
Knowledge and Communication inDecentralized Discrete-Event ControlbyS. L. RickerA thesis submitted to theDepartment of Computing and Information Sciencein conformity with the requirements forthe degree of Doctor of PhilosophyQueen's UniversityKingston, Ontario, CanadaDecember 1999Copyright c
 S. L. Ricker, 1999

DedicationThis thesis is dedicated with love and respect toMalcolm Gilbertson(1966{1998)Because he understood.

i

AcknowledgementsThe glory is not in never falling but in rising every time you fall.{ Chinese proverbIt has been said that it takes a village to raise a child. In my case, it has taken acity the size of Kingston �lled with the most amazing and supportive friends to raisethis dissertation.Nearly four years ago Karen Rudie believed that there was a phoenix waitingto burst forth from the ashes that arrived unexpectedly on her doorstep. Wordscannot express how grateful and fortunate I am to have had her guidance, supervision,unwavering support and friendship over the last four years.The food patrol, human bank machine services and life support network o�eredup by the trio of Peter Gogolek, Judy Russell and Rick Pim saw me throughmany dark days. Their friendship has made all the di�erence.Life in the department would have been unbearable if it wasn't for three things:Wendy Powley, the pop machine and the guys across the hall. Superhuman STLersGary Anderson, Greg Phillips and Tim Wright sat through many impromptuseminars on my research|listening even when I started to speak in tongues. Wendyhad to listen to everything else. For that alone she should be sainted.Without the goddesses Irene Lafleche,Debby Robertson, Shiela Hutchin-son and god Tom Harpur I would not have been able to negotiate the pitfalls ofbureaucracy and couriers. And thanks to Irene I know more than I ever cared to aboutall the strange places one can get bruised from an innocent afternoon of horsebackriding.The peanut gallery ofMark Levison, Celia andMark Andersen, JeanetteCampbell,Kevin Hood, Dave andDonna Poirier, Carol Miernicki-Steeg,Evan Steeg, Antje Rauwerda, Catherine Campbell and Gino Labinaz allperformed above and beyond the call of friendship.Dorothea Blostein, Hoda Fahmy and Dave Fleet provided timely adviceat pivotal moments.My parents Owen and Celia always believed this day would arrive even when Idid not. I am indebted to them for their genetic legacy of big hair.I gratefully acknowledge �nancial support from Queen's Graduate Awards, a bur-sary from the Information Technology Research Centre and research assistantshipsfrom Dr. Rudie. ii

Contents
Dedication : iAcknowledgements : iList of Tables : viList of Figures : vii1. Introduction : 11.1 Related Work . 51.2 Outline of the Thesis . 82. Background and Notation : 102.1 Discrete-Event Systems . 102.1.1 Review . 102.1.2 A Projection Automaton . 192.1.3 A Monitoring Automaton . 202.2 A Model for Knowledge . 233. Using Knowledge for Control : 283.1 Sequence-Based Knowledge Model . 283.2 State-Based Knowledge Model . 323.3 Knowledge-Based Protocols and Kripke-observability 333.3.1 Knowledge-based protocols for decentralized control 34iii

3.3.2 Example: a Kripke{observable system for IDES 413.3.3 Example: a Kripke-observable system for IDES0 433.4 Distributed Observability . 473.4.1 Example: when pooling knowledge is not enough 493.4.2 Example: when pooling knowledge is enough 524. Communication and Decentralized DES : : : : : : : : : : : : : : : : 544.1 Knowledge, communication and control 544.1.1 Why communicate? . 554.1.2 Who communicates? . 554.1.3 What to communicate? . 564.1.4 Where to communicate . 564.1.5 When to communicate: a communication protocol 574.2 Communication for Control . 584.2.1 Avoiding unintentional communication 664.2.2 Finding a place to communicate: picking control communica-tion pairs . 684.2.3 How to incorporate communication into Gcom 764.2.4 Formally adding control communication pairs to Gcom 784.2.5 Communication that solves the control problem 824.3 Communication for Consistency . 844.3.1 Re�ning local views of control communication pairs 884.3.2 Re�ning local views of compatible communication pairs 1114.4 A Well-de�ned Communication Protocol for Gcom 1214.5 Constructing IcDES0 from Gcom and Ecom 126iv

4.6 Is IcDES0 Kripke-observable? . 1274.7 Minimal Communication . 1304.7.1 An example system requiring communication 1324.7.2 A minimal algorithm for communication 1405. Conclusions and Future Work : 1535.1 General Conclusions . 1535.2 Future Work . 1545.3 Summary . 158A. : 159Bibliography : 163Vita : 166

v

List of Tables
3.1 Checking Kripke-observability. 423.2 A joint knowledge-based protocol for G and E and event
 in �gure 2.1. 423.3 Checking Kripke-observability for G and E in �gure 3.4. 453.4 A joint knowledge-based protocol for G and E and event
 in �gure 3.4. 47A.1 Discrete-Event Systems Notation . 160A.2 Knowledge Model Notation . 161A.3 Knowledge Model for DES Notation 161A.4 Communication and DES Notation 162

vi

List of Figures
2.1 A plant G and its legal automaton E 132.2 The projection automata of a DES plant: (a) the plant G; (b) PG1;(c) PG2 . 202.3 The monitoring automaton A for G;PG1; PG2 of �gure 2.2. 222.4 A simple Kripke structure. 253.1 A portion of the Kripke structure for G in �gure 2.1. 313.2 A plant G and legal automaton E. 363.3 A plant G and legal automaton E. 373.4 The automata for a state-based DES: (a) G and E; (b) PG1; (c) PG2. 443.5 The Kripke structure for G in �gure 3.4. 463.6 The combined DES plant G and its legal automaton E. 493.7 The Kripke structure for the plant in �gure 3.6. 513.8 A combined DES plant G and legal automaton E. 524.1 Identifying a communication state. 624.2 SplittingG: (a) intention is for communication to occur at state x afteru�; (b) rewrite G and split state x to �nd a de�nitive communicationstate x1. 67

vii

4.3 Reasoning about knowledge in the Kripke structure associated withIDES allows us to identify where agents do not have enough informationto solve the control problem. The diagrams above (in the knowledgetheory framework) and below (in the DES environment) the line areequivalent statements about what it means to not solve the controlproblem. 694.4 Finding places to communicate in the presence of cycles. 724.5 The monitoring automaton for the plant in �gure 4.4. 734.6 The projection automata of a DES plant G: (a) the plant G; (b) PG1;(c) PG2 . 754.7 Adding a communication event to an automaton: (a) before commu-nication; (b) after communication. 774.8 Adding a communication event to Gcom to state q. (a) Before com-munication for communication sequence s = �� for agent i. (b) Aftercommunication added to state q. 804.9 Adding an additional communication event to Gcom at state qc. (a)Another communication event has previously been added at state q.(b) After adding a second communication event. 814.10 A Gcom that does not satisfy consistency. 854.11 Communication sequences can contain communication events: (a) Sup-pose that s; s0 2 L(G) are communication sequences such that s = vwand Pj(v) = Pj(s0) where agent i communicates after s, agent j com-municates after s0; (b) The updated version of the communication se-quences s0c; sc 2 L(Gcom). 90
viii

4.12 A scenario that results in a cycle in D. Let P1(v0) = P1(s) and P2(v) =P2(s0): (a) event com21:q0 could occur before event com12:q; (b) eventcom12:q could occur before event com21:q0. 934.13 A portion of a plant that would give rise to cycles in a dependencygraph. 1004.14 Adding unnecessary communication. 1034.15 The portion of Gcom for the plant in �gure 4.13. 1184.16 Developing well-de�ned communication protocols: (a) portion of plantG; (b) Gcom from G after Procedures 4.1/4.1a; (c) Gcom from G afterProcedures 4.3/4.3a. 1234.17 The communication protocols for each agent generated from Gcom in�gure 4.16 (a) PGcom1 for agent 1; (b) PGcom2 for agent 2. 1254.18 A plant requiring communication. Illegal transitions are marked by adashed line. 1344.19 The projection automaton for agent 1 (the top of the �gure) and agent2 (bottom of the �gure) for G in �gure 4.18. Italicized numbers in topleft of the corners of each state denote a label we use to refer to thestate. 1354.20 Gcom, from G in �gure 4.18 after completing Algorithms 4.1 and 4.2. . 1514.21 The projection automaton for agent 1 (the top of the �gure) and agent2 (bottom of the �gure) for Gcom in �gure 4.20. 152

ix

AbstractA formal method for reasoning about knowledge in distributed systems is applied tothe analysis of decentralized discrete-event control problems. Solutions to this classof control problems require that controllers achieve their control objectives withoutcommunication. A necessary and su�cient condition is given (equivalent to one fromexisting discrete-event control theory) to describe when decentralized controllers haveenough knowledge to �nd a control solution.When controllers do not have su�cient knowledge, a solution where controllersmay communicate is presented. The relationship between communication and controlis di�cult. Control decisions may be a�ected by information a supervisor receivedfrom another supervisor. The content of the information that is communicated couldbe a�ected by information the communicating supervisor previously received. Proce-dures are derived for incorporating communication into decentralized discrete-eventcontrol. These procedures yield a control solution while ensuring that supervisorscommunicate in a consistent manner.

Chapter 1IntroductionWe live in a world where technology plays an increasingly crucial role in solvingcomplex problems. It seems somewhat irregular, though, to consider that a machineor any other inanimate object has knowledge. We use machines as a tool to accom-plish a task. Yet despite the fact that a machine lacks the ability for introspectionand self-awareness during the problem-solving process, it is still possible to describewhat that inanimate object knows. For instance, a robot arm that is controlled toperform a task along a car assembly line \knows" when to reject a component. Fur-ther, as part of the distributed assembly process, the information that a componenthas been rejected may be of interest to another sector of the automated process.Having knowledge about a task does not imply any anthropomorphic assumptions ofthe system. In this dissertation, we are interested in understanding what it means fordecentralized|and quite inanimate|agents to \know enough" to solve control prob-lems. In particular, we are interested in a class of problems where communication isnecessary to successfully achieve a control solution.A discrete-event system (DES) is a set of sequences of events that describes thebehaviour of a physical process. A change in the system state of the process is nottime-driven, but rather, is precipitated by the occurrence of an action or event. Adiscrete-event control problem arises when we want to restrict the system to per-forming a speci�ed subset of the overall behaviour of the system. A control solutionexists if we can construct an overseer, or supervisor, to achieve the set of desiredbehaviour by either preventing some events from taking place (disabling an event) orallowing|but not forcing|others to occur (enabling an event).1

Decentralized discrete-event problems originate when more than one supervisoris required to ensure that the system avoids undesirable behaviour. For this classof problems no one supervisor has a complete view of the system behaviour. Thesupervisors must coordinate|without communication|the disabling and enablingof events to realize the desirable or legal behaviour. In other words, each supervisormust know enough of what the system is doing to make correct decisions to turnevents o� or on.The framework for decentralized discrete-event control that we adopt for thisthesis is based on the theory of formal languages [28]. A discrete-event system isviewed as a generator of a formal language and establishing control for the systemamounts to determining which sequences in the language should be recognized by eachsupervisor. Intrinsic to the study of these processes is the informal argument that aslong as at least one supervisor knows the correct control action to take in preventingillegal behaviour of the system, an overall control strategy may be synthesized.At present, decentralized control decisions are based solely on what each super-visor observes. A control solution cannot be constructed if after observing somesequence of events there is no supervisor that \knows enough" to disable a particularevent. When such a stalemate is reached it means that in isolation a supervisor lacksappropriate information to make the correct control decision. However, if supervisorscould access their collective knowledge about the situation|thereby eliminating someof the uncertainty in making the correct control decision|it may be the case that acontrol strategy can be formulated.In this thesis, the decentralized discrete-event control framework is recast intoknowledge theory [16] where we formally reason about what supervisors need to knowto solve control problems. We use this knowledge formalism to characterize the natureof knowledge in a discrete-event control system. Of equal importance is understandinghow and when the dissemination of knowledge among supervisors leads to control2

solutions for a class of control problems that decentralized supervisory control theorydoes not at present address. For our purposes, we consider communication betweensupervisors as a means of improving the knowledge each supervisor possesses.As noted above, informal reasoning about knowledge is already an integral partof analyzing decentralized supervisory control problems. Thus it seems natural toconsider formally what it means for each supervisor to \know enough" to solve acontrol problem. We use the model of knowledge (based on modal logic) formulatedby Halpern and Moses [16] to analyze distributed systems. The model is based onthe concept of possible worlds. The idea is that an agent (equivalent to the notion ofan overseer) has only a partial view of the distributed system and may be unable todistinguish di�erent system states from the true state of the system. In the knowledgelogic setting, the basic variables correspond to answers for questions like \is fact ptrue?" or \does an agent know that fact p is true?". An agent's knowledge of thesystem depends only on its local view of the system behaviour. As an agent acquiresknowledge about the system, it considers fewer \worlds" to be possible and the agentis closer to determining the true state of the world. When an agent has insu�cientknowledge, the knowledge model allows us to consider the knowledge of groups ofagents. We consider this aspect of the knowledge model when we want to determineif combining the knowledge of two DES agents will produce \enough" information toreach a control solution.Decentralized discrete-event control theory lends itself to the analysis of controltheoretic behaviour for many distributed systems applications, including manufac-turing systems and telecommunication (network) problems. At the outset of thisresearch it was only possible to discuss deriving a control solution for these applica-tions in the absence of communication between supervisors. In the past year, severalstrategies, including some of the work in this thesis, have been proposed for incor-porating communication into decentralized discrete-event control. We review these3

models in section 1.1.The relationship between communication and control in decentralized discrete-event systems is complex and co-dependent. On the one hand, control decisions maybe a�ected by information a supervisor receives from another supervisor. On theother hand, the content of the information that is communicated may be a�ected byinformation the communicating supervisor has previously received.A solution to this new class of decentralized discrete-event control problems notonly ensures that the correct control decisions are made. In addition, since a su-pervisor has only a partial view of the system, if it communicates at a particularplace in the system, it must also communicate at every place it cannot distinguishfrom that place. This property of supervisor behaviour is called consistency [31]. Inaddition, communication may be costly, so we want to eliminate any unnecessarycommunications without violating consistency yet still ensure that enough informa-tion is available to a supervisor making a control decision. A set of communicationsis called minimal if it (a) satis�es consistency, (b) provides enough information forsupervisors to solve the control problem and (c) no subset of it satis�es (a) and (b)[31].The contribution of this thesis is the introduction of a novel framework for rea-soning about control and communication in decentralized control problems. In thecourse of developing knowledge models for DES, we provide necessary and su�cientconditions for the existence of control solutions in the new knowledge model (whichcorrespond to analogous properties in decentralized DES theory). When the condi-tion for �nding a control solution fails, we identify particular places where, subject tocertain conditions, supervisors could communicate information to other supervisorsand achieve the initial objective of reaching a control solution. We also present pro-cedures to incorporate communication into the DES. We show that our procedures4

