¢jagdibyeias) “compatible”.

We check the only remaining “incompatible” pair (13, ¢;d;ase1bacoa;) again. The
two non-empty entries in the third row represents a dependency on a “compatible”
pair (11, asbycidicy) and on the fixed communication for breaking the cycle with
(12, cragdibsejay). The closest communication event is associated with the “fixed”
communication dependency associated with (12, ¢jasdibseiay) so we check it first.
Note that when the column representing the pair (12, ¢jasdibsejas) is blocked out,
the rows corresponding to the control communication pairs involving states 12 and
13 are equivalent: column 1 in both rows is non-empty and column 3 in both rows
contains (). Therefore, the dependency is still valid. The pair (13, cidiaseibacoay) is

marked “compatible”. The final dependency graph for the control communication
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pairs is

0 0 0
D = (6,cla2d1) @ @ (48)
(4,Cld1) (10,61611&261) @

We examine each non-empty entry (z,v) of D to see if incorporating communication
events into v means that the updated v is still indistinguishable from the updated com-
munication sequence associated with the dependency. The first possible compatible
communication pair (z,v) = (6, cjasd;) represents a dependency of (12, ciaszd;byeras)
on (11, asbycidics), via the latter’s communication sequence s = agbycid;, because
Pi(v) = Pi(s). When these sequences are updated with communication events—
adding the appropriate event after each v and each s—we have v° = ¢jasd;comq4:11
and s¢ = asbycidicomya:11. In this case Pf(s¢) = PF(v°) = cidicomaa:1l. We go
through a similar procedure for D[(13, ¢idiaseibacoay), (11, azbscidics)] = (4, crdy)
for the same communication sequence s and find that the projections of these up-
dated sequences are also the same. When D[(13, ¢;djaseibacoay), (12, crasdibreras)] =
(10, ¢1dyaser) note that communication will also be added to v after ¢;d; because of
the presence of the compatible communication pair (4,¢;d;). For this pair, v¢ =
c1dycomya:llage;coma:12 and s = c¢yagdicomyg:11bye;comya:12. Since Pp(ve) =

Pi(s®) = cidicomig:1le;comsa:12, we also add this (z,v) to our set of compati-

ble communication pairs. Therefore C{y™"* = {(4, c1dy), (6, crasdy), (10, c1dyagzey)},

it =0,

Note that there is more than one way to break a cycle. We choose to fix com-
munication for the control communication pair that depends on the fewest number
of other pairs. In the event that each pair in the cycle depends on the same number
of other pairs, the choice of a pair where communication is fixed is made at random.
Different versions of D simply means that there is more than one way to arrange

communication dependencies for the control communication pairs.
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We want to describe a sequence in L(G) as it appears after following Procedure

4.2. At this point L(G™) is the language generated by the G®™ that results from

the completion of Procedure 4.2. We write ¢ for the sequence in L(G™) such that
0%(t,q0) = 67" (%, 47"

and

P(f) = t.

We abuse terminology and also refer to ¢ as a communication-equivalent sequence
for t. In Procedure 4.1 communication events are added to control sequences. In

Procedure 4.2 new communication events are added only to control sequences.

In Lemma 4.2 we showed that any communication event added to G°™ after
following Procedure 4.1 is sufficient to distinguish a control sequence t from its control
twin ¢'. We want to make a similar statement about the distinguishability of ¢ and #'

after Procedure 4.2 is completed.

LEMMA 4.3 For a control sequence t and its control twin t' defined with respect to

agent i (i.e., P;(t) = P(t"), after following Procedure 4.2, PS({€) # Pe(#<).
Proof. (By contradiction) Let P;(t) = P,(t') and assume PE(f¢) = Pe(#¢).

By Lemma 4.2 there is a com;:q along t° that does not appear along t'® (respectively,
the event appears along t'° and not along t°), i.e., (¢,?) is an element of Cj; identified

in step 3 of Procedure 4.1.

Suppose that we added com;;:q along t'® according to step 7 of Procedure 4.2. Note
that an event com;;:q could only get added in one place along ' according to Proce-
dure 4.2. Then the matrix D (representing the dependency graph) has the following

entry:

D(¢', 1), (g 1")] = (2,b),
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where b € ', 6%(b,qf) = x, t" is some sequence that passes through ¢, (x,b) is a
compatible communication pair for (¢,t") and therefore P;(b) = P;(s), where s is the

communication sequence for (g, t").

We must first determine if we can find such a prefix b of ¢'. Should b exist, we would

add the communication event along ¢’ at state x.

We begin by finding b € # such that Pj(s) = P;(b) and such that b satisfies Defi-
nition 4.14. By Procedure 4.1, a comj;:¢ added along t" right after s implies that
s = uo; for some u € ¥*, 0; € 3, ,. From Definition 4.6 there are two forms for ' we

consider when " = uo;v.
Case 1. t" = uojv and t' = v'o;0', where 0; € ¥, ,.
Since s = uo;, we want to find b € ¥ such that P;(b) = P;j(uo;).
Claim 4. b ¢ .
Proof. This is because if b € v/, then «' = b’ for some b’ € X*:
Pj(u) = P;(u’) (since (u,u') is a maximal-P pair)
= D;(bb)
= Pj(uoy)P;(¥')  (since Pj(s) = P;(b))
= Pj(u)Pi(o;)F;(b).

This is only possible if P;(o;)P;(b') = €, but o; € 3,, so P;(0;) # €.

O Claim 4
Since b € v/, b = u'v" ;0" for some v, 0" € (X \ X;,)*
(Since b € ¢ and P;(b) = P;(uo;)
= Pj(u)o;
= b;(u)a;.)
For b to satisfy definition 4.14, it must be the case that b = u'v"0; since v €

(B\X50)"
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Since b € ¢/, 3" € X* such that ¢ = bb". Therefore
t'=u'v"o;0". (4.9)
Previously we assumed that
t' =o' (4.10)
Equating (4.9) and (4.10) we have
V"o = o

Therefore, the first event in v” must be o;, i.e., 30" such that v" = o;0"".

Therefore, b = v'0;0""0; and t' = w'o;0""o;b".

/

no__ I 1A ~ ~ . ,
Case 2. t" = wojv and t' = u'6;0", where 6; € ¥;, and 6; # o; (since (u,u’)

is a maximal-P pair). Since s = wo;, we want to find a prefix b of #' such that

P;j(b) = Pj(uo;). As in Claim 4, it can be shown that b & u’.

As in Case 1, since b € u', b = u'v" ;0™ for some v" 0" € (X \ ¥,,)*. Additionally,

as in Case 1, we truncate b to satisfy definition 4.14 so that b = u'v"0;.

Since b € ¢/, 3" € X* such that ¢ = bb". Therefore

t'=u'v"o;0". (4.11)
Previously we assumed that
t' =o' (4.12)

Equating (4.11) and (4.12) we have
v"ob" =60

Thus, the first event in »” must be ; but v" € (X \ ¥,,)*. Therefore, no such b can

be constructed. Since no such b exists we do not consider this case any further.
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By Case 1, we do have a place where the communication event com;;:q could be added
to t'. We add a communication event just after b occurs. That is, the communication
event is added after the last event observable to agent j, e.g., after u'v"o;. It remains

to be shown that this additional event now leads to a contradiction to the assumption
that #¢ and ' are indistinguishable.

After Procedure 4.1 either no communication events were added to #' or some commu-
nication events were added to t'—but not the event com;;:q since it was only added
to t. We consider the effect of adding com;:q after b< in ' (i.e., add the event to
state x).

Let ¢ = Z/L\cajcomji:qz/)E and #'¢ = qfwaiﬁwj comy;:q be.

—

PE(ufo; comyiq v°) = PE(uo;0™ <0, comji:q b'°)
Py (u®) P (o)) PF (comyizq) PE(v°) =
Pic(ﬁ)Pic(ai)Pic(WC)P;(Uj)ﬂc(comji:Q)Pic(W)

Pf(u®) comyjiq Pf(v®) =

PE(u')o; PE(0"") comyi:q PE(b'e) (since 0; &%)

)

If P¢(u€) = P¢(u'®) then we have a contradiction because Pf(o;) # . However, if

P¢(u®) # P£(u'®) then we must show it is not possible for P¢(u®) = P¢(u'®)o; PE(v"™"e).

Suppose that P¢(u€) = P¢(u'o;v™). Tt should be the case, by Lemma 4.1, that

these sequences look the same with the communication events “erased”:

Py(ut) = PBi(uco0")
Pi(u) = Pi(u'o™) (by definition of P)

Pi(u) = Pi(u)Pi(os) P(v™)

= Pj(u)P;(0o;)P;(v"")  (since (u,u') is a maximal-P pair)
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However, this implies that P;(0;) = ¢ which is not possible since o; € 3; ,.

O LEMMA 4.3

4.3.2 Refining local views of compatible communication pairs

If an agent’s local view of a communication state in the original plant includes
states that do not lie along a communication sequence, then we need to determine
whether or not these states are still part of the agent’s local view of the communication
state in G°. We identify the compatible communication pairs for each control
communication pair and determine whether or not any prior communication along
the communication sequence (as identified in Procedure 4.2) affects the agent’s view

of the compatible communication pairs.

In the course of finding the remaining compatible communication pairs of G,
we will want to discuss dependencies between compatible communication pairs and

control communication pairs:

DEFINITION 4.16 A compatible communication pair (x,v) for control communica-
tion pair (q,t) depends on control communication pair (q',t") if we can find a
compatible communication pair (x',v") for (¢',t') such that, for w € ¥*, v = v'w and
6% (w, 2') = x.

Our strategy amounts to identifying all the remaining compatible communication
pairs (x, v) for all control communication pairs (g, t). We subsequently determine if a
given compatible communication pair depends on any control communication pairs.
If the dependencies for (z,v) match the dependencies in row (¢, t) of D, then we add

the appropriate communication event to state x in G“™.

We build a dependency graph D and refer to it only in its matrix form. D is an
ns X (n1 + ng) matrix where njz is the number of compatible communication pairs in

XV \ XV45 and n; and ny are still the number of control communication pairs in
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Ci2 and Cyq, respectively. Let XVy3 = XV \ AV,0. A row in D corresponds to a

compatible communication pair (z,v) € XV, 3. A non-empty entry in row (x,v) of D
means that there is a possible communication event that occurs along sequence v but
before the system reaches state x. Suppose that (x,v) was compatible with control
communication pair (g,t) before considering the existence of earlier communication
events along s. If row (x,v) of D has the same pattern of empty and non-empty
entries as row (gq,t) in D, (z,v) may still be compatible with (¢,¢). To verify that
(x,v) is compatible with (q,t) (where (¢,t) € C;;) we must make certain that any
communication events that occur before v and s occur in the same order and that
the sequences still have the same projection for agent 7. The communication events
corresponding to the pairs (z, v) that survive this culling process are added to G*™.

We want to describe a sequence in L(G) as it appears after following Procedure
4.3. At this point L(G”™) is the language generated by the G°™ that results from

the completion of Procedure 4.3. We write ¢ for the sequence in L(G™) such that

and
P(t¢) =t.
We abuse terminology and also refer to ¢ as a communication-equivalent sequence

for .

Procedure 4.3
1. Initialize all entries of D to (). Initialize all elements of XV, 3 to be “unresolved”.

2. Indicate potential dependencies of elements (z,v) € X'V43, where (z,v) is a
compatible communication pair for (¢,t) € C;; (for 7,7 € {1,2} but i # j), on
control communication pairs (¢',t') € C as follows:

~

D[(.’E,?)), (q’,t’)} = ('Tlav,)
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if (z,v) depends on (¢',t') and (', ") is compatible with (¢’,t') as described in
Definition 4.16.

. If all entries for row (z,v) in D are () and all entries for row (¢, t) in D are

t t .
0, then C/"™"" = C7™"" U {(x,v)}. Mark (x,v) “resolved”. This represents
a situation where no prior communication has occurred before x. Thus if the
communication sequence s and the sequence v both contain no prior communi-

cation events, they still look alike and a communication event associated with

s will be added after v.

. While there remain “unresolved” compatible communication pairs (z,v) € XV, 3,

where (z,v) is a compatible communication pair for (¢,t) € C;; (for i,j €

{1.2},i #j):

(a) If all the non-empty entries are “resolved” compatible communication
pairs, compare row (x,v) to row (g,t) in D.

~

e For each non-empty entry of row (z,v): if D[(x,v),(q,t)] = (2',v")

1o compat compat
and (2',v") & Ci5 UCqy P

~

D[(xa U), (QJ t)] = 0.

Mark (z,v) “resolved”. After checking all the non-empty column en-
tries for row (x,v), compare row (z,v) in D to row (g,t) in D. This
represents a situation where a communication event would have been
added along v if v still looked like v'. Since (2',v') is marked “re-
solved”, it has already tested for membership in C¢"%  Therefore,
prior to checking (z,v), it was determined that (z',v") was no longer a

compatible communication pair for (¢, ). Therefore v no longer looks

like o',
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(b) If the pattern of empty and non-empty entries is the same for row (z, v) of

D and row (q,t) of D, check to make sure that when the communication
events are added to v and s (where s is the communication sequence for
(q,t)) (x,v) is still compatible with (g, ¢). That is, for updated versions of
each communication sequence it is still the case that PF(ve) = P£(s¢). If

this is the case, then Cf;™"" = C;7"™"" U {(z,v)}.

O Procedure 4.3

Procedure 4.3 identifies compatible communication pairs (z, v), for each control com-
munication pair (g, t) found in Procedure 4.1, that occur along any other sequences in
the plant but the communication sequences. As before, once more compatible com-
munication pairs are identified, they must be incorporated into G*™ via Procedure

4.3a.

Procedure 4.3a : Steps to Building G from G, Part Three

1. Foreach (z,v) € Cf;’mpatﬂ/'\.’w,g, fori,j € {1,2},i # j and (x,v) is a compatible

communication pair for (¢,t) € C;;:

e Create a new state x° and update the state set: Q™ = Q™ U {z°}.

e Update the transition function 6““". Suppose that v has the form v = v'o
where 6%(v', ¢§) = 2’ and §%(0,2') = z. Then if 69" (0,2') = z (i.e., no

communication has been added at state x yet) we must first remove this

6Gcom 6Gcom

transition from . The following transitions are then added to

5" (o,2") = x°,
5" (comyjiq, ) = .

As was the case in Procedures 4.1a and 4.2a, if com;;:¢ has already been

added at 2, it is not added again. If communication from agent j to agent
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i has been added to state z already (i.e., " (0,2) # x), then create a

new state £°¢ and update QQ“™:
Qeom = Qeom U {g°¢).
Remove the following transition from §¢“™:
6§ (0,2') = a°.
Add the following transitions to §¢™:
69" (0,a") = a*c
69" (comyjigq, 2°°) = a°.
O Procedure 4.3a

As was the case for Procedure 4.2a, when a compatible communication pair (z,v)
is identified for a control communication pair (¢,t), with which we associate the
communication event com;;:q, the communication event that is added to G“™ at
state x is com;;:q. This will be an important feature of the construction of G*™ that

ensures the communication protocols of the agents are well-defined.

We reiterate our comments from section 4.2.1 and those that appeared just after
Procedure 4.2a regarding splitting states to avoid ambiguous communication. We
want to add a communication event com,;:q at state z in G corresponding to an
(x,v) identified in Procedure 4.3. If sequences other than v lead to state x (i.e., there
exists v/ € L(G) such that §(v',¢qf') = x) and these sequences are not associated
with a compatible communication pair for (¢,t), we want to split state z into z' and
x2. We split z as follows: for all v such that §%(v,¢’) = z, if (z,v) is a compatible
communication pair for (g, ), update 6% so that §% (v, ¢§') = z'; otherwise 6% (v, ¢§') =
2%, As before, we assume that the plant G has been rewritten to accommodate

all occurrences of the above scenario. Again, the comments made in section 4.2.1

regarding time complexity hold here as well.
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The time complexity of Procedure 4.3, like its predecessors, is also O(n?). This is
because using X'V, 3 in step 1 means that we have to calculate XV\ XV,,. The com-
plexity of finding XV, is O(n?). The other steps of the procedure involve checking
matrices and can be accomplished in O(n?) time.

To illustrate some of the salient parts of Procedure 4.3, we focus on the rows of
D that arise from the partial plant shown in figure 4.13. Previously, we constructed
D for the three control communication pairs: (11, asbacidics), (12, ¢rasdibreias) and
(13, crdyagebacoayr). These three pairs form the columns of D (the same order as
D). While there could be more “unresolved” compatible communication pairs for the

whole plant, we can identify two pairs from figure 4.13 :

e (14, ciasby) is compatible with (13, ¢;djaseibacaay), where s = ¢ydjase; by, since

Py(crasby) = Py(s); and

e (15, ciasbody) is compatible with (11, agbscidicy), where s = agbocidy, since

P1(61a262d1) == Pl(S).

We focus on the contents of these rows of D. Row (14, c1asbs) of D is initially

because (14, ciasby) does not depend on any control communication pair. That is,
there is no proper prefix of ¢jasby that looks—to agent 1—Ilike the sequence leading
to state 11 or the sequence leading to state 12 and there is no proper prefix of
c1azby that looks to agent 2 like the sequence leading to state 13. Since all the
entries in row (14, cjashy) are (), we mark this pair “resolved”. We now compare it
to row (13, cidjaserbacoay) in D (displayed in (4.8) on p. 100) because (14, ¢iashy) is
compatible with (13, ¢;dyase byczar). We do not add (14, ¢raghs) to Csy™* because

row (13, c1dyaseiboczar) in D does not contain all () entries.
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The corresponding row for (15, ciasbedy) is

D=| 0 0 (4.cab)

because (15, c1asbady) depends on control communication pair (13, c1dyase;bacaay) in
the form of (14, cyasby). That is, (14, cjasbs) is a compatible communication pair for
(13, c1dyaserbacaay) and cragbs is a prefix of ciasbod;.

The only dependency for (15, ciasbady) involves a “resolved” pair. But because
(14, c1asby) was not added to Csi™P* . after considering the effect of communica-
tion events, it must no longer be compatible with the control communication pair
(13, c1dyaserbacaay)). Thus the communication event coms:13 is not added to state
14. Since (14, ¢jasb9) was the compatible communication pair that caused (15, ¢yasbady)
to depend on (13, ¢;djaseibycaay), we consider that this dependency no longer exists.
As a result we set ﬁ[(lf), crasbady), (13, erdyazerbycoay)] = 0, leaving row (15, ¢ragbyd,)
with all its entries (). Tt is the case that row (11,asbocidicy) of D is also a row of
0 entries. Therefore, we add (15, cjasbed,) to C{5™P*. Figure 4.15 shows the part of
G™ (constructed after following Procedures 4.1, 4.2 and 4.3) that corresponds to
the part of G in figure 4.13.