meet the objectives of solving the control problem with communication while satisfy-ing consistency. An algorithm for generating a set of minimal communications withrespect to the set generated by our previous procedures is also provided. Finally,we propose an extension to our original knowledge model where places to communi-cate are determined solely on whether or not an agent knows the other agent needsinformation to make a control decision.1.1 Related WorkNearly twenty years ago, Ramadge and Wonham [28] introduced control-theoreticstrategies for discrete-event systems using automata and formal language theory. Thecontrol objective was as follows: given a supervisor that sees the full behaviour of thesystem and given a subset of behaviour (called the legal behaviour) that is deemeddesirable, produce a control solution that prevents the system from performing any-thing but the legal behaviour. At present, solutions to discrete-event control problemscan be described under conditions of full and partial observability (when a supervisorcannot see all system behaviour) and expressed across a range of system architectures(e.g., hierarchical, modular, decentralized). In addition, the theory has been extendedto address control issues for nondeterministic systems. It is also possible to constructcontrol solutions that allow the exact legal behaviour to occur or a subset of behaviourthat lies within some tolerance of the legal behaviour. The control problem can alsobe speci�ed in alternate frameworks such as Petri nets [18] or as vector DESs [21, 22].In particular, we are interested in decentralized discrete-event control problems ex-pressed as �nite-state machines under conditions of partial observation. Referencesfor decentralized control without communication include [9, 23, 24, 32, 33, 36, 40].This collection of work is representative of the research that led to the identi�cationof necessary and su�cient conditions for solving the class of DES problems where noone agent has a complete view of system behaviour. Chapter 2 contains more speci�c5

details about decentralized DES theory.Recent work has explored the relationship between control and communication indistributed discrete-event systems [3, 30, 31, 35, 39, 41]. As noted previously, thebasic idea of this class of problems is that no single agent in the multi-agent systemhas a complete view of the system behaviour and a given co-operative task cannot becompleted without communication among the agents. (The models noted here|withthe exception of [39] where three agents are considered|assume the existence of onlytwo decentralized agents.) It is clear when a control solution for a decentralized DEScannot be achieved. What is less clear is the way in which the failure to reach a solu-tion leads to (i) identifying places where agents could communicate; (ii) establishingwho should communicate; and (iii) determining what should be communicated torealize a control solution.The model proposed in [41] identi�es a necessary and su�cient condition for theexistence of a solution which is similar to the notion of distributed observability weindependently formulated in the context of knowledge theory [30]. In [41] a con-trol solution exists if and only if, after each supervisor|based on its partial viewof the system|discloses sequences it considers the plant could have generated, theintersection of these sets does not contain both an illegal and a legal sequence.A similar condition was introduced in [35] to understand how to perform failurediagnosis in a distributed system. A decentralized diagnostic solution exists if andonly if whenever the local observations of a diagnoser at a remote site i is insu�cientto make the correct diagnosis, there exists another diagnoser at site j that observesand communicates the information diagnoser i requires.While the work mentioned so far provided insight into the role that communicationmight play in decentralized control, a more formal speci�cation of a communicationprotocol for decentralized supervisors was required. More recent work [3, 39] intro-duced models for communication that detailed a more speci�c role for communicating6

agents. Interestingly, both approaches utilize information structures from stochasticcontrol to express the control solution.For the models of [39] and [3] controllers (i) communicate every time an eventis observed; (ii) broadcast and exchange their observations; and (iii) communicatethe set of sequences they consider could have been generated by the system. Themodel of [3] proposes an alternate formulation for communication where instead ofexchanging sequences observed, controllers exchange state estimates. Of more interestin this approach is the motivation for communication: the notion of a con
ict state. Acon
ict state is a place in the system that leads to both a legal and an illegal sequenceand further, neither controller is able to determine the correct control decision fromits partial view of the system. The communication protocol is thus to communicateto eliminate con
ict states. That is, when a controller receives the observations of allthe other controllers, it is no longer confounded by the presence of the con
ict stateand can make the correct control decision. Also discussed is the notion of \optimal"communication, where optimal corresponds to \communicate as late as possible".Because there may be more than one con
ict state for a given pair of illegal/legalsequences, there exists a tolerance within which communication could occur. Anoptimal solution picks the last possible place communication needs to occur to solvethe control problem.The most recent model for communication [31] focuses on agents in a distributedDES performing a monitoring or control task. In this scenario, agents need to knowwhere they are at every step of the system evolution and not which events to enableor disable. This approach di�ers from the others because the original communicationset is re�ned to eliminate unnecessary communication. A communication is removedfrom the initial set if the absence of that information prevents an agent from eithercompleting its task (i.e., it no longer knows exactly what state it is in) or violatesconsistency. 7

Our work on decentralized control and communication uses the concept of min-imality from [31] and our motivation for communication is similar to the idea ofavoiding the con
ict states in [3]. One signi�cant di�erence in our approach is thatour agents do not exchange observations: a two-way broadcast would occur only ifneither agent had su�cient knowledge to make the correct control decision and eachneeded the information from the other to reach a control solution. In addition, werepresent the action of communication as an event in the DES and incorporate thesenew events into the system.Our use of a formal logic to analyze control problems is not novel to DES. Temporallogic has been applied to the study of supervisory control problems [2, 26, 38] andmodal logic has been used as the basis for a computer language that simulates discrete-event processes [27]; however, a formal model of knowledge using modal logic has yetto be incorporated into the study of discrete-event control problems. Recently, modal�-calculus has been introduced into the analysis of hybrid systems [11].Reasoning about knowledge has been part of the analysis of a variety of applica-tions in the areas of economics [1, 25], computer security [6, 13], distributed databasesystems [14], robotics [4] and communication protocols [17].1.2 Outline of the ThesisThe remainder of the thesis is organized as follows. In chapter 2 we review the rele-vant de�nitions and results from supervisory control theory and knowledge theory. Inchapter 3 we present two knowledge models for analyzing decentralized discrete-eventcontrol problems. We provide a necessary and su�cient condition for solving the con-trol problem within this new framework. (This result is analogous to co-observability,a condition needed to solve decentralized DES problems.) We also speculate on therole knowledge and communication might play when this condition is not satis�ed.Chapter 4 contains our model for communication and control in decentralized DES.8

We provide a description of places where agents could communicate to solve the de-centralized control problem, subject to certain assumptions. We also prove that ourstrategy for incorporating communication into the decentralized framework will bothsolve the control problem and produce a set of consistent communications. Chapter4 also contains a greedy algorithm for producing a set of minimal communications.We summarize our results in chapter 5 and describe areas for further research.

9

Chapter 2Background and Notation
In this chapter we describe the notation that is necessary to discuss discrete-eventcontrol problems and concepts from modal logic. One of the di�culties in bringingtogether the notation from two established �elds is addressing the overlap of symbolsused to represent distinctly di�erent concepts. Wherever possible, we have tried toaccommodate the more serious notational discrepancies, but also include referencesthat could be consulted for further clari�cation.In addition, in sections 2.1.2 and 2.1.3 we describe variations on some standardoperators and structures from supervisory control. These new structures will beuseful when we want to describe how to avoid generating in�nite-state structures forreasoning about knowledge in discrete-event systems.2.1 Discrete-Event SystemsThis dissertation adopts the framework for discrete-event systems as developed byRamadge and Wonham [28]. A brief review of essential notation is provided in thissection. More comprehensive introductions to discrete-event control theory include[7, 28, 29, 37].2.1.1 ReviewIn the discrete-event control theory of Ramadge and Wonham [28], the systemrequiring control (the plant) is described as a generator of a formal language (i.e.,10

an automaton). The behaviour of the plant is represented by sequences constructedfrom a non-empty set of symbols called an alphabet. The alphabet represents the setof all possible events that can occur within the system. Transitions from one systemstate to another do not depend on the passage of time, but rather, on the occurrenceof an event. The goal is to develop a control strategy for an overseer, or supervisor ,that will constrain the behaviour of the plant to that of a pre-speci�ed sublanguage(the legal language). The supervisor averts undesirable behaviour of the plant byeither preventing some events from taking place or allowing|but not forcing|othersto occur.More formally, the plant is modeled by an automatonG = (QG;�; �G; qG0);where QG is a set of states; � is the alphabet; �G is the transition function, a partialfunction �G: � � QG ! QG; and qG0 2 QG is the initial state. For any event � 2 �and state qG 2 QG, if �G(�; qG) is de�ned (i.e., there is some state in the plantthat we can reach from qG via event �), we write �G(�; qG)!. The de�nition for �Gcan be extended to a partial function for �� � QG such that �G("; qG) := qG and(8� 2 �)(8t 2 ��) �G(t�) := �G(�; �G(t; qG0)). The set �� contains all possible �nitestrings (i.e., sequences) over � plus the null string ". The language generated by G,denoted L(G), is also called the closed behaviour of G:L(G) := ft j t 2 �� and �G(t; qG0)!g:This language describes all possible event sequences that the discrete-event systemcan undergo. Thus L(G) � ��. A marked language of G de�nes behaviour of thesystem that corresponds to completed tasks. We do not consider marked languagesin this dissertation.For any strings t; u; v 2 ��, we say that u is a pre�x of t if t=uv. Thus everystring t 2 �� (where t 6= ") has at least two pre�xes: " and t. If L � ��, the11

pre�x-closure of L is a language, denoted by L, consisting of all pre�xes of stringsof L: L := fu 2 �� : u is a pre�x of tg. Because every string is a pre�x of itself,L � L. A language is said to be pre�x-closed if L = L. By de�nition, L(G) ispre�x-closed.We assume that the legal behaviour of the plant may be described by an automatonE = (QE;�; �E; qE0) and the legal language is denoted L(E). We assume that E is asubautomaton of G as described in the context of supervisory control in [8] and [20].That is, QE � QG, qE0 = qG0 and �E(t; qG0) = �G(t; qG0) for all t 2 L(E).When QG is �nite, the automaton G can be described as a �nite-state automatonand can be represented by a directed graph (see �gure 2.1), where the nodes of thegraph are the states in QG, the arcs of the graph are the transitions de�ned by thepartial function �G, and the set of labels for the arcs are the events in �. Thus forany event � 2 � and state q 2 QG, �G(�; q)! if there is an arc labeled by � from qto some other state. The initial state is marked with a small entry arrow. Illegaltransitions are indicated with a dashed line. That is, the legal automaton E is thecollection of solid-line transitions.Informally, a supervisor is an agent that has the ability to control some eventsbased on a (partial) view of the plant's behaviour. To establish such supervision onG, we partition the set of events � into the disjoint sets �c, controllable events, and�uc, uncontrollable events. Controllable events are those events whose occurrence ispreventable (i.e., may be disabled). Uncontrollable events are those events whichcannot be prevented and are deemed permanently enabled. There are some systemswhere not all events can be seen by the supervisor. A supervisor thus has only apartial view of the system and can see only a subset of events in �. The set ofobservable events visible to a supervisor is denoted �o.Formally, a supervisor S is a pair (T;) in which T is an automaton T =(X;�; �; x0), where X is a set of states for the supervisor; � is the alphabet used12

β

α β

α

γ

γγ

γγ

1 2

3

4

6 7

0

5

Figure 2.1: A plant G and its legal automaton E .by G; � is the transition function, a partial function � : ��X ! X; x0 is the initialstate for the supervisor; and , called a feedback map, is given by : ��X ! f0; 1gsatisfying (�; x) = 1 if � 2 �uc; x 2 X; and (�; x) 2 f0; 1g if � 2 �c; x 2 X. Thenumber 0 is interpreted as the command \disable" and the number 1 as \enable".That is, is interpreted as a rule for disablement such that uncontrollable events arenever disabled. The automaton T monitors the behaviour of G and changes stateaccording to the events generated by G. The control rule (�; x) indicates whether �should be enabled or disabled at the corresponding state in G. The behaviour of Gwhen it is constrained by S is described by the automaton S=G, called a superviseddiscrete-event system:S=G = (Q�X;�; (� � �) ; (q0; x0)):The behaviour of S=G is described by L(S=G). The modi�ed transition function
13

(� � �) is de�ned as a mapping ��Q�X ! Q�X :(� � �) (�; (q; x)) := 8><>: (�(�; q); �(�; x)) if �(�; q)!;�(�; x)!; and (�; x) = 1;unde�ned otherwise:The centralized control problem introduced by Ramadge and Wonham[28] is asfollows:Given a plant G over an alphabet � (with controllable events �c) and givensome non-empty language L(E) where L(E) � L(G) �nd a supervisor Ssuch that L(S=G) = L(E):This formalism captures problems where we are given some process that can be de-scribed as an automaton (in this case, G), and some set of desirable (or \legal")sequences (in this case, L(E)), and a controller is sought to inhibit process behaviourso that all and only the desirable sequences are generated.A variation on the centralized control problem has a supervisor that no longersees every event in �. Instead a supervisor observes events in some subset �o � �.Supervisory control under partial observation was initiated by Lin and Wonham [23].To describe a supervisor's view of sequences we use the canonical projection P , whereP is a mapping from �� to ��o. This operator e�ectively \erases" those events � froma string t that are not found in the set of observable events �o:P (") = " (2.1)P (�) = "; � 2 � n �oP (�) = �; � 2 �oP (t�) = P (t)P (�); t 2 ��; � 2 �:14

Thus if the plant generates sequence t , then P (t) indicates the sequence of eventsobserved by the centralized supervisor. The inverse projection of P is the mappingfrom ��o to 2��: P�1(t) = fu j P (u) = tg:A pre�x-closed language L is observable with respect to G;P if(8t; t0 2 ��)(8� 2 �)P (t) = P (t0)) (t0� 2 L ^ t 2 L ^ t� 2 L(G)) t� 2 L): (2.2)This condition indicates that an observer's view of a string in L(G) is su�cient todetermine whether or not � should be disabled.The decentralized control problem arises when more than one supervisor is in-volved in coordinating control actions. This problem was �rst studied by Cieslak, etal., [9] and Rudie and Wonham [33]. Each supervisor Si has a partial view of thesystem and observes only events in �i;o � � and controls only events in �i;c � �, fori = 1; : : : ; n. We consider here only two local supervisors.To describe a decentralized supervisor's view of the plant, the projection operatorof (2.1) is updated as follows: Pi is de�ned for each supervisor and is a mapping from�� to ��i;o, for i = 1; 2: Pi(") = " (2.3)Pi(�) = "; � 2 � n �i;oPi(�) = �; � 2 �i;oPi(t�) = Pi(t)Pi(�); t 2 ��; � 2 �:As with the centralized version of projection, if the plant generates sequence t , Pi(t)indicates the sequence of events observed by supervisor i.Let the two local supervisors acting on G beS1 = (T1; �) and S2 = (T2;);15

where T1 = (X;�; �; x0) and T2 = (Y;�; �; y0). The conjunction of S1 and S2 is thesupervisor S1 ^ S2 := (T1 � T2; � �);where T1 � T2 := (X � Y;�; � � �; (x0; y0))and � 2 �, x 2 X, y 2 Y)(� � �)(�; x; y) := ((�(�; x); �(�; y)) if �(�; x)! ^ �(�; y)!unde�ned otherwise(� �)(�; x; y) := (disable if either �(�; x) = disable or (�; y) = disableenable otherwise:That is, the composite supervisor S1 ^ S2 disables an event if either S1 or S2 issuesa disablement command. When a supervisor S is the result of a conjunction of twosupervisors S1 and S2, we write S = (S1;S2).It is often convenient in the case of partial observability, to de�ne a supervisorSi only in terms of events in �i;c and �i;o. In this case Si can be extended to asupervisor eSi. The local supervisor Si acts only on events in �i;c � � and observesevents in �i;o � � while eSi takes the same control action as Si on �i;c, enables allevents in �n�i;c, makes the same transitions as Si on �i;o and stays at the same statefor events in � n �i;o. A supervisor eSi that acts on all of � and mirrors the controlactions of a supervisor Si that observes and controls only a subset of � is called theglobal extension of Si.The decentralized problem we consider is described in [33]:Given a plant G over an alphabet � (with controllable events �1;c;�2;c �� and observable events �1;o;�2;o � �), and an automaton E, where16