Notice that prior to adding communication events the sequence cyasd;by leading
to state 9 appears the same to agent 2 as the sequence c¢dase,by leading to state 13
(i.e., both sequences appear as asb,). For control purposes agent 2 must communicate
at state 13. Therefore, prior to the pruning of Procedure 4.2 it appears that agent 2
might also have to communicate the same event (i.e., comy;:13) at state 9. However,
we can see from figure 4.15 that after various other communications are included, the
sequence leading to state 13° is ¢ydy comia:11 ase; comyo:12 by. This sequence can
be distinguished from the sequence cjasd; comqy:11 by that now leads to state 9. (To

agent 2 the former sequence appears as comqo:11 ay comq9:12 by whereas the latter
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Figure 4.15: The portion of G*™ for the plant in figure 4.13.
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appears as as coms:11 by.)

In a similar vein, prior to adding communication events, the sequence cyd;ase;
leading to state 10 appears the same to agent 1 as the sequence cyasd;bse; lead-
ing to state 12. In this case, however, even after other communication events are
inserted (such as comis:11 at states 6 and 4°) the event com,y:12 at state 10° is
included because the sequences c¢id; como:11 ase; and ciasd; comqo:11 boey are still

indistinguishable (i.e., both appear to agent 1 as c¢;d; comiy:11 e;).

In Lemma 4.2 we noted that when agent ¢ could not distinguish between control
sequence t and its control twin ¢, incorporating a communication event according to
Theorem 4.1 renders the respective communication-equivalent sequences distinguish-
able. In Lemma 4.3 we showed that adding additional communications in Procedures
4.2 and 4.2a preserved this distinguishability. Now we show that adding additional
communication in Procedures 4.3 and 4.3a still preserves the distinguishability of

sequences.

LEMMA 4.4 If P;(t) = Pi(t') (for control sequence t and its control twin t') and we

follow Procedures 4.3 and 4.3a then PE({€) # PE(t'e).
Proof. (By contradiction.) Let P;(t) = P;(#') but Pg(£e) = Pg(t).

Case 1: t' is a control sequence

In Procedure 4.3, communication events are added only to those sequences that are
not control sequences. Therefore, since ¢t and ' are control sequences then ¢ = ¢¢
and t'¢ = t’c. By Lemma 4.3, P£({€) # PS(t'). Therefore, PS({¢) # Pg(t).

Case 2: t' is not a control sequence

Procedures 4.1 and 4.2 only add communication events to control sequences and thus
e = ¢/ (i.e., the communication-equivalent sequence for ¢’ contains no communication
events). Because ¢ is a control sequence, t¢ contains at least one communication event.

Suppose that the first such communication event is com;;:q (i.e., t = uo; com;;:q v°,
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where §%(uoj, ¢5) = q).

By steps 3 and 4(b) of Procedure 4.3, com;j;:q is added to ¢ if 3b € # such that P;(b) =
P;(s), where s is the communication sequence for some control communication pair

(g,t") (where t" is some sequence that passes through ¢). As in Case 1 of Lemma 4.3

we can find a prefix of ¢’ of the form b = u'o;v""0; where §%(b, ¢§') = x. Suppose that

this is the case and #'¢ = u/¢o;v""¢0; com;;:q b"e.

We initially assumed that PS(f¢) = Pg(t'):

PE(ufo; comyiq v°) = PE(uov™ea; comji:q b
P (u®) P (0;) Pf (comyiiq) P (v°) =
Pic(ﬁ)Pic(Ui)Pic(ﬁc)Pic(Uj)ﬂc(comji:Q)Pic(5'7;)
Pf(u€) comjiq PF(ve) = Pf(170)JZ~PZ-°(77’\’7‘3)comjz~:qu(5’\’z)
(since 0; € ;)

(4.13)

As with Lemma 4.3, if Pf(u€) = Pf(u') then we have a contradiction because
PS(0;) # e. However, if Pf(u®) # Pf(u') then we must show it is not possible
for P¢(uf) = PS(u')o; PS(v"<). Suppose that P¢(u€) = P¢(uo0""). By Lemma
4.1, these sequences must look the same with the communication events “erased”:

PZ(UC) == pl({LTCO'ZWC)

Pi(u) = Pi(u'on™) (by definition of P)

Pi (U) = Pz (U,)PZ‘ (O'Z')R(T)””)

= Pj(u)P;(0o;)P;(v"")  (since (u,u') is a maximal-P pair)

However, this implies that P;(0;) = ¢ which is not possible since o; € 3; ,.

O LEMMA 4.4
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4.4 A Well-defined Communication Protocol for G

Up until now, we have been somewhat vague about what we mean for G to

generate well-defined communication protocols. Here we provide a formal definition:

DEFINITION 4.17 A communication protocol PY°™ for agent i is said to be well-

defined if

com geom

(Vo € Zgm)(ve"™" " € Q")
5P (0,47 N = Ao’ € (S UTO™)\ {o}) such that 87 (o',q" )1
That is, when the communication protocol for agent i indicates that agent i must
communicate to agent j there is no ambiguity in what agent 7 does. Note that if
G°™ is consistent then the protocols generated with G are well-defined. When a
communication event for agent i (i.e., o € ¥2™) is defined at one of its local states
Goom com

¢, that particular communication event is the only event defined at qPGz

Note that the way in which we add communication events to G ensures that
our communication protocols are well-defined (because consistency is satisfied). In
particular, we add communication events in such a way that unintentional communi-
cation is avoided. Recall our assumption about the structure of GG: whenever more
than one sequence leads to a communication state for agent 7 or a state that agent 7
finds indistinguishable from the communication state, this state is split. Thus, after
Procedure 4.1a, for all (¢,t) € C;;, the communication sequence s is followed only by
the communication event com;;:q (i.e., 69" (comj:q, ¢°) = q).

Similarly, after Procedures 4.2 and 4.3, if (z,v) is a compatible communication
pair for (¢,t) that is added to X7, it is because Pf(v°) = P£(s¢), where v, s¢ €
L(G®™). Again, when adding the communication event com,;:q to G®™ with respect

to the compatible communication pairs for (¢, ¢) that appear in X;}"mmt, we split any
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states that lead to unintentional communication. That is, without taking into account
the nuances of two-way communication that could arise, ¢ (com;;:q, 2°) = x. Thus,
the only event defined at ¢ and any state that agent ¢ finds indistinguishable from
q° is com;j:q. When agent i reaches the state in P’ that represents its local view
of ¢¢, the only event that can occur is one in which it must communicate its local
view to agent j, thereby satisfying our definition of what it means to construct a

well-defined communication protocol.

We illustrate the effects that the previously-defined procedures have on the con-
struction of G*°™ from G and therefore on the generation of communication protocols
for the decentralized agents. Figure 4.16(a) shows a portion of a plant where agent
1 sees and controls events ¢ and b while agent 2 sees and controls events b and d;
neither agent sees c¢. After passing the entire G (not shown here) through Procedure
4.1, there exists a (q,t) € C;2 with a communication sequence s = dab as well as a
(¢',t") € Cy with a communication sequence s’ = ¢b. Note that this portion of G
does not include a complete specification of ¢, #' or their respective control twins. This
section briefly explains the mechanics of constructing a communication protocol: no

control solution is described.

After Procedures 4.1 and 4.1a are complete, the portion of G relevant to G
in figure 4.16(a) is shown in figure 4.16(b). Note that communication for control
is added at states 6, corresponding to s’ = ¢b, and 9, corresponding to s = dab.
For this particular portion of G, no other communication events are added along
the communication sequences. Therefore, after Procedures 4.2 and 4.2a, G is not
altered.

There are several compatible communication pairs for (¢, t) and (¢’,¢') that can be
identified from figure 4.16(a). In particular, (5,ab) is a compatible communication
pair for (¢',t') and (5, ab) is also a compatible communication pair for (g,?). When

Procedure 4.3a is complete, this leads to two-way communication occurring at state
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CO”HZ: 9

()

Figure 4.16: Developing well-defined communication protocols: (a) portion of plant

G; (b) G from G after Procedures 4.1/4.1a; (¢) G™ from G after Procedures
4.3/4.3a.
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5%¢. We interpret the presence of two-way communication in a special way. For
each agent to generate a well-defined protocol there must be no ambiguity as to
when an agent sends its local state to another agent. Note that if we calculated
the projection automaton of G®™ in figure 4.16(c) for agent 1, after ab occurs agent
1 would be at a local state of {5°¢,9°}. At this local state, two events would be
defined: comyy:6 and coms;:9. This does not constitute a well-defined communication
protocol because comis:6 is not the only event defined at state {5°¢,9°}. Our intent
is that after seeing ab agent 1 must communicate its local state. If our plant is to
accurately reflect our communication intention we must make the following sleight-
of-hand: whenever a two-way communication event occurs in the plant, each agent
“sees” its own communication event first and then observes the event representing
the reception of communication from the other agent. Thus the “view” agent 1 has
of the plant in figure 4.16(c) reverses the order of the two communication events
defined at states 5 and 5°. Figure 4.16(c) also reflects the addition of (3,b0), a
compatible communication pair for (¢',¢') and therefore the communication event
comsy;:6 is added after the new state 3°. The final version of G (for the portion of

G in figure 4.16(a)) after Procedures 4.3/4.3a are finished is shown in figure 4.16(c).

How do the agents determine their communication protocol from G“™? The
communication protocol is determined by calculating the projection automaton (de-
scribed in section 2.1.2) of G°°™ with respect to each agent. The projection automata
of the portion of G from figure 4.16(c) are shown in figure 4.17. For instance, the
communication protocol for agent 1, illustrated in figure 4.17(a), indicates that after
seeing b, agent 1 can expect a communication from agent 2. Agent 2 communicates
its local view of state 6. The states agent 1 considers possible after receiving the
communication is the result of intersecting agent 2’s local view of state 6 with agent
1’s current local state. In our example, this has the result that agent 1 believes that

plant could be in either state 3 or state 6. Since we are not describing the complete
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Figure 4.17: The communication protocols for each agent generated from G“™ in

figure 4.16 (a) P“"" for agent 1; (b) P“2™ for agent 2.

125



control solution for this example, the local views for each agent may be incomplete

since they have been determined using only the states illustrated in figure 4.16.

4.5 Constructing Z¢°%% from G®™ and E®™

We use the plant we have augmented with communication events G along with
the updated legal automaton E°™ to build a new interpreted system Z¢P#S". The
transition function §%°" of E°™ is characterized by the transitions in G®™ that lead
to states in Q¥. E™ thus constructed is a sub-automaton of G°™. Note that the
legal language L(E°™) contains the communication-equivalent sequences for all the

sequences in L(FE):

L(E®™) .= {t¢ | (3t € L(E)) t¢ is the communication-consistent sequence for ¢}.

As with ZPP9" | the set of worlds in Z¢PPS" are defined by the state-based evolu-

tion of the sequences in L(G°™). The updated set of primitive propositions PeLES'

! .. .
IPES" and propositions corresponding to the commu-

includes the propositions from
nication events in >

@CDESI — P U peom

where ®“™ are the propositions that represent the communication events in 2. As
we did in section 3.1, to form ®°PF5" we want to associate with each o € X" two
distinct propositions: one to represent the fact that at a particular state in the plant
the event is defined (i.e., is possible), and the other to represent the fact that at the

Y s finite,

corresponding state in the legal automaton state the event is defined. If
it can be written as X" = {0, 09,...,0,}. We let ®PFS = {5 oF|i =1 ... n}.
As before, we partition ®PF5" into two disjoint sets: @5, = {o%]i = 1,...,n} and

% = {oF]i = 1,...,n} where ®¢ and % are sets containing || symbols. To

associate o with its counterpart /", we extend the relation Ry, from section 3.1 and
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define a relation Rygeom such that Rygeom C ®F, x @, and Rygeom = {(0¢, 0p)|30; €

com
Y™ where og = 0 o = o}

The interpretation for the propositions in ®P#5" is defined for all o € ¢

¢DES/ ¢ [ true if 69" (0, we)!,

m (w)(o6) := { false otherwise. (4.14)
¢DES'(, ¢ [ true if 8% (0, w,)!,

m (w)(op) = { false otherwise. (4.15)

Because of the way in which events in X" are added to G“™, either a communication

event occurs and is legal or it is undefined. Thus at any global state of Z¢PP9" it will

be the case Vo € X™:
7PES (1) (04) = true and 7°PEY (w)(0y) = true (4.16)

or

7PES (1) (o) = false and 7P (w)(op) = false. (4.17)

4.6 Is Z¢PES' Kripke-observable?

We will show that if the Kripke structure based on the plant G is not Kripke-
observable (but G, F are both observable with respect to P), after constructing G,

the resulting Kripke structure for G and E“" is Kripke-observable.

THEOREM 4.2 Given TPPS' (G, E) that is not Kripke-observable. If we follow Pro-
cedures 4.1, 4.2 and 4.3 to construct G" and FE“™ and subsequently construct

ICDE‘S’(Gvcom7 Ecom), then ICDES'(GCOT”, Ecom) is Km’pke—observable.

Proof. (By contradiction)
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Recall the definition of Kripke-observability: for all w € Z¢PF¥' for all (0g,0p) €

Ryceom it must be the case that either (2?5 w) = —0q V o or there exists i € G,

such that (Z¢"P% w) | K;—og.
Suppose that Z¢PES"(Geom Eeom) is not Kripke-observable.
There must exist w € Z°P%% and (0g,05) € Ryaeom where (ZPES w) = —og V op
and (Vi € G,)(Z°PP5"  w) = K;=op. That is,
(2P w) = (06 A —op) (4.18)

IcDE'S’

and for all 7 € G, there exists w' € such that w ~; w' and

(ZPPS ') = (0g A og). (4.19)

Note that by (4.16) and (4.17), it is not possible for o, o to correspond to o € X,

Therefore, o0 € ¥ and, since ¢ € G,, more specifically 0 € ¥ N Y, .

By definition, if w ~; w’ then w and w’ have the same local state according to agent 1.
This means that we can find a path in G that leads to w, and a path in G that

leads to w, such that agent ¢ cannot distinguish between these paths. In particular,
let a path that leads to w, be reconstructed as the sequence ¢ while a path that leads

to w., be the sequence #'e. Since w ~; w',
PE(te) = P(te). (4.20)
Let #¢ be the communication-equivalent sequence for t € L(G):
P(fe) =t (4.21)
and let #¢ be the communication-equivalent sequence for #' € L(G):

P(te) =1t (4.22)



Case 1. Pi(t) # P;(t)
By (4.21), it must also be the case that if all communication events are erased from

agent i’s observation of ¢ that this is exactly agent i’s view of t:

P(PE(i€)) = Pi(t). (4.23)
Similarly, by (4.22)

P(Pg(#e)) = B(t'). (4.24)

If we apply the P operator to both sides of (4.20) we get (from (4.23) and (4.24))

P;(t) = P;(t"), which contradicts the assumption.
Case 2. Pi(t) = P;(t')

ZPPS" such that v ~; ¢/, t leads to state v

By definition, there must exist v, v’ €
and t' leads to state v’ where v, v' are states in the monitoring automaton A. Since
A generates the same language as G, we also know that 09(¢,¢§) is defined and

that §9(¢',¢§) is defined. In particular, §9(¢,¢§) = v, and 6%(¢,¢§) = v where

ve, vl € Q.
From (4.18) we know that §9“" (o, w,) is defined but that §*“" (o, w,) is not defined.

By Observation 4.1 in section 4.2.3, we note that if 59" (£, ¢5“") = w, then it is

the case that 6¢(P(#°), ¢§) = w,. Thus, using (4.21), we have §(t, ¢§) = w,. Since,

from above, 6% (¢, ¢5) = v., we have v, = w,.

By the construction of G™, since 6" (o, w,) is defined and since o € ¥, it must
also be the case that 6% (o, w,) is defined. Similarly, since 6" (o, w,) is not defined
it must be that 6% (o, w,) is not defined. Further, it must be the case (since v, = w,)

that

(ZPPY v) = og A —op. (4.25)
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From (4.19) we know that §¢*"" (o, w') is defined and that 6" (o, w’) is also defined.

Again, we can use Observation 4.1 to conclude that if 6" (¢, ¢5"™) = w/! then

5G(P(t),¢q5) = w'. Therefore it is also the case that 0%(¢,¢§) = w.. And since

e
8¢, q§) = vl, we have v = w!.
By the construction of G™ since 6" (o, w!) and §*" (o, w’) are defined and since
o € X, it is also the case that 6% (o, w!) and §¥(o,w!) are defined. Thus it must be

the case that

(ZPPS W) = og A og. (4.26)

By (4.25) and (4.26) and the fact that v ~; v/, we know that (Z”P% v) = ~K;—op.

IDES’

Since the above reasoning works for all 7 € G,,, Kripke-observability fails for at

v—in particular, corresponding to sequences ¢ and t'.

Also by (4.25) we have to € L(G) but to ¢ L(FE). Similarly, by (4.26) we have t'c €
L(G) and t'o € L(E) so t, t" and o satisfy the hypothesis of Theorem 4.1. Therefore
we apply Procedures 4.1 through to 4.3a. By Lemma 4.4, PS({€) # P£(t*), which

contradicts (4.20). Therefore there exists i € G, such that (Z¢"?"%' w') = K;—op.

0 THEOREM 4.2

4.7 Minimal Communication

In section 4.2 we discussed our strategy for constructing a set of control commu-
nication pairs where one agent communicates to another agent to solve the control
problem. Although communication at every (q,t) € C;; will lead to agent j making
all its correct control decisions, it may be that we can eliminate extraneous commu-
nication. That is, some subset of control communication pairs (i.e., CNij C Cyj;) will

also lead to a control solution.
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What do we mean by saying an element of C;; represents extraneous communi-
cation? One of our communication goals is to communicate enough information to
allow each agent to distinguish a bad state from an indistinguishable good state(s).
We choose each (g,t) € C;; so that bad states can be distinguished from good states.
It could be the case that the communication for (g,¢) is necessary to allow agent j
to distinguish a set of bad state from a several sets of look-alike good states. Or it
is possible that a compatible communication pair (z,v) € ;™" (where (z,v) is not
a compatible pair for (¢,t)) occurring prior to (g,t) provides agent j with enough
information to make the correct control decision. We want to find a set of commu-
nications that does not contain extraneous communication pairs. In addition, we
want the the set of communications to satisfy consistency for G*“. We seek a set of

minimal communications.

The notion of minimality for a set of communications was introduced in [31]
where a set of communications is minimal when it is the case that if “any one event
occurrence is not communicated from an agent to the other, the agents will not be
able to achieve their objectives”. We adopt this notion of minimality for examining
communication in decentralized discrete-event control problems. The objectives of

agents in our system is to solve the control problem and satisfy consistency.

DEFINITION 4.18 Let C = Cip U Cyy and CO™ot .= C™% [ ¢S5 A set of
communication pairs C UC®™ for a plant G™ is said to be minimal if A (a,b) €
cucemrat sych that (CUC™ ™)\ {(a,b)} also solves the control problem and renders

G consistent.