L(E) represents legal sequences, L(E) � L(G) and L(E) 6= ;, �nd localsupervisors S1 and S2 such that eS1 ^ eS2 is a supervisor for G and suchthat L(eS1 ^ eS2=G) = L(E): (2.4)Here, for i = 1; 2, local supervisor Si can observe only events in �i;o andcan control only events in �i;c and eSi is the global extension of Si. Theset of uncontrollable events, �uc, is understood to be � n (�1;cS�2;c).To describe a solution to the above problem, it is convenient to use the notionof controllability [28]. Given G over an alphabet �, for a language K � L(G), K iscontrollable with respect to G ifK�uc \ L(G) � K (2.5)where K�uc := ft� jt 2 K and � 2 �ucg. If we think of K as a set of \legal" se-quences, then we want to know when it will be impossible to stop an illegal sequencefrom happening. It must be that the introduction of an uncontrollable event into alegal sequence results in another legal sequence. Therefore, to solve (2.4), it is nec-essary that L(E) be controllable. If L(E) is not controllable, a largest (or supremal)controllable sublanguage of L(E) (possibly ;), denoted supC(L(E); G), can alwaysbe found [28]. The standard solution to the centralized control problem with fullobservation produces a supervisor that acts on G to generate supC(L(E); G). Theimportant point to note is that such a solution is said to be \minimally restrictive" inthat the supervisor disables events in G only when absolutely necessary to prevent anillegal sequence from occurring. That is, the largest possible subset of legal sequencesis generated.A necessary and su�cient condition for the solution to the above decentralizedproblem can be found using the notion of co-observability. Given G over an alphabet17

�, sets �1;c;�2;c;�1;o;�2;o � �, projections P1 : �� ! ��1;o, P2 : �� ! ��2;o , apre�x-closed language K � L(G) is co-observable with respect to G;P1; P2 if8t; t0; t00 2 ��; P1(t) = P1(t0); P2(t) = P2(t00))(8� 2 �1;c \ �2;c)t 2 K ^ s� 2 L(G) ^ t0�; t00� 2 K) t� 2 K conjunct 1^ (8� 2 �1;c n �2;c)t 2 K ^ t� 2 L(G) ^ t0� 2 K) t� 2 K conjunct 2^ (8� 2 �2;c n �1;c)t 2 K ^ t� 2 L(G) ^ t00� 2 K) t� 2 K conjunct 3Just as with observability for the centralized case, we would like a decentralizedsupervisor's view of a string to be enough for it to take the correct control action.If both supervisors can control the event in question (i.e., conjunct 1), then we justneed one of the supervisors to be able to have an unambiguous view of the stringst; t0; t00 to make the correct control decision regarding �; however, when an event iscontrolled by only one supervisor (i.e., conjuncts 2 and 3), then that supervisor's viewof t; t0; t00 must be su�cient to decide on the control action for �.It is now possible to discuss the existence of a solution to the decentralized prob-lem. The following theorem (along with its proof) appears as Theorem 4.1 in [33]:Theorem 2.1 There exist supervisors eS1 and eS2 that solve the above decentralizedsupervisory control problem if and only if L(E) is controllable with respect to G andco-observable with respect to G;P1; P2.Thus we can �nd decentralized controllers that synthesize L(E) provided that thelegal language satis�es the properties of controllability and co-observability. Whileit is possible to �nd the supremal controllable sublanguage of L(E), if L(E) is notco-observable there is no unique supremal co-observable sublanguage of L(E).
18

2.1.2 A Projection AutomatonThe projection operator in (2.3) assumes that a supervisor is tracking only thepartial view of the current sequence generated by the plant. Since a supervisor cannotsee every event, there may be uncertainty as to the exact state the plant is in. Asupervisor could keep track of the possible states the plant could be in, rather than(or in addition to) a sequence. An example: The plant is in state x and the occur-rence of event � would lead the plant to state y (i.e., �G(�; x) = y). If a supervisorcannot observe �, the supervisor will not know whether the plant is in state x ory. Consequently, we could describe a supervisor's view of the current state of theplant as a set that includes x and y. To capture the view that supervisor i has of theplant, we use a projection automaton [34], based on an algorithm in [19] to translate anondeterministic �nite-state automaton into a deterministic �nite-state automaton:PGi = (QPGi ;�i;o; �PGi ; qPGi0) where QPGi = 2QG is the set of states, �i;o � � is theset of events observable to agent i (and the set of events unobservable to agent i is�i;uo). The transition function �PGi and initial state qPGi0 are de�ned as follows:qPGi0 := fqGk j �G(t; qG0) = qGk and t 2 (� n�i;uo)�g;�PGi (�i; qPGij) := fqGh j �G(�it; qGh0) = qGh ; �i 2 �i;o; t 2 (� n �i;uo)� and qGh0 2 qPGij g:The initial state qPGi0 of the automaton captures all the states reachable by unobserv-able events (to supervisor i) from the initial state of the plant. Subsequent states inthe projection automaton are generated by considering which states can be reachednext via an observable event � 2 �i;o from the current state. The resulting set ofstates includes all states reached by unobservable sequences from the state to whichthe observable event � leads.Figure 2.2(a) contains a plant where S = (S1;S2), �1;o = �1;c = fa1; cg and�2;o = �2;c = fb2; cg. The projection automata of the plant for each supervisor19

1

2

1

2
2

1
2

1b

ba

a
b a

b

a

c

c

0

2

34

1

(a) (b) (c)

c

{0, 2}

{1, 4}

{0, 2, 3}

{0, 1}

{2, 4} { 3 }

c
c

Figure 2.2: The projection automata of a DES plant: (a) the plant G; (b) PG1 ; (c)PG2.are shown in �gure 2.2(b) and (c). For example, because S1 does not see event b2happening, if it initially sees \nothing", then it does not know if the plant is in state0 or state 2. If no events have yet occurred, then the plant will indeed be in state0; however, if b2 happens, S1 still sees nothing|despite the fact that the plant isreally in state 2. Once S1 observes its �rst occurrence of event a1, it still does notknow the true plant state. Assume the plant was previously in state 0 and now a1happens. The plant is currently at state 1. But S1 considers it possible that the plantcould have been at state 2 before a1 happened. This uncertainty is re
ected in thetransition from state f0; 2g to state f1; 4g via event a1 in �gure 2.2(b).2.1.3 A Monitoring AutomatonWe will also �nd it necessary to be able to simultaneously track the current stateof the plant and the current state of each supervisor's projected view of the plant (viathe projection automaton). Such a structure, which we call the monitoring automatonA, is a deterministic version of the nondeterministic automaton M described in [32].The monitoring automaton is formally de�ned as follows: A = (QA;�; �A; qA0), whereQA � QG � QPG1 � QPG2 (QA will be fully de�ned below), the initial state is qA0 =20

(qG0 ; qPG10 ; qPG20), and �A is de�ned below. When �G(�; qG) is de�ned, we have fourcases to consider for the construction of the transition function:� � 62 �1;o, � 62 �2;o:�A(�; (qG; qPG1 ; qPG2)) = (�G(�; qG); qPG1 ; qPG2);� � 2 �1;o, � 62 �2;o:�A(�; (qG; qPG1 ; qPG2)) = (�G(�; qG); �PG1 (�; qPG1); qPG2);� � 62 �1;o, � 2 �2;o:�A(�; (qG; qPG1 ; qPG2)) = (�G(�; qG); qPG1 ; �PG2 (�; qPG2));� � 2 �1;o, � 2 �2;o:�A(�; (qG; qPG1 ; qPG2)) = (�G(�; qG); �PG1 (�; qPG1); �PG2 (�; qPG2));where qG 2 QG; qPG1 2 QPG1 ; qPG2 2 QPG2 . When �G(�; qG) is not de�ned,�A(�; (qG; qPG1 ; qPG2)) is also not de�ned. The set of states QA is the set of states inQG �QPG1 �QPG2 reachable from the initial state via the �A de�ned above.For example, if the plant is at state x and an event occurs that only S2 observes,taking the plant to state y, the next state in the monitoring automaton re
ects thefact that the plant state changed, S1 has seen nothing and its estimate of where it isin the plant has therefore not changed, and S2 has updated its estimate to its viewof the plant at state y.Note that a state (qG; qPG1 ; qPG2) 2 QA is only reachable if there exists t 2 L(G)such that �G(t; qG0) = qG. Thus, L(A) = L(G) by construction.21

(2, {0, 2, 3}, {2, 4})

(0, {0, 2, 3}, {0, 1})

(0, {0, 2}, {0, 1})

(4, {1, 4}, {2, 4})

(2, {0, 2}, {2, 4})

(3, {0, 2, 3}, {3})

(1, {1, 4}, {0, 1})

b
2

b
2

b
2

a
1

a
1

a
1

a
1

c
c

Figure 2.3: The monitoring automaton A for G;PG1; PG2 of �gure 2.2.We illustrate the construction of A by revisiting the example of �gure 2.2. Recallthat the two supervisors of this plant see the following events: �1;o = fa1; cg and�2;o = fb2; cg. At each state of the monitoring automaton we want to determinethe current plant state and, based on the partial view each supervisor has of theplant, the set of states each supervisor considers to be the current plant state. Tobuild the states in QA, we begin by examining transitions from the initial state in theautomaton qA0 = (0; f0; 2g; f0; 1g). Subsequent states are constructed in a breadth-�rst manner by following the transitions of the plant and simultaneously determininghow the supervisors advance through the projections of the plant, PGi, i = 1; 2. Forinstance, at state 0 in the plant, transition a1 may occur and would lead to state 1. Atplant state 0, S1 is at state f0; 2g in PG1 and a transition of a1 takes S1 to state f1; 4gin PG1. In PG2, though, S2 makes no such state change since it does not see eventa1. The resulting state is thus (1; f1; 4g; f0; 1g). We continue in this fashion until thecalculation of �A yields no more new states. The complete monitoring automaton Afor this example system is shown in �gure 2.3.There may be two distinct states q; q0 in QA that have the same state as the �rstentry of the state label. This re
ects the fact that there could be more than one way22

of reaching a plant state x. For instance, if �G(t; qG0) = �G(t0; qG0) = x, t 6= t0 andPi(t) 6= Pi(t0), i = 1; 2, there will be two distinct states q; q0 in QA with state x as the�rst entry of the state label. The second and third entry in the state label for stateq record the state-based view S1 and S2 have of sequence t. Similarly, the state labelof state q0 stores the state-based view S1 and S2 have of sequence t0. In �gure 2.3,states (2; f0; 2g; f2; 4g) and (2; f0; 2; 3g; f2; 4g) are two such states.The creation of a monitoring automaton yields a �nite structure that can be usedto track the progress in the plant and the projection automata of the plant. No matterhow the plant arrives at a particular state q|even when the corresponding sequenceobserved by a supervisor is arbitrarily long|a supervisor will make the same controldecision every time it arrives at state q. This is a characteristic of the structure wewill exploit when we discuss communication in decentralized control problems. Forexample, if the plant in �gure 2.2 is in state 4, and if transition c out of state 4 isillegal then we do not care if the current sequence is b2a1, a1cb2a1cb2b2a1 or a1cb2b2a1and so on. We are only concerned with the fact that every time the plant reachesstate 4 event c must be disabled.2.2 A Model for KnowledgeThe framework for modeling knowledge that we use is based on a knowledge logicfor distributed systems [16], where multiple agents reason about their knowledge ofthe world. An agent could be a human, a machine (e.g., a robot) or even a componentof a machine (e.g., an electrical circuit). Unless otherwise indicated, the de�nitionsand results in this section are adopted from [12]. The model assumes that if an agentdoes not have complete knowledge of the true state of the world, it assumes a numberof worlds are possible. Worlds are described in terms of a non-empty set � of facts orprimitive propositions. More complicated formulas are constructed using expressionsfrom propositional calculus: : (negation) and ^ (conjunction). In addition, ' _ 23

represents :(:' ^ :).The system model is conceptually divided into two components: the agents andthe environment. The latter captures the relevant aspects of the system that are notpart of the description of agent behaviour. We assume that there is a set of agentsG= f1; : : : ; ng to which we ascribe knowledge about the system.The system behaviour is captured by a global state. A global state is an (n+1)-tuple, denoted w, that records the state of the environment and the local state|anagent's set of possible worlds|for each of the n agents. Formallyw = (we; w1; : : : ; wn).We can further refer to individual components of w: we and wi represent the state ofthe environment and the local state of agent i (for i 2 f1; : : : ; ng), respectively. Whenwe introduce our knowledge model for DES in chapter 3, we use the terms \world"and \global state" interchangeably.We will reason about what an agent knows about the truth of facts in the systemat global states. Knowledge of a fact is expressed using modal operators (one for eachagent) K1; : : : ; Kn. Thus K1p, where p 2 �, is interpreted as \agent 1 knows p".The semantics of the possible-worlds model is formalized using Kripke structures.A Kripke structureM is an (n+2)-tuple containing a set of worlds (e.g., global states),an interpretation function � that assigns truth values at each world w to the primitivepropositions in � (e.g., �(w)(p) = false), and possibility relations, one for each agent,that de�ne binary relations on the set of worlds. That is, the relation de�nes the (setof) worlds that look alike to an agent at any world of the system. For purposes ofthis discussion, the possibility relation is always an equivalence relation and therefore,it is always the case that re
exivity and symmetry hold. The possibility relation istypically not de�ned for the environment since we are not interested in ascribingknowledge to the environment.A Kripke structure is also expressible as a labeled graph. In particular, nodes areworlds and edge labels (sets of agents) capture the possibility relation. For instance,24