Were such an extraneous (a,b) to exist, it would mean that either by the time the
plant reached state a one of the agents already had enough information to solve the
control problem or (a,b), which had been added because it was compatible with a
control communication pair (g, t), is no longer indistinguishable from (g, ) after other

communication pairs were added to the system.
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4.7.1 An example system requiring communication

This section revisits the portion of a plant introduced in figure 4.13. We will see
that the control and communication solution generated by following Procedures 4.1,
4.2 and 4.3 contains extraneous communication. Therefore the procedures applied so
far do not yield a minimal communication set.

Figure 4.18 shows a plant G and E where communication between the two supervi-
sors/agents is necessary to find a control solution. As is clear from the figure, the au-
tomaton in figure 4.13 is a subautomaton of the plant in figure 4.18. In this example we
let ZJ1,0 = Zl,c = {(ll,Cl,dl,el,fl,ml,Ul} and 22,0 = EQ,C = {CLQ,bQ,CQ,fQ,QQ,hQ,UQ}-
There is one event that neither agent observes: X,, = {7}. The projection automa-
ton for each agent is shown in figure 4.19. When we translate these structures into
an interpreted system ZPF%, we detect five global states where Kripke-observability

fails:

1. Agent 2 does not know whether to disable o, since it cannot distinguish bad

state 56 from good state 47:

(56, {1, 3,8, 14,29, 30, 55, 56,57}, {26, 27, 28,47,56 } );

2. Agent 2 does not know whether to disable o, since it cannot distinguish bad

state 38 from good state 24:

(38, {10,12,13, 24, 25, 26, 35, 37, 38, 40}, {24, 36, 38});

3. Agent 1 does not know whether to disable o, since it cannot distinguish bad

state 39 from good state 27:

(39, {27,39}, {2,3,6,7,10,30, 32, 33, 35, 37, 39, 41, 53});
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4. Agent 1 does not know whether to disable o, since it cannot distinguish bad

state 51 from good state 58:
(51, {49, 50,51,58}, {21,22, 23,51, 52});
and

5. Agent 1 does not know whether to disable o, since it cannot distinguish bad

state 22 from good state 45 :

(22, {22, 45}, {21,22,23,51,52}).

For the remainder of the discussion of this example, we will refer to the global
states using local state labels as noted in figure 4.19. For example, global state
(44, {20,21,44}, {16, 20, 43, 44, 45,46, 50} ) becomes (44, 3, 2) since the automaton state
{20,21,44} in P (at the top of figure 4.19) has a label of “3”. Similarly, the state
{16,20,43, 44,45, 46,50} of P%> (the bottom half of figure 4.19) has a label of “27.

Why does agent 1 not know whether to disable o, at global state r(m) = (51,2,5)?
We focus on the truth assignments to this global state, and in particular the propo-
sitions o1, and oy, in ®PF5:

, = true,

O1q

and

o1, = false.

These values correspond to the fact that at state 51 in the plant (see figure 4.18),
the only event that is defined at that plant state is o (therefore oy, is true) but the
dashed line for the transition means that oy is not defined in the legal automaton
(and oy, is false). Agent 1 does not know whether to disable o, because its local
state ri(m) contains both plant states 51 and 58, which means these states look alike

to agent 1. The truth value of oy, is false at (51,2,5) but the truth value of oy,
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Figure 4.18: A plant requiring communication. Illegal transitions are marked by a

dashed line.
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Figure 4.19: The projection automaton for agent 1 (the top of the figure) and agent

2 (bottom of the figure) for G in figure 4.18.

corners of each state denote a label we use to refer to the state.

[talicized numbers in top left of the

135



at the corresponding global state of plant state 58 (which happens to be (58,2,8)) is
true since oy is defined in the plant and the legal automaton according to figure 4.18.
The conflicting truth values for o,, at states that are indistinguishable to agent 1
means that agent 1 does not know whether to disable o at this point in the system.

We have identified the places where Kripke-observability fails, and therefore, using
the monitoring automaton, we can reconstruct the sequences which an agent cannot
distinguish without further information. There are five pairs of sequences that lead

to Z”"5" not satisfying Kripke-observability:

Pi(cidyaserbycsar) = Pi(ciydiaseryay); (4.27)
Pyi(fig2hs) = Pi(g2f2haf1); (4.28)
P1(92m1h2m1) = P1(792m1m1); (4-29)
Py(asbacidicy) = Py(asybacicaos); (4.30)
Py(craadibyeras) = Py(ciyasdibyaser). (4.31)

We use Procedure 4.1 to identify the control communication pairs for each agent.
For example, agent 1 cannot distinguish the sequences in (4.29) since Py(gamqhom,) =
Pi(ygamimy) = mymy. The maximal-P pair for these sequences is (gomy, ygam,).
Agent 2 communicates following one of the entries of the maximal-P pair that is im-
mediately followed by an event observable to agent 2. Since gom, is followed by hs
and ygom; is followed by m;, agent 2 communicates at state 21 when it sees gamihs.
The control communication pair is therefore (21, gomihom;y), the communication se-
quence is gamihy and the associated control twin is ygomim;. The complete set of

control communication pairs for this example is
Clg = {(]_].,G,QbQCldlCQ), (12,(310,2611()2610,2)}, (432)
Cor = {(13,crdiazerbacaan), (16, g2 foha f1), (21, gamahoma )}
The communication sequence s for each communication control pair is as follows:
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Agent 1 communicates after seeing s = asbycidy;

Agent 1 communicates after seeing s = cyasdibyeq

Agent 2 communicates after seeing s = ¢idjase by

Agent 2 communicates after seeing s = ¢

Agent 2 communicates after seeing s = gomq hs

The dependency matrix D has the following row/column assignments:
e row/column 1 corresponds to control communication pair (11, asbycid;cs);
e row/column 2 corresponds to control communication pair (12, ¢cyasdibsejas);
e row/column 3 corresponds to control communication pair (13, ¢;dyazeibycaay);
e row/column 4 corresponds to control communication pair (16, go fohs f1);

e row/column 5 corresponds to control communication pair (21, gomihamy).

After Procedure 4.2, the dependency matrix D looks like

0 0 0 0 0 ]
(6,cla2d1) @ @ @ (Z]
D= (4,c1dy) (10, ¢crdyager) 0 0 0
0 0 0 0 0
0 0 0 (16,g2) 0

Additionally, after Procedure 4.2, we identify the following compatible communi-

cation pairs (as shown in section 4.3.1, p. 100):

[ ] Clcgmpat = {(4, Cldl), (6, Cla2d1), (10, cldlagel)};

° C2a12mpat _ @
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Note that (16, g3) is not added to Cs;"™"*" because g, corresponds to the communication

sequence for the control communication pair (16, go foho f1).
At the initiation of Procedure 4.3, the set X3 contains the following entries (the

corresponding row in D is also indicated):

e (15, ciasbody) is compatible with (11, asbacidicy) (row 1);

(31, ¢17ydy) is also compatible with (11, asbocidics) (row 2);

(32, c1yasdy) is also compatible with (11, aybocidicy) (row 3);

(35, c1ydyage) is compatible with (12, ¢jasdybyejay) (row 4);

(38, c1yagdybaasey) is compatible with (12, ¢iasdibeeray) (row 5);

(14, crazby) is compatible with (13, ¢idjagebacoay) (row 6);

(34, c1yasby) is also compatible with (13, ¢;dyage;bacaay) (row 7);

(54, agyby) is also compatible with (13, ¢idyazeibacoar) (row 8);

(43, 7vg2) is compatible with (16, gsfohof1) (row 9);

(50, fi1g9) is also compatible with (16, gofaha f1) (row 10);

(51, f1g2hs) is compatible with (21, ggmihomy) (row 11).
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The dependency matrix D is initially

( 0 0 (14, crazby) 0 1) W

0 0 0 0 0

0 0 0 0 0

(31,c1vdy) 0 0 0 0

. (32, c1vaqady) O (34, c1yaqzhy) 0 0
D = 1) 0 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 (50, figs) 0 |

In section 4.3.2 (p. 108) we determined the membership of (15, ¢iagbedy) (row 1 of
D) and (14, ¢yashy) (row 4 of D) in Cy5 (i.e., the former is in the set, the latter is not
in the set). We continue here by examining the remaining rows.

Rows 2, 3, 7, 8, 9 and 10 of D contain all § entries. To determine if the correspond-

CeomPal e simply see if the appropri-

ing compatible communication pair is added to
ate row of D also contains all () entries. For instance, rows 2 and 3 in D correspond
to (31, ¢1ydy) and (32, ¢;yasd;) and both are compatible with (11, aybocyd;cy)—row

1 in D. Since all three of these rows contain all () entries, we add (31, ¢;vd;) and

(13

(32, e1vazdy) to C{9™P and mark these two compatible communication pairs “re-
solved”. Similar analysis of (43,7g2) and (50, f1g2)—checking to see if the entries
in row 4 of D (corresponding to the control communication pair both are compat-

ible with, namely (16, g, fohy f1))—means that (43, 7vg2) and (50, fig2) are added to

C57™* . The two pairs (43,vg,) and (50, figs) are marked “resolved”. Finally we

compare rows 7 and 8 in D to row 3 in D. Since row 3 of D does not contain all

compat

entries, we do not add (34, ¢;yashy) and (54, asybs) to Csy . This means that after
communication events are added along the communication sequence c¢;d;ase; by and

along the sequences c;yvasby and ayyby, the latter two sequences no longer have the
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the same projection according to agent 2 in L(G”™) as the communication sequence.