1 2

1,2

1,2

1,2

B

A C

p

p

pFigure 2.4: A simple Kripke structure.worlds that look alike to agent i are joined by an edge with a label \i". Each worldis also labeled with the truth values of all primitive propositions p 2 �, where we usethe notation \:p" to indicate that the truth value of p is false and \p" correspondsa value of true.The following example illustrates a simple Kripke structure and is adapted from[12]. The graphical representation of this system is shown in �gure 2.4. Suppose� = fpg and n = 2. Let the set of worlds be fA;B;Cg and the interpretation functionde�ned be such that proposition p is true at states B and C but false at state A(i.e., �(A)(p) = false, �(B)(p) = �(C)(p) = true). The possibility relations for theagents are de�ned as follows: agent 1 cannot tell the di�erence between A and B whilestates B and C look alike to agent 2. These relations are captured in �gure 2.4 bythe edge label of \1" joining states A and B and the edge label \2" joining states Band C. The self-loops at all three states with edge label \1,2" indicate that a givenstate cannot be distinguished from itself. For example, in addition to state B lookinglike A to agent 1, state A also looks like state A. Note that because we assume thatthe possibility relation is an equivalence relation, re
exivity and symmetry alwayshold. Therefore, from now on, self-loops and arrows will be omitted from diagramsof Kripke structures.We now have all the components we need to reason about knowledge: a set ofworlds describing the behaviour of the system and an interpretation � to analyze25

truth values of the propositions at states of the system. Together the set of worldsand � de�ne an interpreted system and is denoted by I.To discuss knowledge in an interpreted system, we assume that the possibilityrelation is de�ned as follows. Let w;w0 be two global states in I. We say w and w0are indistinguishable to agent i if the local state according to agent i is the same atboth global states: w �i w0 if wi = w0i: (2.6)To discuss what it means for a fact p to be true at a particular global state in I,we use the notation (I; w) j= p, which can be read as \p is true at (I; w)" or \p holdsat (I; w)". A fact p holds at a world w if the truth value as de�ned by � is true at w.For example, at state B in �gure 2.4, we can say p is true because �(B)(p) = true.More formally: (I; w) j= p (for p 2 �) i� �(w)(p) = true:The clause for negation indicates that :p is true at w exactly if p is not true:(I; w) j= :p i� (I; w) 6j= p:In �gure 2.4, at state A, we can say :p holds because p is not true at A.We can consider more than one fact holding at a world:(I; w) j= p1 ^ p2 i� (I; w) j= p1 and (I; w) j= p2:Thus, the conjunction of two propositions holds at w if it is the case that eachproposition is true at w.What does it mean for an agent to know facts in the system? An agent knows afact p at w if p holds at all worlds that the agent cannot distinguish from w:(I; w) j= Kip i� (I; w0) j= p for all w0 such that w �i w0: (2.7)26

Referring to �gure 2.4 again, we can now describe the knowledge of agents at anyworld in the system: e.g., at world B the formula :K1p ^ K2p holds. That is, at Bagent 1 does not know whether p is true, while at B agent 2 knows that p is true. Atworld B, agent 1 considers the existence of two possible worlds: A and B. It considersboth p and :p to be possible because p is false at world A while p is true at world B.Agent 2 also considers the existence of two possible worlds: B and C. However, sincep holds at both those worlds, at B agent 2 knows that p is true.It follows that if an agent knows p at w, it also knows p at all other worlds itconsiders possible at w: (I; w) j= Kip i� (I; w0) j= Kip (2.8)for all w0 such that w �i w0. For instance, agent 2 considers that worlds B and C\look alike". Since p is true at both these states, we can say that at B, agent 2 knowsp. Similarly, we can say that at C agent 2 also knows p .Finally, we note a property, called the Knowledge Axiom, that states that if anagent knows a fact, then the fact is true:(I; w) j= Kip) (I; w) j= p: (2.9)Note that if Kip holds at some world w, we know by (2.8) that Kip holds at allworlds that agent i cannot distinguish from w. Since p is true in all worlds that agenti considers possible, in particular, p is true at w.

27

Chapter 3Using Knowledge for ControlIn this chapter we describe how to recast decentralized supervisory control prob-lems as interpreted systems. We do not claim that the reformulation of this problemprovides a more e�cient solution but, rather, suggest that knowledge theory providesa more natural way of thinking about discrete-event control problems.We introduce two knowledge models: control decisions in the �rst model are madeby an agent on the basis of a partial view of a sequence of events generated by theplant, while control decisions in the second model are made based on the set of plantstates an agent considers possible. The latter model allows us to avoid generating anin�nite-state Kripke structure, whereas the �rst model is more faithful to the DEStheory of [29]. Most of the material in this chapter �rst appeared in a joint paperwith K. Rudie[30].3.1 Sequence-Based Knowledge ModelWe denote our \sequence-based" interpreted system as IDES(G;E), where G is theplant and E is the legal automaton. Like local supervisors in the decentralized DESformulation of [9, 33], the agents in this interpreted system make control decisionsbased on their partial view of the event sequences generated by the DES plant G.The environment of IDES is the pre�x-closed language generated by the plant andthe agents play a role equivalent to that of decentralized DES supervisors.A global state for n agents in IDES(G;E), which records the environment state,we, and the local states of each agent, wi, captures a \snapshot" of a sequence from28

the plant language L(G). The set of states for the environment is the set of se-quences in the plant language L(G), while the set of local states for the agents isthe set of sequences each agent observes according to the projection operation of(2.3). More formally, a global state for n agents is de�ned as w = (we; w1; : : : ; wn) =(t; P1(t); : : : ; Pn(t)) for t 2 L(G). We assume that n = 2 so that the group of agents,denoted by G, is f1; 2g.In addition to consisting of a set of global states, IDES(G;E) is also associatedwith an interpretation function. The interpretation �DES captures the notion ofwhether or not an event in � is permissible as sequences evolve in the plant. Toform �, the set of primitive propositions for IDES(G;E), we want to associate witheach � 2 � two distinct propositions: one to represent the fact that at a particularstate in the plant the event is de�ned (i.e., is possible), and another to representthe fact that at the corresponding state in the legal automaton state the event isde�ned. The propositions are de�ned in terms of events because we want to reasonabout the knowledge an agent has of the occurrence of an event, instead of, forinstance, a certain sequence. If � is �nite (i.e., j�j = N), it can be written as� = f�1; �2; : : : ; �Ng. We let � = f�Gi ; �Ei ji = 1; : : : ; Ng. We also partition � intotwo disjoint sets: �G = f�Gi ji = 1; : : : ; Ng and �E = f�Ei ji = 1; : : : ; Ng where �Gand �E are sets containing N symbols. Because we will frequently want to associate�Gi with its counterpart �Ei , we de�ne the relation R� such that R� � �G � �E andR� := f(�G; �E)j9�i 2 � where �G = �Gi ; �E = �Ei g. For convenience, we will usethe notation �G (respectively, �E) without explicit reference to R� when we mean�Gi (respectively, �Ei). The proposition �G is \event � can occur" and �E is \event� is legal". For convenience, we will refer to �uc when we need to identify thosepropositions in � which represent events in �uc (as de�ned in section 2.1).
29

The interpretation for the propositions in � is de�ned for all � 2 �:�DES(w)(�G) := (true if �G(we�; qG0)!;false otherwise: (3.1)
�DES(w)(�E) := (true if �E(we�; qE0)!;false otherwise:In other words, a proposition �G is true at a global state w if the event � can happendirectly following the event sequence described by we. A proposition �G is false(denoted :�G) at a global state w if the event � is not de�ned directly following theevent sequence described by we. Similarly, a proposition �E is true at a global statew if the event � can happen directly following the event sequence described by weand we� is part of the legal behaviour of the plant. A proposition �E is false (denoted:�E) at a global state w if either �G = false or if the sequence we� is part of theillegal behaviour of the plant.Because the set of global states in IDES(G;E) and the truth values assigned by�DES to the primitive propositions in � are derived from the legal automaton E andthe plant G, we can consider that IDES has implicit parameters G and E. Thus, forease of notation, we drop these arguments for the remainder of the chapter since Gand E are understood.We illustrate the sequence-based knowledge model by constructing a Kripke struc-ture for the plant and legal automaton in �gure 2.1. In this example, suppose thatagent 1 sees and controls events � and
 while agent 2 sees event � and controlsevents � and
.The complete Kripke structure contains ten states, corresponding to the ten se-quences in L(G). We show a representative portion of the structure in �gure 3.1.The set of propositions is � = f�G; �E; �G; �E;
G;
Eg and the truth assignments for�DES are made according to (3.1). For example, at state (�; �; "), proposition
G is30

(ε,ε,ε)
α , γ , β

GG G
α , γ , β

EE E

α , γ , β
GG G

α , γ , β
EE E

(γ,γ,ε)

α , γ , β
GG G

(αγ,αγ,ε)

α , γ , β
EE E

(β,ε,β)

α , γ , β
GG G

α , γ , β
EE E

α , γ , β
GG G

(βγ,γ,β)

α , γ , β
EE E

(α,α,ε)

α , γ , β
GG G

α , γ , β
EE E

22

1

2
2 2

1

2

2

Figure 3.1: A portion of the Kripke structure for G in �gure 2.1.assigned a value of true because there is a transition of
 from sequence � in theplant; however,
E has a truth assignment of false because this same transition is notde�ned in the legal automaton. The possibility relations describe how agents viewthe world. In this model, the possibility relation for each agent is de�ned using theindistinguishability relation �i of (2.6). That is, two global states look alike to agenti if the global states have the same local state according to agent i. For instance, thepossibility relation for agent 1 would contain the pair of states ((
;
; "); (�
;
; �))because these states have the same local state according to agent 1, namely
.The top half of a node in �gure 3.1 contains one of the global states in the systemand the bottom half of the node shows the truth values for the primitive propositionsat that global state. The diagram exactly describes the states of the plant where wewant to impose control (as constrained by the legal language) and what each agentbelieves are the possible worlds of this system. For example, in �gure 2.1 after � occursin the plant, event
 is not legal and therefore must be disabled. This informationis captured by the node labelled (�; �; ") in �gure 3.1. At this state the primitiveproposition
G is true, meaning that �
 is part of the plant language; however,
E is31

false, which means that �
 is not part of the legal language. By following the edgesconnecting the nodes, we can also determine what each agent believes are its possibleworlds. For instance, the node labelled (�; "; �) looks the same to agent 2 as the nodelabelled (�
;
; �) because the local state of agent 2 is � in both the global states.This is indicated by an edge labelled \2" joining these nodes.We can describe the knowledge of each agent at a particular state in the interpretedsystem. For example, at w = ("; "; "):(IDES; w) j= K1(�G ^ �E ^
G) ^K2:
E:At state w the set of worlds that agent 1 considers possible is f("; "; "), (�; "; �)g.At both these states the truth values of �G, �E and
G are true. Therefore we saythat \Agent 1 knows � can happen and is legal at ("; "; ") and that
 can happen at("; "; ")". Similarly, we say that \Agent 2 knows that it is not the case that
 is legalat ("; "; ")" because at all states indistinguishable from ("; "; ") to agent 2|namely("; "; "), (�; �; "), (�
; �
; ") and (
;
; ")|the formula :
E is true. We can also makenote of the lack of knowledge an agent has: at w, agent 1 does not know whether
is legal because at ("; "; ") the formula :
E is true while at (�; "; �) the formula
E istrue. This is denoted by (IDES; w) j= :K1
E and is read as \Agent 1 does not knowwhether
 is legal at ("; "; ")".3.2 State-Based Knowledge ModelThe previous knowledge model assumed that agents made decisions based on theirrecorded observations of event sequences generated by the plant. If the languagerequiring control has an in�nite number of strings, the Kripke structure for a systemwith such a language would have an in�nite number of worlds. To exploit the �niterepresentation of a regular language, in this section we introduce a model where agentsnow monitor the set of states the plant could be in.32

We construct our \state-based" interpreted system IDES0 as follows. The environ-ment component of this interpreted system is set of plant states QG, while the agentsare a slight variation of the DES local supervisors S1 and S2. Each supervisor stillhas only a partial view of the complete system behaviour, but these views are basedon the projection automaton of section 2.1.2, rather than the projection operator of(2.3).The worlds in the system are no longer composed of sequences from the plantlanguage L(G), but rather the worlds describe plant states in QG and the respectiveviews of those states for the group of agents G. The global states are constructedaccording to the stategy for generating states in QA of the monitoring automaton Aas described in section 2.1.3. Consequently, a global state w has the form (we; w1; w2)where we 2 QG, w1 2 QPG1 and w2 2 QPG2.The interpretation �DES0 changes slightly for the state-based knowledge model.Instead of determining if a sequence t 2 L(G) precedes event �, we want to check tosee if � is de�ned at the current plant state (as recorded in we):�DES0 (w)(�G) := (true if �G(�; we)!;false otherwise: (3.2)�DES0(w)(�E) := (true if �E(�; we)!;false otherwise: (3.3)Since we assume that the legal automaton can always be expressed as a subautomatonof the plant automaton, the seemingly ambiguous reference to we (which is a plantstate) in (3.3) is a consistent reference to the same state in both automata.3.3 Knowledge-Based Protocols and Kripke-observabilityThe interpreted systems IDES and IDES0 describe the knowledge that each agenthas concerning the validity of a particular sequence. We need to associate actions with33

an agent's knowledge|for instance, if an agent knows that a particular propositionis possible but not legal for a set of possible worlds, then we want it to disable thecorresponding event. A knowledge-based protocol [15] is a strategy that links actionsand knowledge for agents (and the environment). We believe that it is natural tothink of a supervisor basing its control actions on what the supervisor \knows" aboutthe present state of the system. Even though we depart from some of the speci�csof the formalism for knowledge-based protocols in [15], we incorporate the idea thatthere ought to be a connection between action and knowledge.We examine knowledge-based protocols where actions to disable or enable an eventare based only on local state information and where an uncontrollable event cannotbe disabled. We describe protocols for agents but not for the environment, which weview as incapable of taking control actions. For the decentralized DES we consider,when we say that a supervisor S = (S1;S2) solves a problem, we mean that when Gis under the control of S, the resultant language generated, namely L((S1 ^ S2)=G),equals the legal language: L((S1^S2)=G) = L(E). Solving the decentralized problemwith a knowledge-based protocol amounts to constructing a protocol that will ensurethat only legal sequences and all legal sequences are generated.3.3.1 Knowledge-based protocols for decentralized controlA local supervisor in a decentralized DES system disables controllable event �if the supervisor is able to determine that the occurrence of � will lead to illegalbehaviour; otherwise event � is enabled. An event � is disabled if at least one localagent takes a \disable �" action at w.The actions that drive the global state changes of the system are performed ac-cording to a selection rule or protocol. A knowledge-based protocol is a protocolwhere actions are taken on the basis of the local knowledge of an agent. We de�ne aknowledge-based protocol as a mapping that characterizes which events are disabled34