We can now check (51, fig2hs) since all its non-empty elements (i.e., (50, f1g2)) are

marked “resolved”. Since (50, f1gs) is in C5;™"*, this is a communication event that

will be added to G*°™ so it will be inserted along sequence f;gohs. Thus we do take
its presence into consideration when determining whether or not (51, f1g2hs) is still
compatible with (21, gyrnihamy). We compare row 11 of D to row 5 of D and note
that both these rows have the same pattern of empty and non-empty entries. That
is, the fourth column in each row is non-empty: (16, go) in D and (50, f1¢2) in D. We
must next make certain that the projections of these sequences (once communication

is added) would be the same: Py(g2) = Py(f1g2). We thus add (51, fig2hs) to C57™P™.

compat

Similarly we check (35, ¢;ydjase;) and can show that it too is added to Cjg

The final set of compatible communication pairs for this example is

[ ] Clcgmpat = {(4, Cldl), (6, Clagdl), (].0, cldlagel), (].5, lelgbgdl),
(31, del), (32, Cl’Yﬂadl), (35, (3176110/261), (38, 017a2d1b2a2d1)};

o C57 = {(43,7g2), (50, f1g2), (51, frgaha)}.

Note that the sets of control communication pairs and the sets of compatible
communication pairs do not form a minimal communication set. For instance, if
agent 2 communicated when the plant is at state 21, the compatible communication
at state 51 would be enough to allow agent 1 to distinguish between the sequence

leading to state 51 and the sequence leading to state 58.

4.7.2 A minimal algorithm for communication

Our algorithm for minimal communication uses a “greedy” strategy to optimize
our original set of control communication pairs by removing those we deem extrane-

ous. Optimizing this set amounts to removing communication that is not necessary to
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solve the control problem (i.e., remove (g,t) from C). We then must ensure that the
final set of communications also contains all communication pairs that are compatible

with the optimized set of control communication pairs.

Greedy algorithms are used as a technique for solving optimization problems
(see [5] for an excellent summary). A greedy algorithm proceeds by choosing, at every
step, a particular entry in a set of candidates that will maximize the user-defined cri-
teria for selection. At each step of a greedy algorithm a “best” or maximum candidate
is selected and is never exchanged. Thus we must ensure that our selection function
chooses the control communication pair that will optimize our solution at that step.
If this selected candidate produces a feasible solution (i.e., can we eventually reach
a solution if we choose this value now?) then add the candidate to a final set and
continue until a solution has been reached, or all the candidates have been examined

and no solution was achieved.

The goal of solving our decentralized control problem is to have agents distinguish
between certain “good” states and “bad” states hence making all the correct control
decisions while satisfying consistency. After following Procedures 4.1, 4.2 and 4.3
we have a set of communication pairs that, when incorporated into G, will allow
agents to solve the control problem. (As noted previously, G is already consistent.)
However, it may be the case that the presence of one of the control communication
pairs along with its compatible communication pairs allows an agent to distinguish
between additional “good” and “bad” states and makes the inclusion of another
control communication pair redundant. The framework of our greedy algorithm is

based on an algorithm presented in chapter 3 of [5].

Under what circumstances could a (¢,t) allow an agent to distinguish more than
one set of good and bad states in our state-based system? Let (g,t) € C;; be a control
communication pair chosen to allow agent j to distinguish states along sequence t

from those along its control twin #'. Further, let (¢,%) € C;; be a communication that
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distinguishes the states along ¢ from those along its control twin #. There are three
scenarios where (g,t) could allow agent j to distinguish more than just the states

along t and t'.

1. Suppose the communication sequence s for (g, t) is a prefix of the communication

sequence for (¢,%). In addition, let communication at ¢ (after s occurs) be

sufficient to allow agent j to distinguish not only ¢ from #', but also distinguish

# from #. Then communication at (¢, 1) would be unnecessary.

2. Suppose (¢, 1) depends on (g,t). That is, there exists some (x,v) that is com-
patible with (g, t) such that v € 3, where § is the communication sequence for
(¢,1). If communication at (z,v) allows agent j to distinguish states along ¢

from those along # and # from #', then additional communication at (g, ) would

be unnecessary.

3. Suppose (z,v), a compatible communication pair for (g, ), is such that v € #,
Again, if communication at (x,v) allows agent j to distinguish # from #', then

additional communication at (g,7) would be unnecessary.

We introduce a set New of the form {(qi,%1), (g2,%2), ..., (qu,tn)}, i.e., the ele-
ments of New are control communication pairs. If an element (g, t) is in the set New,
this represents the fact that sequence ¢ needs to be distinguished from its control twin
t'. Initially this set is precisely C. The set FinalCom is the set of communication
pairs that constitute the optimized output from the greedy algorithm. Initially this

set is ().

Before discussing our greedy algorithm, we first describe what characteristics of
our candidate set we want to use to select an optimal subset.
The intuition behind our selection strategy, presented in Algorithm 4.1, is that

we want to count the number of “good” and “bad” pairs of sequences that can be
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distinguished by communication at a given (¢, t) € C and at all (z,v) compatible with
(g,t). In particular, we want to know how many control sequences, as represented by
elements in New, can be distinguished from their control twins by communication
associated with (¢,t) and its corresponding set of compatible communication pairs.
After all the candidates are examined, we will choose the control communication pair
that allows a given agent to distinguish the most control communication sequences
from their control twins (as represented by the elements of New). The control commu-
nication pair (¢, t) and any of its compatible communication pairs that are necessary
to solve part of the control problem are stored in the set control_com. We always
include (g,t) in control_com even if (¢, t) is not in New. If (¢,t) ¢ New this means
that some previously-chosen element of FinalCom or ControlCom also distinguishes
t from its control twin. In Algorithm 4.1 we put (g¢,t) in control_com because we
want to keep track of the control communication pair associated with the compatible

communication pairs that might also be in control_com.

Algorithm 4.1 is performed for each (¢,t) € C. We want to find out how many
control sequences and their respective control twins would be distinguished if com-
munication events were added along these sequences at (¢,t) and all its compatible

communication pairs (z,v).
ALGORITHM 4.1 Selection Strategy

Input. A control communication pair (¢,t) € C and New, the set of control communi-
cation pairs representing control sequences that either agent ¢ or j cannot distinguish
from their control twins with the current set of communication pairs in FinalCom.

QOutput. A set of control communication pairs that agent : or j can distinguish
if communication events are added to G at ¢ and at states x for all compati-
ble communication pairs (z,v) for (¢,t) denoted distinguish and the set, denoted

control_com, that contains (¢,?) and those of its compatible communication pairs
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(x,v) pairs that allow agent i or j to distinguish the control sequences associated

with pairs in distinguish from their control twins.

begin

1. if (¢.t) € New then
distinguish < {(q,t)}

else

distinguish < ()

2. control_com + {(q, 1)}

3. for all (a,b) € New

4. b < control twin for b

5. X%a,b) + {(x,v) | (x,v) is compatible with (g, ?)
and (v €borvel)}

6. for all (¢,d) € X°(a,b)

7. if Ayy € (cine) (fory #y)
where if ¢ is a good (resp., bad) state with
respect to bo then y is a good (resp., bad) state
with respect to bo and y' is a bad (resp., good)
state with respect to b'c then

8. distinguish = distinguish U {(a, b)}

9. control_com = control_com U {(c,d)}

10. return distinguish, control_com

end

At step 5 of the algorithm, we collect all the compatible communication pairs for
(g,t) that lie along either a control communication sequence in New or its associated
control twin.

Step 7 examines each of the compatible communication pairs of (¢, t) in X(a, b).
If communication of an agent’s local state at (¢, d) means that b and ' can be distin-
guished by the appropriate agent (i.e., the intersection of the local views of ¢ do not
contain both a good and bad state with respect to b,b'), then (a,b) is added to the
set of communication pairs that (g, t) distinguishes. Since communication at ¢ allows
an agent to make the correct control decision about b and b', in step 9 (¢, d) is added
to the set of communication pairs necessary to solve the overall control problem.

Our greedy strategy for decentralized agents is described in Algorithm 4.2. The

set of candidates for this algorithm is the set of control communication pairs C. The
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algorithm selects a subset of the candidate set that allows the appropriate agent to
distinguish “good” from “bad” states. Once a candidate is selected and examined, the
candidate is removed from C (step 9). If there are still sequences that remain indis-
tinguishable and the selected candidate (i.e., the one that maximizes Algorithm 4.1)
distinguishes no sequences, then we cannot reach a solution (step 20). If, though, the
selected candidate would allow the appropriate agent to distinguish some sequences
represented by the elements in New, then the candidate is added to the final set
of communication pairs and the sequences the candidate distinguishes are removed
from consideration. The algorithm continues until either all the control communica-
tion pairs have been considered or until there are no more sequences for the agent to

distinguish.

ALGORITHM 4.2 Greedy Communication

The success of the greedy algorithm depends on how we describe the selection
of a candidate (g,t) in step 3. A control communication pair (g, t) that maximizes
Algorithm 4.1 is a communication that distinguishes the largest number of control
communication pairs in the set New from their respective control twins. By the way
that we define the (q,t)’s, each (¢,t) distinguishes at least ¢ from its control twin.

(Although note that this is only relevant if (g, t) is also in the set New.)

It is possible that after step 3 instead of one maximum candidate, we could have
several maximal candidate communication pairs (i.e., of the ones that distinguish the
most number of elements). In this case, at steps 4 and 5, we randomly select one of

the maximal candidates.