KPi : Li��! fenable; disableg, where Li is the set of local states for agent i. Sincethe knowledge-based protocol is de�ned on the local view of an agent, the actions ofagent i are applied at all w0 that are indistinguishable to agent i at w. Just as a localdecentralized DES supervisor makes control decisions based on its partial view of asequence, we want an agent to use knowledge and its local states to determine if agiven event should be disabled. A joint knowledge-based protocol is the collection ofthe knowledge-based protocols for all agents in G.We identify the group of agents that can control a given event as G� := fi : � 2�i;cg, i.e., for all � 2 �1;c \ �2;c, G� = f1; 2g; for all � 2 �1;c n �2;c, G� = f1g; for all� 2 �2;c n �1;c, G� = f2g; and for all � 2 �uc;G� = ;.A joint knowledge-based protocolKP = (KP1;KP2) solves the decentralized prob-lem if for all w 2 IDES and all (�G; �E) 2 R�:(i) (IDES; w) j= �G ^ :�E) (9i 2 G�)KPi(wi; �) = disable;(ii) (IDES; w) j= �G ^ �E) (6 9i 2 G�)KPi(wi; �) = disable:That is, solving the problem amounts to allowing only legal sequences and all legalsequences to occur. Note that since we assume that E is a subautomaton of G, it willnever be the case that (IDES; w) j= :�G ^ �E.To solve the decentralized control problem using knowledge-based protocols wemust formalize what it means for agents to \know enough". We describe several con-ditions that IDES (equivalently IDES0) must satisfy before a solution can be achieved.In particular, we present a necessary and su�cient condition so that our knowledge-based protocol admits only (and all) the legal sequences in L(E).We de�ne a property equivalent to co-observability [33] and controllability [29]that characterizes the nature of knowledge an interpreted system requires to yield adecentralized solution to the DES control problem.35

63

4

52 7

1

0

α

β
β

α

α

α

β

Figure 3.2: A plant G and legal automaton E.Definition 3.1 An interpreted system IDES (respectively, IDES0) is Kripke-observableif: 8w 2 IDES; 8(�G; �E) 2 R�;(IDES; w) j= :�G _ �E (3.4)_ (9i 2 G�) such that (IDES; w) j= Ki:�E:That is, if an illegal event � is about to occur, at least one agent that can control �knows that it should be disabled. We note here that co-observability is a condition onset membership and set containment for sets of sequences while Kripke-observabilityinvolves logic tests on propositions.The condition we were initially trying to capture in the de�nition of Kripke-observability was that for every event that can occur, at least one agent knows whetheror not that event is legal. Our intuition led us to the following logic formulation:8w 2 IDES; 8(�G; �E) 2 R�;(9i 2 G�) such that (IDES; w) j= Ki�E _Ki:�E: (3.5)However, this is actually too strong a condition as the following example will illustrate.The plant and legal automaton in �gure 3.2 represents a co-observable language(with supervisors S1 and S2) if �1;o = f�g = �1;c, �2;o = f�g, and �2;c = f�; �g.36

4

3

2

1

0

αµ

α
β

Figure 3.3: A plant G and legal automaton E.Thus a control strategy for this decentralized problem is as follows: S1 disables �after seeing � and S2 disables � after seeing ��. If we were to use the conditionin (3.5), then the condition would fail at w = ("; "; "). At this state, the possibleworlds of agent 1 are ("; "; "), (�; "; �), and (��; "; ��). Both disjuncts of (3.5) fail forevent � at w since (IDES; w) j= �E, whereas at w0 and w00, when w0 = (�; "; �) andw00 = (��; "; ��), we have (IDES; w0) j= :�E and (IDES; w00) j= :�E. The possibleworlds for agent 2 at w = ("; "; ") are states w0 = (�; �; "), w00 = (��; ��; ") and witself. As it did for agent 1, both disjuncts fail on event � at all states indistinguishablefrom w since (IDES; w) j= �E while (IDES; w0) j= :�E and (IDES; w00) j= :�E. Infact, the failure to meet the condition of (3.5) was because we required an agent toknow when an event should be enabled.This observation led to a revised de�nition:8w 2 IDES; 8(�G; �E) 2 R�;(IDES; w) j= �E (3.6)_ (9i 2 G�) such that (IDES; w) j= Ki:�E:Now that the condition in (3.6) does not insist on knowledge if the event is legal,this updated condition is satis�ed for event � at all states in �gure 3.2. However,�gure 3.3 shows another co-observable system where (3.6) also fails. Let �1;o = f�g,�1;c = f�; �g, �2;o = f�g, �2;c = f�g. There is a problem with event �, even though37

this event never needs to be disabled. At state w = (�; �; "), agent 2 neither knowsthat � should be disabled nor that it should not be disabled since (IDES; w) j= :�E,while at w0 = ("; "; ") it is the case that (IDES; w0) j= �E and w �2 w0. Therefore,at w neither disjunct of condition (3.6) is satis�ed. Since � cannot actually happenafter � occurs, it is too strong to require than an agent possess any knowledge about� at w.If we use the de�nition of (3.4), the system of �gure 3.3 is Kripke-observable.In particular, at state w = (�; �; "), the �rst disjunct for event � is now satis�ed:(IDES; w) j= :�G.Note that even though the de�nitions in (3.5) and (3.6) fail on this examplesystem, there is still a solution to the problem. This is because the default action isto enable an event when no agent knows whether or not to disable that event. Therequirement in the �rst disjunct of (3.5) to know that the event should be enabled istoo strong. Similarly (3.6) fails as we neglected to notice that we can omit knowledgetests on \do not care" states, that is, states where events are not even de�ned in thecorresponding DES plant states. Hence this knowledge condition can be relaxed sothat a test for knowledge is only performed when an event � is possible but is notlegal (i.e., when the disjunct :�G _ �E does not hold).Theorem 3.1 Given G;E, there exists a joint knowledge-based protocol KP = (KP1;KP2)that solves the decentralized problem i� IDES(G;E) is Kripke{observable.Proof: (() Suppose IDES is Kripke-observable. De�ne the following knowledge-based protocol:(8� 2 �)(8` 2 Li)(8i 2 G�) KPi(`; �) = 8><>: disable ; if 9w such that ` = wi^ (IDES; w) j= Ki:�E ;enable ; otherwise. (3.7)(8j 62 G�) KPj(`; �) = enable: (3.8)38

If an agent knows than an event is illegal, it will disable the event. Therefore, unlessan agent knows that an event is illegal, the event will be enabled. Note that for anevent controllable by agent i, the de�nition of KPi in (3.7) is robust to the choiceof w in (3.7) (i.e., if a di�erent w0 were chosen such that ` = w0i, then by (2.8),(IDES; w) j= Ki:�E i� (IDES; w0) j= Ki:�E).We want to show that KP = (KP1;KP2) solves the decentralized problem.(i) Suppose (IDES; w) j= (�G ^ :�E). We want to show that this implies (9i 2 G�)KPi(wi; �) = disable.Since (IDES; w) j= �G^:�E , we have (IDES; w) 6j= :�G_�E. Thus, since Kripke-observability holds, it must be the case that 9i 2 G� such that (IDES; w) j= Ki:�E .Therefore either KP1(wi; �) = disable or KP2(wi; �) = disable.(ii) Suppose (IDES; w) j= �G ^ �E. We want to show that this implies (69 i 2 G�)KPi(wi; �) = disable.The requirement for KPi(wi; �) = disable for some i 2 G� is that (IDES; w) j=Ki:�E . However, since (IDES; w) j= �E, we cannot have (IDES; w) j= Ki:�E for anyi (by (2.9)). Therefore KPi(wi; �) = enable for all i 2 G�. By (3.8), for all i 62 G�,KPi(wi; �) = enable.()) We need to show that if IDES is not Kripke-observable then there is no jointknowledge-based protocol KP that solves the decentralized problem.Suppose that some KP solves the decentralized problem. Since IDES is notKripke-observable, there must exist w 2 IDES such that 9(�G; �E) 2 R� where(8i 2 G�) (IDES; w) 6j= :�G _ �E _Ki:�E . That is,(IDES; w) 6j= :�G _ �E; (3.9)and for all i 2 G�, (IDES; w) 6j= Ki:�E : (3.10)39

The expression in (3.9) implies that (IDES; w) j= (�G ^ :�E). Since KP solves thedecentralized problem, and since (IDES; w) j= (�G ^ :�E), it must be the case that9j such that KPj(wj; �) = disable. Note that (3.10) holds for agent j and impliesthat 9w0 such that (IDES; w0) j= �E and w �j w0. Since KP solves the decentralizedproblem, KPj(w0j; �) 6= disable. However, since KPj(wj; �) = disable, this meansthat KPj(w0j; �) = disable (since w �j w0 means that wj = w0j), which leads to acontradiction. 2 Theorem 3.1Note that this result also holds for IDES0(G;E). We are checking the knowledgethat an agent has about events at its possible worlds. What is important is that thepossible worlds capture the knowledge of an agent for a given system. Therefore,as long as the knowledge of the agents is described accurately, it does not matterwhether the possible worlds be described as sequences of the plant language or asplant states. Note also that Kripke-observability is equivalent to controllability andco-observability taken together.We want to ensure that the actions taken by agents as a result of executing theknowledge protocol exactly permit the legal language of the DES plant. In whatfollows, we are referring only to the sequence-based model IDES, not the state-basedmodel IDES0. Therefore, we make precise the set of sequences that are generated bythe supervised interpreted system IDES.Definition 3.2 The language that contains all sequences determined by the actionsof the two knowledge-based protocols is KL(KP; G), de�ned as follows:" 2 KL;we� 2 KL if we 2 KL ^ we� 2 L(G) ^ KPi(wi; �) = enable ; (i = 1; 2):Thus a sequence is in KL if its pre�x is already in KL, the sequence is actuallygenerated by the plant, and the control action at the corresponding global state is40

to allow � to happen. If the knowledge-based protocol takes a \disable" action withresepct to � at global state w, it is because at least one agent knows that we� is notpart of the legal language and is therefore, by the above de�nition, not included inKL.3.3.2 Example: a Kripke{observable system for IDESWe return to the plant and legal automaton of �gure 2.1 where agent 1 sees andcontrols events � and
 while agent 2 sees � but controls both � and
. Part of theKripke structure associated with the plant is shown in �gure 3.1.We want to show that IDES is Kripke-observable. Let w = ("; "; "). We want toascertain that at this state either agent 1 or agent 2 knows to disable
:(IDES; w) 6j= :
G _
E: (3.11)Therefore, for Kripke-observability, we must �nd an agent i such that (IDES; w) j=Ki:
E.We �rst check to see if agent 1 has the appropriate knowledge about event
. Atw = ("; "; "), agent 1 considers one other world to be possible: (�; "; �).Recall that knowledge of a fact at w requires that the fact hold at all statesindistinguishable from w. Thus if agent 1 has knowledge that event
 is not legal atthis part of the plant, it must be the case that :
E holds in the two worlds notedabove. Agent 1 fails to have the required knowledge at state w0 = (�; "; �), since(IDES; w0) j=
E. Thus, (IDES; w) j= :K1:
E and we must check to see if Kripke-observability is satis�ed by agent 2's knowledge at this state.There are three other possible worlds agent 2 cannot distinguish from ("; "; "):(�; �; "), (
;
; ") and (�
; �
; "). As was the case for agent 1, we need to determinethat agent 2 knows :
E holds at w. This means that :
E must hold in all worlds41

that look like ("; "; ") to agent 2. Note that because :
E holds at all four possibleworlds, (IDES; w) j= K2:
E.A similar check can be performed at every other state in IDES to show that thissystem is Kripke-observable (summarized in Table 3.1).Table 3.1: Checking Kripke-observability.w Disjunct of Kripke-observability satis�ed("; "; ") (IDES; w) j= K2:
E (IDES; w) j= �E (IDES; w) j= �E(�; "; �) (IDES; w) j=
E (IDES; w) j= �E (IDES; w) j= :�G(
;
; ") (IDES; w) j= K2:
E (IDES; w) j= :�G (IDES; w) j= :�G(�; �; ") (IDES; w) j= K2:
E (IDES; w) j= :�G (IDES; w) j= �E(�
;
; �) (IDES; w) j= :
G (IDES; w) j= :�G (IDES; w) j= :�G(�
; �
; ") (IDES; w) j= K2:
E (IDES; w) j= :�G (IDES; w) j= :�G(��; �; �) (IDES; w) j=
E (IDES; w) j= :�G (IDES; w) j= :�G(��; �; �) (IDES; w) j=
E (IDES; w) j= :�G (IDES; w) j= :�G(��
; �
; �) (IDES; w) j= :
G (IDES; w) j= :�G (IDES; w) j= :�G(��
; �
; �) (IDES; w) j= :
G (IDES; w) j= :�G (IDES; w) j= :�GTable 3.2: A joint knowledge-based protocol for G and E and event
 in �gure 2.1.w KP1(w1;
) KP2(w2;
)("; "; ") enable disable(�; "; �) enable enable(
; "; ") enable disable(�; �; ") enable disable(�
; "; �) enable enable(�
; �; ") enable disable(��; �; �) enable enable(��; �; �) enable enable(��
; �; �) enable enable(��
; �; �) enable enableThe joint knowledge-based protocol for events � and � in this system is straight-forward: both events are enabled by both agents at every state in IDES. To realize42

the legal language, however, the control decisions for
 must ensure that
 is disabledbefore either agent sees any event occur and that
 is disabled after � is generatedby the plant. At w = ("; "; ") agent 2 does know to disable
 and thus KP2(";
) =disable. This action occurs at all global states where w2 = ", namely (�; �; ")|whichmakes certain that �
 will not occur|and at (
; "; ") and (�
; �; "). The \disable
" action at the latter two states is irrelevant since the previous disablement actionswill guarantee that we never reach these states. The complete set of control actionsfor event
 is summarized in Table 3.2. Note that as long as agent i takes a \disable"action for some event at wi, this action takes precedence over any other agent's \en-able" action for the same event at any global states w0 �i w, thereby ensuring thatthe event is disabled in all possible worlds of agent i at w.3.3.3 Example: a Kripke-observable system for IDES0The de�nitions of Kripke-observability, a joint knowledge-based protocol and The-orem 3.1 also hold for IDES0|simply replace IDES with IDES0 in all relevant places.Figure 3.4 (a) shows a plant G and a legal automaton E, where �1;o = �1;c =f�;
g and �2;o = �2;c = f�;
g. The projection automata of the plant are shownin (b) and (c) of �gure 3.4. Thus when agent 2 initially sees \nothing", i.e., theempty string ", it cannot determine if the plant has generated � or if no event has yetoccurred. Thus agent 2 considers the plant could be in plant states 0 or 1. Similarly,when agent 1 sees �
, it cannot determine if the plant has generated ��
, ��
� or�
. Thus it considers the plant could be in plant states 1, 2 or 3.To determine if IDES0 satis�es Kripke-observability, we still defer to De�nition 3.1and check the truth values of the primitive propositions at each state of the system.The Kripke-structure of IDES0 is shown in Figure 3.5. Let w = (3; f1; 3g; f3g).Since the only event de�ned at this state in the plant is
, we have �DES0(w)(�G) =43

β

β
α

α

β

0

1

2 3

{0}

γ

4

γ

γ

{1, 2}

{1, 2, 3}

γ

γ

γ

γ
γ

γ

(a) (b) (c)

{3} {2}

{0, 1}

{4} {1}

{1, 2, 3, 4}
γ

Figure 3.4: The automata for a state-based DES: (a) G and E; (b) PG1; (c) PG2.�DES0(w)(�G) = false. Thus the truth values of the propositions for events � and �satisfy the �rst disjunct of De�nition 3.1. While
 is de�ned in the plant at state 3, it isnot part of the legal automaton and therefore �DES0(w)(
G) = true and �DES0(w)(
E)= false. If the interpreted system of G and E satis�es Kripke-observability, one orthe other or both agents will know to disable
 at w.In �gure 3.5, agent 1 considers two possible worlds at w = (3; f1; 3g; f3g), namelyw and w0 = (1; f1; 3g; f0; 1g), and hence the two states are joined by an edge withthe label \1". It is not the case that agent 1 knows that
 is not legal at w since�DES0(w)(
E) = false but �DES0(w0)(
E) = true.Agent 2, on the other hand, considers that w looks like global states(3; f1; 2; 3; 4g; f3g) and (3; f1; 2; 3g; f3g). Note that agent 2's local state contains onlyone plant state, and therefore the only state agent 2 considers the plant to be in isplant state 3. The multiple global states with the same state of the environmentre
ects the di�erent paths the plant could have taken to reach state 3. Thus the44

multiple possible worlds for agent 2 at w simply indicate that agent 2 does not dif-ferentiate among the paths to plant state 3 and regardless of the path, it only everconsiders it possible that the plant is in state 3. Since �DES0(w)(
E) = false, then byde�nition of �DES0, the truth value for
E is clearly false at (3; f1; 2; 3; 4g; f3g) and(3; f1; 2; 3g; f3g). Therefore we have (I; w) j= K2:
E.Checking the rest of the points in the system reveals that the system is indeedKripke-observable. Table 3.3 contains a summary of the test for Kripke-observabilityfor the entire system.Table 3.3: Checking Kripke-observability for G and E in �gure 3.4.w Disjuncts of Kripke-observability satis�ed(0; f0g; f0; 1g) (IDES0 ; w) j= �E (IDES0 ; w) j= :�G (IDES0 ; w) j= :
G(1; f1; 3g; f0; 1g) (IDES0 ; w) j= :�G (IDES0 ; w) j= �E (IDES0 ; w) j=
E(1; f1; 2; 3; 4g; f1g) (IDES0 ; w) j= :�G (IDES0 ; w) j= �E (IDES0 ; w) j=
E(1; f1; 2; 3g; f1g) (IDES0 ; w) j= :�G (IDES0 ; w) j= �E (IDES0 ; w) j=
E(2; f1; 2; 3g; f2g) (IDES0 ; w) j= :�G (IDES0 ; w) j= :�G (IDES0 ; w) j=
E(2; f1; 2; 3; 4g; f2g) (IDES0 ; w) j= :�G (IDES0 ; w) j= :�G (IDES0 ; w) j=
E(3; f1; 3g; f3g) (IDES0 ; w) j= :�G (IDES0 ; w) j= :�G (IDES0 ; w) j= K2:
E(3; f1; 2; 3g; f3g) (IDES0 ; w) j= :�G (IDES0 ; w) j= :�G (IDES0 ; w) j= K2:
E(3; f1; 2; 3; 4g; f3g) (IDES0 ; w) j= :�G (IDES0 ; w) j= :�G (IDES0 ; w) j= K2:
E(4; f1; 2; 3; 4g; f4g) (IDES0 ; w) j= :�G (IDES0 ; w) j= :�G (IDES0 ; w) j= :
GThe joint knowledge-based protocol for this system, as with the previous example,is straightforward for events � and �: both agents enable these events at all pointsin IDES0. The control actions for
 must have at least one agent disabling
 atplant state 3. That is, for each point in the interpreted system where we = 3, atleast one agent must take the control action \disable
". In fact, agent 2 is neveruncertain about the plant being in state 3 since, whenever we = 3, it is always thecase that w2 = f3g. For instance, at w = (3; f1; 3g; f3g), agent 2 knows :
 and thusKP2(w2;
) = disable. Since every point where w2 = f3g is also every point wherewe = 3, the joint knowledge-based protocol prevents
 from occurring at plant state3. The complete set of control actions taken by each agent for
 is shown in Table 3.4.45

(1, {1,2,3,4}, {1})

(1, {1,2,3}, {1})

(1, {1,3}, {0,1})

(3, {1,3}, {3})

(3, {1,2,3,4}, {3}) (3, {1,2,3}, {3})

(2, {1,2,3,4}, {2})

(4, {1,2,3,4}, {4})

(2, {1,2,3}, {2})

G

E

β
β γ

α
G

γ

E

G

E

G

E

γ
G

α

γ
α

G

E

β

E

G

E

γ
G

E

β
β γ

α
G

E

βα

G

E

γ
G

E

β
γ

α
G

E
α

α

G

E

γ
G

E

β
β γ

α
G

E
α

(0, {0}, {0,1})

2

G

E

γ
G

β
β γ

α
G

E
α

β

G

E

γ
G

E

β
β γ

α
G

E
α

E

2

2

1

1

1

2
2

1
1 1

2

1

1

1

1

G

E

γ
G

E

β
β γ

α
G

E
α

G

E

γ
G

E

β
β γ

α
G

E
α

G

E

γ
G

E

β
β γ

α
G

E
αFigure 3.5: The Kripke structure for G in �gure 3.4.

46

Table 3.4: A joint knowledge-based protocol for G and E and event
 in �gure 3.4.w KP1(w1;
) KP2(w2;
)(0; f0g; f0; 1g) enable enable(1; f1; 3g; f0; 1g) enable enable(1; f1; 2; 3; 4g; f1g) enable enable(1; f1; 2; 3g; f1g) enable enable(2; f1; 2; 3g; f2g) enable enable(2; f1; 2; 3; 4g; f2g) enable enable(3; f1; 3g; f3g) enable disable(3; f1; 2; 3g; f3g) enable disable(3; f1; 2; 3; 4g; f3g) enable disable(4; f1; 2; 3; 4g; f4g) enable enable3.4 Distributed ObservabilityPreviously we considered what it means for an agent to know a fact; however, whatdoes it mean for a group of agents to know a fact? To �nd a joint knowledge-basedprotocol that solves the decentralized control problem, we require that the interpretedsystem be Kripke-observable. But even if the system is not Kripke-observable, it maybe the case that the group of agents has the combined knowledge to generate thecorrect control strategy. We call this notion of successfully pooling information togenerate a control decision distributed observability.Distributed observability is based on the concept of distributed knowledge (takenfrom [12]). Distributed knowledge is the weakest form of group knowledge: in essence,a group has distributed knowledge of p if after combining all the knowledge of thegroup, p holds. This amounts to taking the intersection of all sets of worlds eachagent in the group considers possible at a given state in the system.Definition 3.3 A group G of agents has distributed knowledge of p 2 � at state w,denoted (I; w) j= DG p, i� (I; w0) j= p for all w0 where, for all agents i in a group G,wi = w0i. 47

The modal operator DG means \it is distributed knowledge among the agents in G"[16]. It could be the case that no individual agent knows p, but after combining theirpossible worlds (i.e., take the intersection of the possible worlds for the agents) thegroup of agents knows p|only if p holds in all the remaining possible worlds of the`intersection'.Stronger assertions about group knowledge include \everyone in the group knowsp" and common knowledge, where \everyone in the group knows p, everyone in thegroup knows that everyone in the group knows p" etc. We do not consider thesestates of knowledge here, but merely note that there exists a hierarchy of states ofgroup knowledge for distributed systems.Distributed knowledge is the key to a concept we introduce, called distributedobservability:Definition 3.4 An interpreted system IDES has distributed observability with re-spect to a group of agents G if8w 2 IDES; 8(�G; �E) 2 R�(IDES; w) j= :�G _ �E _DG:�E:That is, at all states in the interpreted system where an event would need to bedisabled, there is distributed knowledge about whether to disable that event. Notethat if IDES is Kripke-observable then by de�nition IDES has distributed observabilitysince at every state, for each event in �c, at least one agent (even before poolingknowledge) will know the correct control decision to make.Intuitively, to solve a decentralized problem, even with communication, it wouldhave to be the case that what one agent lacks in knowledge or information, the othercan supply. Consider the case of sequences t and t0 which look alike to both agentswhere t is legal and t0 is illegal. If agent 1 were to communicate to agent 2 that it(agent 1) knows that one of t or t0 has occurred, or if agent 2 were to communicate48

α γ
β

α
β γ

Figure 3.6: The combined DES plant G and its legal automaton E.similar information to agent 1, communication will not help the agents make a controldecision.Using the knowledge framework we can exploit the possible-worlds model to iden-tify system states that are indistinguishable to both agents (and where, therefore,information pooling would be of no help). Further, we can identify states where anagent's ability to make control decisions would be improved by communication.We present two examples where the two agents have partial observation of asystem: one where the pooling of possible worlds is not enough to achieve control andone where we believe that combined knowledge can achieve control.3.4.1 Example: when pooling knowledge is not enoughIn �gure 3.6 the language generated by the legal automaton is not Kripke-observable1if �1;o = f�g, �1;c = f�;
g, �2;o = f�g, and �2;c = f�g. When agent 1 sees � (equiv-alently, agent 2 sees �), it does not know whether or not �� or �� has occurred. Thusa control decision about
 cannot be reached. The Kripke structure in �gure 3.7 showsthat IDES is not Kripke-observable. To see this, suppose the system were Kripke-observable. Then when w = (��; �; �), it must be that agent 1 knows :
E in its setof possible worlds at w|since (IDES; w) 6j= :
G _
E. In fact, this is not the case1This example arose from discussions K. Rudie had with S. Lafortune, F. Lin, A. Overkamp andD. Teneketzis. 49

because (IDES; (��; �; �)) j=
E.If both agents were to pool their knowledge at a state where agent 1 sees � andagent 2 sees �, so that the resulting possible worlds are (��; �; �), (��; �; �), and(��
; �; �), the Kripke structure indicates that still there is no distributed knowl-edge about
E for the same reasons that the system is not Kripke-observable: thecon
icting truth value of
E at states (��; �; �) and (��; �; �). That is, distributedobservability is not satis�ed.When distributed observability is not satis�ed this tells us that at some place,pooling information does not help. In this example, by the time agent 1 sees �and agent 2 sees �, the relative ordering of � and � has been lost, i.e., even if atthat point agent 2 were to tell agent 1 that it has seen �, that would not convey toagent 1 whether �� or �� had occurred. This would suggest that the agents mustcommunicate prior to agent 1 seeing � and agent 2 seeing �.One possible communication protocol could assume that an agent sends a queryas soon as it is uncertain about whether to disable an event. Unfortunately, such astrategy is highly sensitive to small communication delays. In this example, becauseagent 2 sees and controls only �, there is never a situation when agent 2 is confusedabout its control decisions. So it never sends a query to agent 1. Agent 1 would needto submit a query when it sees �. If only � has happened and agent 1 sends a queryto agent 2, then it would appear that a decision about
 can be made since the pooledinformation would indicate that the only possible world is (�; �; "). However, if � hadtaken place before agent 2 receives the query, agent 1 would not know whether or notto disable
 since it would not know if � had occurred just before � or just after �happened. That is, the usefulness of pooled information depends on whether � canoccur after � has occurred but before agent 2 receives the query. In other words, evenif a query results in a response, the solution is sensitive to the precise moment thequery is received. 50

α , γ , β
EE E

α , γ , β
GG G

(αβγ,α,β)

α , γ , β
EE E

α , γ , β
GG G

(βαγ,α,β)

α , γ , β
GG G

α , γ , β
EE E

(αβ,α,β) (βα,α,β)
α , γ , β

GG G

α , γ , β
EE E

α , γ , β
GG G

α , γ , β
EE E

(β,ε,β)(α,α,ε)

α , γ , β
EE E

α , γ , β
GG G

(ε,ε,ε)

α , γ , β
EE E

α , γ , β
GG G

2 1

{1,2}

1

{1,2} {1,2}

1

2
1

2

2

1 2
{1,2} {1,2}

Figure 3.7: The Kripke structure for the plant in �gure 3.6.
51

β
γ µ γ

γ

β
α

γ
µFigure 3.8: A combined DES plant G and legal automaton E.3.4.2 Example: when pooling knowledge is enoughThe legal language corresponding to the legal automaton illustrated in �gure 3.8is not Kripke-observable. Let �1;o = f�g, �1;c = f�;
g, �2;o = f�; �g, and �2;c =f�; �;
g. Upon observing �, agent 1 (which sees only �) does not know if �� or��� has occurred and hence does not know whether or not to disable
. Similarly byobserving ��, agent 2 would not know whether ��� or �
� had occurred and couldmake no decision about disabling
. However, we can check the Kripke structure andsee that distributed observability is satis�ed. That is, when an agent is unable tomake a control decision, pooling information will help. In fact, an agent has more
exibility: to submit a query every time it is stuck is possibly unnecessary. If eachagent has available to it a record of the history of its queries then it may be possible todeduce further information based on queries it has not received from the other agent.We illustrate this below. In addition, there remains the issue of when informationshould be pooled. There may be several states where pooling is bene�cial and it maybe possible to ascertain whether communication should be delayed to the last possiblemoment or should occur as early as possible.In this example, as soon as agent 1 sees � it does not know whether or notto disable
. At what state should it communicate or query agent 2 so that they52

can pool their knowledge? We can assume here that communication between agentsoccurs instantaneously so that as soon as one agent cannot continue, the other agentreceives a query to pool knowledge. In this case, agent 2 can continue making controldecisions until it sees �� at which point it must submit a query to pool knowledge.On the other hand, if agent 2 sees �� but has already received a query from agent1 (after agent 1 sees �), then agent 2 no longer needs to query as it knows thatpreviously agent 1 did not know what to do about
. Therefore agent 2 can deducethat � must have occurred.