After step 11, FinalCom contains all the (¢q,t) where the communication of an
agent’s local view of ¢ would lead to the other agent making the correct control deci-
sion. We want to make sure that each element of FinalCom (and any of its compatible
communication pairs that might be in ControlCom) distinguishes at least one control

sequence from its control twin that the other elements in FinalCom do not. If this
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is not the case, then we could remove (¢,t) from FinalCom and still find a control
solution. Thus at step 14 we determine which control sequences (as represented by
the control communication pairs in the original set C;5 U Cy;) would be distinguished
from their control twins by the occurrence of the communication event associated
with the control communication pair (g,¢). The set of control communication pairs

that correspond to these control sequences is denoted here as distinguish(cq B Note

that dz’stmguishfq 0 is also the result of passing (q,t) as a parameter to Algorithm

4.1 during the selection of the candidate that maximizes Algorithm 4.1 during the
first iteration of Algorithm 4.2. We calculate this set for all the other elements

(¢',t") in FinalCom. The union of all these sets is denoted Dz’stz’nguishfq,’t,). If we

c
(g;t

C

remove from distinguishy,, all those elements that occur in both Distinguishiy .

and distinguish(cq’t), we are left with the control communication pairs that correspond
to the control sequences that can only be distinguished from their control twins when
an agent communicates its local view of ¢. If the result is the empty set, then anything
that (¢, t) distinguishes can already be distinguished by other elements of FinalCom.
Thus (g, t) is removed from FinalCom in step 15. In addition, any of its compatible
communication pairs are removed from ControlCom (step 16).

Note that step 18 may not have to be calculated since this set may already have
been calculated by prior utilisation of Procedures 4.2 and 4.3. Thus X“™% might
simply be a subset of C¢omrat,

The output of the greedy algorithm, FinalCom U X™P% is used to create G
in the manner described by Procedures 4.1a, 4.2a and 4.3a. The communication

protocol for each agent is then generated by calculating the projection automata of

GCOTTL

THEOREM 4.3 The set of communication pairs FinalCom U X4 obtained from

executing Algorithm 4.2 is a set of minimal communication pairs.
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Proof. (By contradiction)

Suppose FinalCom is not a minimal set. Then 3(a,b) € FinalCom U X" such
that either the control problem can still be solved with (FinalComUX ™)\ {(a, b)}
or adding communication events to G*™ with respect to the elements of (FinalComU

xeompaty \ {(q b)} means G™ is still consistent.

Case 1. Remove (a,b) from FinalCom.

We must argue that there exists some t,# that communication at state a distin-
guishes that no other element in FinalCom or X<™ distinguishes. By step 14 of
Algorithm 4.2, (a, b) represents either (i) a communication event that uniquely distin-
guishes some ¢ from ¢’ that no other element of FinalCom or X“™* does or (ii) (a, b)
looks like another element in FinalCom that does uniquely distinguish ¢,#'. Note that
if there is no ¢, # that communication at state a uniquely distinguishes, (a, b) would be
removed from FinalCom in steps 15 and 16 of Algorithm 4.2. Thus, if (a, b) satisfies
(i) and is removed from FinalCom, the control problem cannot be solved, leading to
a contradiction. Similarly, if (a, b) satisfies (ii), that is, (a,b) is a compatible commu-
nication pair for an element of FinalCom, say (d, e), then the removal of (a,b) means
that no communication event will be added to G for state a in Procedure 4.3a.
That is, 69" (d%, com;j;:d) = d and there will be a state y in Q" (either y = a°
or y = a) that has the same local view as d® but 69" (y, com;;:d) is not defined
even though y; = df. This violates the our notion of consistency from Definition 4.12.

Therefore the system is no longer consistent, leading to a contradiction.

Case 2. Remove (a,b) from Xmpet,

By the definition of X*™P% in step 18 of Algorithm 4.2, removing (a, b) means that a
communication event will not be added to state a in Procedure 4.3a. Using the same
reasoning as for Case 1, the removal of (a, b) means the system is no longer consistent.

This contradicts our assumption.
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O THEOREM 4.3

Note that if some algorithm other than Procedures 4.1, 4.2, and 4.3 was used to
generate a communication solution to the decentralized control problem, then Algo-
rithm 4.2 could still be used to pare the solution down to a minimal communication

set.

We return to the example of figure 4.18. Our input to the greedy algorithm is the
set of control communication pairs in (4.32). The first control communication pair to
maximize distinguish of Algorithm 4.1 is (21, ggmihamy). It is the pair corresponding
to a communication that would allow an agent to distinguish the largest number of
control sequences from their control twins: (4.28) and (4.29) are both distinguished

by (21, ggmihymy) and its compatible communication pair (51, f1g2hs).

We remove (21, gornihamy) and (16, go f2hs f1) from New and remove (21, gomyhomy)

from C. The set FinalCom now contains (21, gomqhamy) and ControlCom contains
(517 f192h2)'

At the next iteration we choose the control communication pair in C that distin-

guishes the most number of the remaining elements in New.

In this case, we have a three-way tie for a candidate that maximizes distinguish
of Algorithm 4.1: each of (11, asbycidicy), (12, crasdibreras) and (13, cidyaserbacaay)
distinguishes one of the control sequence/control twin pairs associated with an element
of New. We randomly choose (12, ¢jasdibyeias) and remove it from C and remove
the element of New whose control sequence/control twin it distinguishes (namely
itself). FinalCom is now {(21, gomihamy), (12, ciasdibseias)} while ControlCom is
still {(51, f1g2h2)}.

The next iteration of the algorithm sees a two-way tie for a maximal element:
(13, c1dyaserbacaay) and (11, agbycidicy) distinguish one element each in New. The
selection of (11, asbycidicy) is random, once again, and we remove it from both

New (since it distinguishes the control sequence associated with it from its control
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twin) and C. FinalCom is {(21, gamihamy), (12, ciasdibseas), (11, asbycidico)} and
ControlCom is {(51, f1g2h2)}.

The element maximizing the selection algorithm in the last iteration of the greedy
algorithm is (13, ¢;dyaseibacoar), and like the previous two iterations, it distinguishes
the control sequence associated with itself from its control twin. FinalCom for this
example is {(21, gomihomy), (12, ciasdibseras), (11, asbocidics), (13, cidiagzerbacaay)}.
ControlCom is {(51, fig2h2)}.

At this point, New = (). We want to make sure that each element in FinalCom
represents a communication that allows an agent to uniquely distinguish at least
one control sequence t from its control twin #. Using the original set of control
communication pairs C1oUCs1, we calculate the following for the elements of FinalCom

using Algorithm 4.1:

diStin.QUiSh(Zl,ggmlhgml) = {(21: .g2m1h2m1)7 (167 92f2h2f1)}7 (433)

distinguish(12,c,asdibreras) = 1(12, crazdiberas)}, (4.34)
distinguishi,aybycidies) = 1(11, asbacidyics)}, (4.35)
distinguish(isc,d,aseibscsar) = 1 (13, crdyazeibacaan)}. (4.36)

Note that we do not remove any of the elements of FinalCom. For example, to
see if communication with respect to control communication pair (12, cjasd;byeras)
distinguishes anything unique, we take the union of sets marked (4.33), (4.35) and
(4.36) and subtract this from (4.34). The result is not empty, therefore we leave
(12, crasdibyeras) in FinalCom. We repeat this exercise for each of the other ele-
ments in FinalCom. By step 17 of Algorithm 4.2, FinalCom = {(21, gomihamy),
(12, cragdibgeras), (11, asbacidicy), (13, crdiaserbacaar), (51, f1g2hs)}.

The compatible communication pairs were previously calculated at the beginning

of this section. The only ones not included are the compatible communication pairs

for (]_6, ggfgh,gfl). Thus Xcompat = {(4, Cldl), (6, Clagdl), (].0, cldlagel), (].5, Clagbgdl),
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(31, c17vdy), (32, c1yagdy), (35, c1ydiaser), (38, ciyasdibsasdy)}. If we remove any con-
trol communication pair from FinalCom we would not be able to solve the control

problem.

The final version of G, after adding the communication events associated with
the elements of FinalCom and X" i shown in figure 4.20. The communication

protocol for each agent is illustrated in figure 4.21.
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Figure 4.20: G, from G in figure 4.18 after completing Algorithms 4.1 and 4.2.
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Figure 4.21: The projection automaton for agent 1 (the top of the figure) and agent

2 (bottom of the figure) for G in figure 4.20.
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Chapter 5

Conclusions and Future Work

5.1 General Conclusions

Several general conclusions can be drawn from this work. The results from chap-
ter 3 show that it is possible to describe decentralized discrete-event control problems
using knowledge theory. It is feasible to ascribe knowledge to a supervisor or con-
troller, reason about what an agent needs to know to solve the control problem and
find a control solution. We also used our knowledge models to identify when there is
insufficient knowledge to reach the correct control solution. Understanding what it
means for a supervisor to have sufficient knowledge to solve the control problem al-
lowed us to determine a strategy for communication whereby a supervisor has enough

information to make the correct control decisions.

We use the underlying structure of our knowledge model to locate places for
agents to communicate. More communication injects knowledge into the system,

which allows supervisors to solve a larger class of decentralized control problems.

We considered that when an individual supervisor cannot make a correct control
decision it might be possible for the group of supervisors to pool their collective
information to solve the problem. Our strategy of distributed observability did not
adequately capture the idea of eliminating the deficit of knowledge for the knowledge-
deficient supervisors. To make the correct control decision, a supervisor must be able
to distinguish between a circumstance when an event must be disabled and one where
the event is enabled. Waiting for this information until just prior to making the control

decision can lead to an incorrect control solution, as was suggested in section 3.4.1.
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We are, subject to certain assumptions, able to identify places in the knowledge
model where one supervisor provides the other with enough information to solve the
control problem. We find these places based on an understanding of the underlying
structure of the plant language. As we discuss in the next section, translating this
strategy into reasoning about places to communicate based strictly on what each

supervisor knows remains a difficult problem.