53

Chapter 4Communication and Decentralized DES
In chapter 3 we used knowledge models to analyze decentralized discrete-eventproblems that satis�ed speci�c conditions to generate a control solution. The solutionprecluded the possibility of agents pooling or communicating information regardingtheir partial view of the system. The notion of distributed observability for inter-preted systems provides a starting point from which we begin our understanding ofhow agents might communicate to solve a particular class of decentralized controlproblems.This chapter introduces our approach to incorporating communication into de-centralized discrete-event control problems. The problem that we are interested inconcerns interpreted systems that do not satisfy Kripke-observability. Since an agentbases its actions on the information it has, if an agent does not have \enough" in-formation to know that event � should be prevented from occurring, under whatconditions would information from other agents give that agent the knowledge tomake the correct control decision about �?4.1 Knowledge, communication and controlIn this section we present a broad overview of the motivation explaining why wewant to introduce communication into decentralized DES. As well, we indicate theunderlying assumptions we make regarding the nature of communication in decen-tralized systems. 54

4.1.1 Why communicate?When the correct control decision cannot be reached in the absence of communi-cation, as was the case for the example in �gure 3.8, sharing information with otheragents could lead to a control solution. Thus an agent may communicate to allowanother agent to reach the correct control decision. Because an agent has a partialview of the system, if a communicating agent shares information with another agentat state x, it is also communicating at every state that it �nds indistinguishable fromx, a notion termed consistency [31]. Therefore communication occurs for two reasons:to solve a control problem, and to satisfy consistency.The strategy for communication we present in this chapter does, by de�nition,satisfy consistency. In the construction of the communication protocol we insteadinsist that our procedures (1) render the protocol well-de�ned in the sense that thereis no ambiguity when an agent must communicate (this is described in more detailin section 4.4); and (2) when taking into account any prior information that anagent could receive, the agent's view of the world|in light of this new information|is correctly re�ned. As an example of this latter point, suppose that our strategydetermines that agent i communicates at one of its local states wi = fx; y; zg, wherex; y; z 2 QG and wi 2 QPGi for some plant G. That is, with its partial view of theworld, agent i cannot distinguish between plant states x, y and z. Further supposethat a prior communication from another agent allows agent i to distinguish x fromy (i.e., wi should really be fx; zg). We want our protocol to ensure that agent icommunicates its updated view of the world as re�ned by this additional information.4.1.2 Who communicates?In the previous chapter we described how to ascribe knowledge to agents in adecentralized discrete-event control problem. As long as at least one agent has enough55

knowledge to make the correct control decision and takes the correct control action,a solution to the control problem is achieved.When an agent does not have su�cient knowledge to make the correct controldecision|and there is no other agent capable of making the decision|we assumethat another agent in the system communicates information to facilitate the correctcontrol decision.4.1.3 What to communicate?At any point in the interpreted system an agent has access to two pieces of infor-mation: its local state (i.e., the set of states it considers the plant could be at) andits knowledge of the system at that local state. We assume that the communicatingagent sends its local state to the agent that lacks knowledge. An agent receivingcommunication then updates its own local state by intersecting its local state withthe communicated local state.For example, suppose an agent must make a control decision to disable event � atplant state q, but � is allowed to happen at plant state q0. If the agent considers itpossible that the plant could be in either state q or q0, then it cannot make the correctcontrol decision to disable � if the plant is actually at state q. Suppose another agentconsiders it possible that the plant is either at state q or state q00 and � is not de�nedat state q00. Therefore, if the agent lacking knowledge about � is sent the informationfq; q00g, it updates its own local state to fq; q0g \ fq; q00g = fqg. Now the correctcontrol decision (i.e., to disable �) can be made since after communication the statesq and q0 can be distinguished.4.1.4 Where to communicateAn agent is confused if it must make a control decision and cannot distinguish be-tween a state leading to a legal sequence and a state leading to an illegal sequence. In56

section 4.2 we describe our strategy for identifying places (e.g., states) where commu-nication to achieve a control solution occurs. These are places in the system where theinformation an agent receives leads to a situation where the agent makes the correctcontrol decision. As noted earlier, we also must formulate a communication protocolthat takes into account the e�ects of prior communication from another agent. Aprocedure for ensuring that an agent's view of the world is re�ned appropriately ispresented in section 4.3.4.1.5 When to communicate: a communication protocolWe represent the action of agent i communicating with agent j at some stateq in the plant (for purposes of solving the control problem) by the event comij:q.Therefore, when a place where agents \communicate for control" has been identi�ed(e.g., state q), we insert a communication event into an updated version of the plantat that state. Subsequently, communication events must be incorporated at all statesthat an agent �nds indistinguishable from the places it communicates for control (e.g.,states that look like q). Once all the communication events have been incorporatedinto the plant, the communication protocol for each agent is derived by calculatingits projection automaton of the augmented plant. To ensure that the projectionautomata re
ect the e�ects of communication on an agent's view of the world, we mustascertain that the communication events have been added to the augmented plant atthe appropriate states. The updated plant can then be translated into our knowledgemodel where we can determine whether or not the addition of communication nowrenders the system Kripke-observable.
57

4.2 Communication for ControlIn section 3.3, solving the control problem in our knowledge model amounted toeach agent having enough information to make the correct control decisions. We char-acterized an agent's inability to make such a decision as a place in the interpretedsystem that contributes to the system not being Kripke-observable. We then specu-lated in section 3.4 about the role distributed observability might play in providingagents with more information to make the correct control decisions. The notion ofdistributed observability suggests that pooling takes place just before a control de-cision needs to be made. However, it is possible to come up with examples wherea control solution exists but where pooling possible worlds under the conditions ofdistributed observability does not lead to an agent having the knowledge to make thecorrect control decision. Therefore, in our strategy for communication, we identifyplaces where pooling information at that place is helpful.We have established that an agent requires extra information, for example, com-municated from another agent, when it cannot distinguish an illegal sequence from alegal sequence and it must make the correct control decision. We have yet to establishhow to identify speci�c places where communication will give agents the knowledge tosolve the control problem. In this section we claim that, subject to certain conditions,we can always �nd a place for agents to communicate so that a control solution willeventually be reached. At such a place in the interpreted system, the communicatingagent i can provide agent j with information that allows j to distinguish whether thesystem is along a sequence where j will have to make a control decision. We begin byintroducing some terminology we will need to identify places where communicationoccurs to solve the control problem.Definition 4.1 A communication state is a state q 2 QG where agent i commu-nicates to agent j (for i; j 2 f1; 2g and i 6= j) so that agent j will know whether it is58

observing states along a legal sequence or an illegal sequence.This de�nition is intentionally imprecise at this stage and will be updated later.For now, we consider a communication state to be a state where information fromone agent is imparted to the agent responsible for making a control decision. Thecommunicated information allows the latter agent to enable or disable the appropriateevent at a subsequent point in the system.Definition 4.2 A maximal-P pair (t; t0) is a pair of sequences t; t0 2 �� whereP (t) = P (t0) and 6 9� 2 � such that P (t�) = P (t0) or P (t) = P (t0�).Recall that the canonical projection operator P in (2.1) e�ectively erases the unob-servable events in a sequence t. In this case P is a mapping from �� to (�1;o [�2;o)�.Thus, a maximal-P pair pinpoints the last place two sequences look alike to an ob-server that sees all observable events. We will use maximal-P pairs to identify com-munication states by locating the places in the interpreted system where an illegaland a legal sequence in L(G) look alike using canonical projection.Definition 4.3 The local view `i of a state ` 2 QG reached via sequence t (i.e.,9t 2�� where �G(t; qG0) = `) is the set of all the states in the plant that supervisor/agenti considers the plant could be in upon seeing Pi(t):`i := fqG j qG 2 QG ^ 9u 2 P�1i (Pi(t)) such that �G(u; qG0) = qGg:Thus if agent i cannot determine if t or t0 has occurred in the plant (i.e., Pi(t) = Pi(t0))and if �G(t; qG0) = q while �G(t0; qG0) = q0, the local view of agent i at state q willcontain q and q0.Definition 4.4 If t 2 �� and � 2 �, state qG 2 QG is called a good state withrespect to t� if 9u; v 2 �� such that t = uv, �G(u; qG0) = qG and �E(t�; qE0) isde�ned. 59

That is, a good state is one that occurs along a path of a legal sequence.Definition 4.5 If t 2 �� and � 2 � state qG 2 qG is called a bad state withrespect to t� if 9u; v 2 �� such that t = uv, �G(u; qG0) = qG and �G(t�; qG0) isde�ned but �E(t�; qE0) is not de�ned.Similarly, a bad state is one that occurs along a path of an illegal sequence.We will want to be able to draw conclusions about what an agent sees if thecanonical projections of two sequences are equal. For instance, if P (t) = P (t0), wewant to conclude that Pi(t) = Pi(t0). In the lemma and corollary that follow, we usePA to identify a canonical projection operator from �� to A�, where A is a subset of�.Lemma 4.1 Let B � A � �. For canonical projection operators PA : �� ! A� andPB : �� ! B�, if PA(t) = PA(t0), where t; t0 2 �� then PB(t) = PB(t0).Informal Proof. Let A0 = f� j � 2 � and � 62 Ag and B0 = f� j � 2 � and � 62 Bg(i.e., A0 is the complement of A, B0 is the complement of B). Since B � A, thereforeA0 � B0. Note that PA will replace events in A0 by ". Then PB will replace events inthe larger set B0 by ". Thus PA(t) = PA(t0) implies that PB(t) = PB(t0). The resultcan be proved more formally using induction on the length of strings.2 Lemma 4.1Thus sequences that are indistinguishable to an agent are also indistinguishable toother agents that observe fewer events.We prove here that under a certain condition we can �nd places where a com-municating agent can eliminate the confusion of the agent incapable of making thecorrect control decision. The confused agent simply needs to be able to tell bad statesfrom good states.In the following theorem, observability is a hypothesis because observability meansthat a centralized observer (one that could see all the events that both agents see)60

could solve the control problem. Otherwise one agent lacks observations that couldnot necessarily be supplied by the other agent.Theorem 4.1 Given G;E and let i 2 f1; 2g. If E is observable with respect to G;Pand 9�̂ 2 �i;c; t; t0 2 L(G) such that t�̂ 62 L(E) and t0�̂ 2 L(E) and Pi(t) = Pi(t0)then 9` 2 QG where ` is either a good state with respect to t0�̂ or a bad state withrespect to t�̂ and 6 9y; y0 2 `1 \ `2 (for y 6= y0) where y is a bad state with respect tot�̂ and y0 is a good state with respect to t0�̂.Proof. There exists u; u0 2 �� such that u 2 t, u0 2 t0 and (u; u0) is a maximal-Ppair. Since E is observable with respect to G, (t; t0) is not a maximal-P pair andtherefore either u is a proper pre�x of t (i.e., u 6= t) or u0 is a proper pre�x of t0.Without loss of generality, let u be a proper pre�x of t (i.e., 9� 2 �; v 2 �� such thatt = u�v). Let �G(u; qG0) = z and �G(u�; qG0) = x.We consider the following two cases:Case A: (u; t0) is a maximal-P pair.Let �G(t0; qG0) = z0. Refer to �gure 4.1 (a) for a graphical representation of this case.(i) � 2 �uoThe next event after u cannot be unobservable. If � is unobservable, then (u; t0)would not be a maximal-P pair because we could extend u by �.(ii) � 2 �i;oWe will argue that this scenario is not possible. It su�ces to argue as follows:Pi(t0) = Pi(t)= Pi(u�v)= Pi(u)Pi(�)Pi(v) (4.1)Since (u; t0) is a maximal-P pair, P (u) = P (t0). Since �i;o [�j;o � �o, by Lemma 4.161

z

(b)(a)

x

u u

σ σ
z z

x

G
0q

x

σ
z

G
0q

u t

Figure 4.1: Identifying a communication state.Pi(u) = Pi(t0). Therefore (4.1) holds only if Pi(�)Pi(v) = ". This leads to a contra-diction as Pi(�) 6= ".(iii) � 2 �j;oClaim 1. State x is a state where xi \ xj does not contain distinct states y and y0where y0 is a good state with respect to t0�̂ and y is a bad state with respect to t�̂.Note that xi \ xj already contains a bad state, namely x. Therefore we just have toshow that there is no pre�x of t0 that has the same projection as some pre�x of u�.At x, xj already contains bad state x. The only way xj could also contain a di�erentgood state with respect to t0�̂ is if there is some pre�x of t0, say w0, where Pj(w0) =Pj(u�). If it did, xj would additionally contain the good state �G(w0; qGo). Assumet0 = w0v0:Pj(w0) = Pj(u�)= Pj(u)Pj(�)= Pj(t0)Pj(�) (since �j;o � �i;o [�j;o and P (u) = P (t0);by Lemma 4:1; Pj(u) = Pj(t0))= Pj(w0)Pj(v0)Pj(�) (4.2)62

For (4.2) to hold, Pj(v0)Pj(�) = " which leads to a contradiction as Pj(�) 6= " (since� 2 �j;o).Case B: (u; t0) is not a maximal-P pair.Then u0 is a proper pre�x of t0.Let t0 = u0�0v0 for �0 2 �, v0 2 �� and �G(u0; qG0) = z0 and �G(u0�0; qG0) = x0, as shownin �gure 4.1 (b).(i) �; �0 2 �uoThis scenario is not possible. A next event along t after u (respectively, along t0 afteru0) cannot be unobservable, otherwise we would be able to extend u or u0 and violatethe fact that (u; u0) is a maximal-P pair.(ii) �; �0 2 �o and � = �0This scenario is not possible. The next event along t after u cannot be identical tothe next event along t0 after u0, otherwise (u; u0) would not be a maximal-P pair.(iii) � 2 �i;o; �0 2 �j;oClaim 2. State x0 is a state where x0i \ x0j does not contain distinct states y and y0where y0 is a good state with respect to t0�̂ and y is a bad state with respect to t�̂.We will �rst show that from state z there is no sequence v = �w, where v 2 ��, suchthat Pi(uv) = Pi(u0�0). That is, if x0j contains any bad states (distinct from x0) withrespect to t�̂ that occur after z along t, these states are not in x0i.We need only show that Pi(uv) 6= Pi(u0�0). Suppose it were. ThenPi(uw) = Pi(u0�0)Pi(u)Pi(w) = Pi(u0)Pi(�0)= Pi(u)Pi(�0) (since �i;o � �i;o [�j;o;by Lemma 4:1; Pi(u) = Pi(u0)) (4.3)63