5.2 Future Work

In chapter 3 we described how to translate a DES plant into a knowledge model.
If the knowledge model does not satisfy Kripke-observability, then in chapter 4 we
described how to update the plant with communication events. The new plant is
subsequently translated into a knowledge domain, and we showed that a control

solution is generated.

What knowledge could possibly have been involved in determining a place for
agents to communicate information to solve the control problem? We would like
agents to choose places to communicate based on reasoning about the knowledge of

other agents. The knowledge model of section 4.5 is updated in this section.

In chapter 4, we assumed that we could identify a place where an agent does not
know whether it is along a “bad” path or a “good” path but where it would know if
information were pooled. It seems reasonable to assume that we are able to find such
a place because the other agent “knew” whether the system was along a bad path (or
equivalently, along a good path). Therefore, an overall solution to the control problem
would exist if the group of agents had enough information to determine whether the

system was about to generate an illegal or a legal sequence.

We extend our knowledge model from chapter 3 so that agents reason about the

lack of knowledge other agents have regarding the control problem. An agent that
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knows another agent does not have enough information to make the correct control

decision will communicate the missing knowledge.

The set of primitive propositions contains the propositions og,0r € Ry;. To deal
with the idea that a state is either “good” or “bad” with respect to an agent’s view
of a particular sequence in L(G), we introduce new propositions (two for each event

o € X) for each agent i € G: goodstate;(0), badstate;(o).

(true if Ju’, v, t € ¥* such that
0% (', ) = we,
64 (', w,)!, and P;(u'v') = Py(t) and
u'v'o,to € L(G) and u'v'o € L(E),
to ¢ L(E)

| false otherwise.

7DES (w)(goodstate;(0)) 1=

Suppose w represents a state that occurs along a particular sequence in L(G) that
leads to another state represented by w such that o is legal and controllable by agent
i. We denote w as “good” with respect to agent i by setting goodstate;(0) = true if

at w, o is legal.

(true if Ju,v,t’ € ¥* such that
0% (u, q') = we,
6% (v, w,)!, and P;(uv) = P;(t') and
wvo,t'o € L(G) and uvo ¢ L(E),
t'o € L(E)

| false otherwise.

xDES (w)(badstate; (o)) =

Suppose w represents a state that occurs along a sequence that leads to another state
represented by w where o is illegal and controllable by agent :. We want to denote

w as a “bad” state if at w, agent 7 does not know whether o is legal.

An agent ¢ will communicate its local state to agent j if agent 7 is not confused

about whether the plant is in a good or bad state (for a particular o controlled by
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agent j) and it knows that agent j is confused:

(IPPS w) = (Ki(goodstate;(o) V =badstate;(o)) A
K,—K;(goodstate;(o) V —badstate;(0))) V
(K;(—goodstate;(o) V badstate; (o)) A

K,—K;(~goodstate;(o) V badstate;(0))).

For a given o and a state ¢ along a sequence ¢ such that to ¢ L(G) we consider
that states along ¢ are neither “good” nor “bad”. Therefore, at the global states
corresponding to the states along ¢, from the above definition of 729" the following
truth assignments hold at such an w: 77%% (w)(goodstate;(c)) = false and similarly
7PES (w)(badstate; (o)) = false. This is why, in checking the knowledge of agent i at
w we do not require the agent to know that w is definitely a good state. Rather, we

want an agent to know that a state is either “good” or that a state is “not bad”.

An agent ¢ communicates if it can tell the difference between the good and bad
states for agent j at w and agent ¢ knows that agent j cannot determine if the system
is at a good or bad set of states that lead to places in the interpreted system where

agent 7 must have knowledge to make the correct control decision.

We conjecture that a control solution exists if the system satisfies distributed
observability in the following sense: before communication, the knowledge of the
group must be enough to determine that an agent making a control decision is along
a good path or a bad path; and after communication there must exist an agent that

knows to make the correct control decision.

One of the problems with our modal logic approach is that we introduce an over-
whelming number of propositions to translate the intuition “agent 7 knows it is along
a path where it must disable something”. Instead, one may want to incorporate
temporal operators and describe the idea that agent j will “eventually” have to com-

municate along a given sequence of worlds so that agent ¢ will know to disable 0. Or it
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would be interesting to determine if we could describe communication as “eventually”
being necessary to make a control decision. If no communication is required along a
given sequence of worlds, we would describe the notion of agent i “always” knowing
to disable o. In such a scenario perhaps instead of communicating their local states,
agents build up more complicated formulas (such as “agent 7 knows that agent j does

not know p”) to share.

We have implemented our communication strategy using the programming lan-
guage C. Future work on our existing strategy for communicating in decentralized
control problems includes relaxing our assumption that the agents do not jointly con-
trol events. Can we now characterize a place for agents to communicate information
so that at least one agent can make the correct control decision? In addition, we want

to extend the model for communication to systems with more than two agents.

In some situations, it is not possible to synthesize the complete legal language.
What we seek is the maximal (since there is no maximum) subset of L(E) such
that L(E) can be synthesized. Constructing such a subset for decentralized control
is a difficult problem. It would also be of interest to use knowledge to identify a
controllable and co-observable subset of legal behaviour. Knowledge could play a
significant role in this class of problems: we could “roll back” from the global states
where Kripke-observability fails and identify the “last” place in the system where we

did not know to make the correct control decision.

In real distributed systems, dealing with delays in communication (latency) is a
significant problem. Considering latency in our model would further complicate the
relationship between communication and control. To address more realistic problems
of distributed systems, such as latency, would require a model that allows for delays in
communication and allows for communication redundancy in the event that a message

from an agent does not get through in time.
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5.3 Summary

We have presented a novel setting in which to reason about the knowledge that
decentralized discrete-event supervisors need to solve control problems. In addition,
we have provided a strategy for introducing communication into the problem-solving
process. It is our belief that formalizing the knowledge of decentralized communicat-
ing supervisors will continue to play a significant role in identifying new strategies to

address control issues in distributed systems.
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Appendix A

This appendix contains several tables of notation. Table A.1 contains notation
that is standard in the DES literature (with the exception of the notation for the
monitoring and projection automata). This notation is introduced and defined in

chapter 2, but appears in other parts of the dissertation.

Table A.2 contains notation that appears in the knowledge models presented in
[12]. Again, the concepts are consistent with those in the knowledge logic literature,

except that we have chosen to identify global states with a w.

Table A.3 contains notation that we use to describe both our sequence-based and
state-based knowledge models for DES. Most of this notation is presented in chapter
3 and chapter 4.

Table A .4 contains notation that we use to describe decentralized DES with com-

munication. These concepts are defined throughout chapter 4.
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Automata G = (QY, %, 89, ¢f)
The automaton representing the plant
The set of states in the plant
The alphabet or set of events defined for the plant
An event of the alphabet
The transition function for the plant
The initial state of the plant
The legal automaton
The monitoring automaton
A transition of o from state ¢ is defined
States of an automaton

Formal Languages
The empty string
The set of all finite sequences over ¥ plus &
The closed behaviour of G (also the language generated by G)
The prefix-closure of a language L
sequences of a language

TITLH O
2

e =000 e
o ~ o

MMM MM

=
s}

Supervisory Control
A centralized supervisor
The i decentralized supervisor
A canonical projection operator
A canonical projection operator with respect to S;
A projection automaton of G for §;
The set of uncontrollable events
The set of controllable events
The set of events controllable by §;
The set of observable events
The set of events observable by S;

Table A.1: Discrete-Event Systems Notation
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M A Kripke structure

K A modal operator for knowledge

D A modal operator for distributed knowledge
w A global state or possible world

W, The state of the environment

w; The local state of agent ¢

7 An interpretation function

G Group of agents for the knowledge model
z An interpreted system

D, ¢ A primitive proposition

P The set of primitive propositions

Table A.2: Knowledge Model Notation

Gy
IDF)S

IDES’
ICDE'S’

oG
OE

! !
(I)DES ’ (I)CDES

! !
71_DF)S7 7TDE‘S 7ﬂ_cDE'S

KP

The group of agents that can control event o
A sequence-based interpreted system

A state-based interpreted system

A state-based interpreted system

for communicating DES

A primitive proposition for event o in G

A primitive proposition for event ¢ in F
Sets of primitive propositions

Interpretation functions

A knowledge protocol

Table A.3: Knowledge Model for DES Notation
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GCOTTL

Geom
6Gcom

Geom
0

ZCOm

Pc, Pic

Xy

XV42
XVy3
FinalCom

Xcompat

A plant that contains communication events

The set of states for G“™

The transition function for G

The initial state of G*™

The set of communication events; together with 3,

this is the alphabet for G

An event in the alphabet of G“™ where

agent ¢ communicates its local view of state ¢ to agent j

A subset of ™ that contains communication events

where agent ¢ communicates to agent j

A control communication pair

A compatible communication pair for (g, t)

A maximal-P pair

The set of control communication pairs

The set of control communication pairs

where agent ¢ communicates to agent j

The set of compatible communication pairs

The set of compatible communication pairs

where agent ¢ communicates to agent j

Matrix representation of dependency graphs

A canonical projection that “erases” communication events

A canonical projection that “erases” unobservable events

A version of t € L(G) as it appears in L(G™) after Procedure 4.1
A version of t € L(G) as it appears in L(G®™) after Procedure 4.2
A version of t € L(G) as it appears in L(G®™) after Procedure 4.3
The set of all compatible communication pairs for elements in C
The set of compatible communication pairs used in Procedure 4.2
The set of compatible communication pairs used in Procedure 4.3
A set of control communication pairs and some of their
compatible communication pairs: output from Algorithm 4.2

The set of compatible communication pairs for the

elements of FinalCom

Table A.4: Communication and DES Notation
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