For (4.3) to hold it must be the case that Pi(�w) = Pi(�0) = " (since �0 2 �j;o), whichleads to a contradiction since Pi(�) 6= ".As for Case A (iii), we have a situation where at state x0, x0i already contains thestates z; z0; x0 since Pi(u) = Pi(u0) and Pi(u0�0) = Pi(u) (because �0 2 �j;o). At x0,x0j already contains good state x0. Now, the only way x0j could also contain a badstate (distinct from x0) with respect to t�̂ is if there is some pre�x of u, say ŵ, wherePj(ŵ) = Pj(u0�0). Thus x0j would also contain a bad state �G(ŵ; qGo). Suppose thatsuch a ŵ exists (i.e., u = ŵv̂ and v̂ 2 ��). ThenPj(ŵ) = Pj(u0�0) (4.4)= Pj(u0)Pj(�0)= Pj(u)Pj(�0) (since �j;o � �i;o [�j;o; by Lemma 4:1; Pj(u) = Pj(u0))= Pj(ŵv̂)Pj(�0)= Pj(ŵ)Pj(v̂)Pj(�0) (4.5)which leads to a contradiction since Pj(�0) 6= " (since �0 2 �j;o).(iv) � 2 �j;o; �0 2 �i;oAnalogous to Case B (ii). In the current scenario, the claim to be proven becomes:The state x is a state where xi \ xj does not contain a good state y0 with respect tot0�̂ and a bad state y with respect to t�̂.(v) �; �0 2 �i;o and � 6= �0We will argue that this scenario is not possible. We have that Pi(t) = Pi(t0) andsubstituting for t and t0:Pi(u�v) = Pi(u0�0v0)Pi(u)Pi(�)Pi(v) = Pi(u0)Pi(�0)Pi(v0)= Pi(u)Pi(�0)Pi(v0) (since �i;o � �i;o [�j;o;by Lemma 4:1; Pi(u) = Pi(u0))64

which leads to a contradiction because Pi(�) 6= Pi(�0) (since � 6= �0).(vi) �; �0 2 �j;o and � 6= �0Claim 3. States x and x0 are both states where xi \ xj and x0i \ x0j do not containdistinct states y and y0 where y is a good state with respect to t0�̂ and y0 is a badstate with respect to t�̂.We want to �rst illustrate the case for x0 by showing after state z there is no sequencev = �w, where v 2 ��, such that Pj(uv) = Pj(u0�0).Suppose that such a v exists. ThenPj(uv) = Pj(u0�0)Pj(u)Pj(v) = Pj(u0)Pj(�0)= Pj(u)Pj(�0) (since �j;o � �i;o [�j;o;by Lemma 4:1; Pj(u) = Pj(u0)) (4.6)Since v = �w, for (4.6) to hold it must be the case that Pj(�w) = Pj(�0), which leadsto a contradiction since Pj(�) 6= Pj(�0).To show that there is no sequence ŵ leading to state z where Pj(ŵ) = Pj(u0�0), wefollow the same procedure presented in (4.4).Similar reasoning shows that if we instead select x as our state, that there is (a) nov0 = �0w0 such that Pj(u0v0) = Pj(u�); and (b) that there is no ŵ along t0 leading tostate x0 such that Pj(ŵ) = Pj(u�). 2 Theorem 4.1The idea of Theorem 4.1 is that when agent i cannot make the correct controldecision about � 2 �i;c, (i.e., 9t; t0 2 L(G) such that t0� 2 L(E), t� 62 L(E) andPi(t) = Pi(t0)) we can always �nd a place|somewhere along either t or t0|whereagent j can distinguish between t and t0. At this place or communication state, agent65

j sends its local state or local view to agent i. Prior to receiving the communication,agent i does not know whether or not the current state of the system leads to anillegal sequence or a legal sequence. When agent i updates its own local state withthe communicated information, agent i can tell the di�erence between the legal andthe illegal sequence.4.2.1 Avoiding unintentional communicationWe make an assumption regarding the structure of the automaton G. In partic-ular, we want to avoid situations where the identi�cation of a communication stateresults in unintentional communication. This corresponds to the case in Theorem 4.1where the place we want to communicate is the state reached by both u� and u0�(where (u; u0) is the maximal-P pair for a pair of sequences we want to distinguish).When an intention to communicate is thwarted by the structure of the plant, weassume that we can \split" that state in the sense described below.We will use Theorem 4.1 to identify states where communication will be inserted,as follows. For every t, t0 satisfying the hypotheses of Theorem 4.1 for agent i, we�nd a maximal-P pair (u; u0). From the construction in the proof of the theorem,we know that after either u or u0 (or after both), there is an event in �j;o, called �j,leading to state x along t (or �0j leading to state x0 along t0). That state x is a statewhere the intersection of the agents' views (i.e., xi\xj) does not contain states alongt and states along t0. That is, it de�nitively indicates to agent i that the system hasprogressed along t and not along t0 (respectively, along t0 and not along t).Actually, so far we have hidden a subtle possibility. If after both u and u0, thereare events � and �0 (as in �gure 4.1(b)), leading to the same state (i.e., x = x0 in�gure 4.1(b)) or if after u there is an event � leading to the same state that t0 leads to(i.e., x = z0 in Figure 4.1(a)), then state x itself is such that x is good with respect tot0�̂ and is bad with respect to t�̂. So, a communication from agent j to agent i that66

1x 2x

(b)

x

(a)

u

σ

γγ

σ

u

γ

σ

u u

σ

Figure 4.2: Splitting G: (a) intention is for communication to occur at state x afteru�; (b) rewrite G and split state x to �nd a de�nitive communication state x1.

67

it is at state x would not yield any helpful information for agent i. Consequently, forthose cases, we \split the state" x into two di�erent states with distinct labels. Thatis, we make two copies of x. An illustration of what we mean is shown in �gure 4.2.In �gure 4.2(a), assume that the intention is for communication to occur at state xeither after u� or u0�0 but not after both. Suppose it had been determined that agentj|after seeing Pj(u�)|communicates its local view of state x, with the intentionof allowing agent i to distinguish between u� and u0�0. But communication occurswhenever agent j believes the plant to be at state x. This happens not only whenagent j sees Pj(u�) but also when it sees Pj(u0�0). Yet we only want agent j tocommunicate after Pj(u�) or Pj(u0�0) and not after both. In �gure 4.2(b) we rewriteG and split state x to �nd a de�nitive communication state x1.Now, either state x1 or state x2 in �gure 4.2 would be a state that does not containboth a good state with respect to t0�̂ and a bad state with respect to t�̂We identify a �nite number of states, say n, where communication is necessaryto solve the control problem. As a result, the strategy of splitting states is one thatterminates. In the worst case, if we have to perform a split at every state (where asplit would entail two copies of the plant to be created) there would be 2n iterationsof the process (a �nite number since n is �nite).Note that the language generated by an automaton where some states have beensplit as described above is the same as the language generated by the original automa-ton. From here on, we assume that the plant G has been rewritten to accommodateall occurrences of the above scenario.4.2.2 Finding a place to communicate: picking control com-munication pairsIn the Kripke structure, a global state where Kripke-observability is not satis�edcorresponds to a world w where for all i 2 G� the following holds: IDES0 j= �G^:�E^68

(w , w , w)
e 1 2

σ
G

σ
E

(w , w , w)
e 1 2

σ
G

σ
E

tσ not in L(E)
tσ in L(G) t σ in L(G)

t σ in L(E)

I DES}
} DES

P
1
(t) P

1
(t)

1

=Figure 4.3: Reasoning about knowledge in the Kripke structure associated withIDES allows us to identify where agents do not have enough information to solvethe control problem. The diagrams above (in the knowledge theory framework) andbelow (in the DES environment) the line are equivalent statements about what itmeans to not solve the control problem.:Ki:�E. That is, agent i does not have the knowledge to disable event �. Thereforethere exists a state w0 that is indistinguishable from w to agent i where � is allowedto happen (i.e., �G and �E hold at w0). Figure 4.3 shows equivalent notions of whatwe mean in the knowledge world (top of �gure) for agent 1 to not have the knowledgeto disable � at global state w and its equivalent translation into DES theory (bottomof �gure). To �nd a place to communicate, we will want to �nd the sequences t andt0 as noted in the �gure. A communication state will be identi�ed as a state thatoccurs somewhere along the path from qG0 to �G(t�; qG0) = we or �G(t0�0; qG0) = we.Thus, using the Kripke structure we can identify a state, say q, in the plant wherewithout communication a decentralized agent might not be able to make the correctcontrol decision. If communication from agent j to i occurs somewhere along thepaths to state q, agent j could give agent i the knowledge to disable � at state q ofthe plant. Thus we need to identify those paths along which communication couldoccur. 69

First of all, we identify all pairs of global states w, w0 in the Kripke structurewhere for some � 2 �, the propositions �G and :�E are true at w but �G and �Eare true at w0. Suppose that we = y and w0e = y0, i.e., y and y0 are the plant statesassociated with global states w and w0.The idea is that we want to insert communication to distinguish every sequencethat leads to y from every sequence that leads to y0. Since there may be in�nitelymany sequences leading to y (due to cycles in the plant), it appears on the face of itthat comparing all pairs t, t0 that lead to states y, y0, respectively, is an intractabletask. However, we can exploit the �nite-state representation of a Kripke structureby making the following observation. We conjecture that when there are in�nitelymany sequences leading to state y, we need only reconstruct those paths that satisfythe following (i)a path from the initial state to y that contains no cycles; (ii)a pathfrom the initial state to y that contains one iteration of cycles that has embeddedin it one of the paths identi�ed in (i); (iii)those paths that contain just one instanceof any self-loops or cycles that extend from y and return to y. The identi�cation ofsuch paths (including those with cycles) in a directed graph can be performed usinga dynamic-programming algorithm in O(n3) time, where n is the number of nodes inthe graph[10].We describe our intuition via the example in �gures 4.4 and 4.5. Suppose thatagent 1 sees and controls a and b while agent 2 sees b and c. The states of the Kripkestructure for the plant shown in �gure 4.4 are simply the states of the monitoringautomaton for the same plant. The monitoring automaton of interest is shown in �g-ure 4.5. In the associated Kripke structure (not illustrated here) Kripke-observabilityfails at state (6; f1; 4; 6g; f2; 5; 6g) because agent 1 does not have enough knowledgeto make the correct control decision about event b. At this state the truth values ofthe primitive propositions associated with event b are bG = true and bE = false.
70

There are two other states|(1; f1; 4; 6g; f0; 1; 3; 4g) and (4; f1; 4; 6g; f0; 1; 3; 4g)|that agent 1 cannot distinguish from (6; f1; 4; 6g; f2; 5; 6g). At both these states ((1; f1; 4; 6g; f0; 1; 3; 4g) and (4; f1; 4; 6g; f0; 1; 3; 4g)) the truth values of the primitivepropositions associated with event b are bG = true and bE = true, thereby givingrise to agent 1 not knowing :bE at state (6; f1; 4; 6g; f2; 5; 6g).We use the monitoring automaton (shown in �gure 4.5) to reconstruct the tand t0 sequences, such that �̂ = b, that will satisfy the hypothesis of Theorem 4.1.Thus we want to �nd paths to state (6; f1; 4; 6g; f2; 5; 6g) that correspond to somet�̂ 62 L(E). In addition, we want to �nd paths to states (1; f1; 4; 6g; f0; 1; 3; 4g) and(4; f1; 4; 6g; f0; 1; 3; 4g) that correspond to some t0�̂ 2 L(E) where P1(t) = P1(t0).We begin by looking at state (6; f1; 4; 6g; f2; 5; 6g). Our conjecture says we �rstlook at the paths to this state that contain no cycles: thus t = daba or t = abcdabaor t = abcabcdaba. There is a path that contains one iteration of a cycle: t =abcabcabcdaba. There are no paths extending from and returning to (6; f1; 4; 6g; f2; 5; 6g)so we are done.Similarly we examine the paths to state (1; f1; 4; 6g; f0; 1; 3; 4g). There is onepath with no cycles: t0 = abca. Additionally, there is a cycle that extends from(1; f1; 4; 6g; f0; 1; 3; 4g) and returns to (1; f1; 4; 6g; f0; 1; 3; 4g). We need only recon-struct one iteration of the cycle: t0 = abcabca.Finally, the paths to state (4; f1; 4; 6g; f0; 1; 3; 4g) yield two possibilities that donot contain cycles: t0 = abcda or t0 = abcabcda. There is another path that doescontain one iteration of a cycle: t0 = abcabcabcda.In this example we have �ve possibilities for t0 and only four possibilities for t;however, we need only consider �ve t; t0 pairs, namely those pairs that have the sameprojection according to agent 1. For example, one pair of sequences would be t = dabaand t0 = abca because P1(t) = P1(t0) = aba. Our claim is that the identi�cation ofthese �ve pairs of t and t0 sequences is su�cient to determine where communication71

0

1 2

d

a

b

a

b

b

c

3

5

6

7

4

a

Figure 4.4: Finding places to communicate in the presence of cycles.should be added for purposes of solving the control problem.The proof of Theorem 4.1 yields the following update to our de�nition of a com-munication state:Definition 4.6 Given t; t0 satisfying the hypotheses of Theorem 4.1, sequences u; u0where u 2 t, u0 2 t0 and (u; u0) is a maximal-P pair, de�ne a communication stateq to be(a) �G(u0�j; qG0) if t0 = u0�jv0 for some �j 2 �j;o; v0 2 �� and t = u�iv forsome �i 2 �i;o; v 2 �� (by Claim 1 on p. 62);(b) �G(u�j; qG0) if t = u�jv for some �j 2 �j;o; v 2 �� and t0 = u0�iv0 for some�i 2 �i;o; v0 2 �� (by Claim 2 on p. 63);(c) �G(u�j; qG0) or �G(u0�̂j; qG0) if t = u�jv, and t0 = u0�̂jv0 for some �j; �̂j 2�j;o; v; v0 2 �� and �j 6= �̂j (by Claim 3 on p. 65).
72

(0, {0, 3}, {0, 1, 3, 4})

(1, {1, 4}, {0, 1, 3, 4}) (3, {0, 3}, {0, 1, 3, 4})

(4, {1, 4}, {0, 1, 3, 4})(2, {0, 2, 3, 5}, {2, 5, 6})

(0, {0, 2, 3, 5}, {0, 1, 3, 4}) (5, {0, 2, 3, 5}, {2, 5, 6})

(1, {1, 4, 6}, {0, 1, 3, 4})

(2, {0, 2, 3, 5, 7}, {2, 5, 6})

(0, {0, 2, 3, 5, 7}, {0, 1, 3, 4})

(3, {0, 2, 3, 5}, {0, 1, 3, 4})

(4, {1, 4, 6}, {0, 1, 3, 4})

(5, {0, 2, 3, 5, 7}, {2, 5, 6})

(6, {1, 4, 6}, {2, 5, 6})

(7, {0, 2, 3, 5, 7}, {7})

a

b

c

a d

b

c

a
d a

b

a

d

a

b

a

b

Figure 4.5: The monitoring automaton for the plant in �gure 4.4.In the de�nitions that follow, the sequences t and t0 are those satisfying the hy-pothesis of Theorem 4.1.Definition 4.7 A control sequence for communication state q is the �nitesequence along which a communication state has been identi�ed. If t is the controlsequence for q then t0 is a control twin for t. (Equivalently, if t0 is a control sequencefor q then t is the control twin for t0:)That is, these are two sequences that an agent cannot distinguish but one leads toan illegal sequence and the other leads to a legal sequence. Communication thatwill allow an agent to distinguish between these two sequences and make the correctcontrol decision occurs along the \control sequence".Definition 4.8 A control communication pair for agent i is a pair (q; t) andconsists of a communication state q and a control sequence t.Communication from agent i that allows agent j to make the correct control decision73

about an event � after sequence t occurs, happens along sequence t at state q.Definition 4.9 A communication sequence s for a control communicationpair (q; t) is a pre�x of t if q is a bad state with respect to t� (or s is a pre�x of t0if q is a good state with respect to t0�) that leads to q (i.e., �G(s; qG0) = q).We can now uniquely identify when and where agents communicate to solve thecontrol problem: communication from one agent to another occurs at a communica-tion state q, after the communication sequence s is observed by the communicatingagent, say agent i. The idea is that agent i communicates its local view qi to agent jwhen the plant is at state q. The sets C12 and C21 store the control communicationpairs for agents 1 and 2, respectively.Definition 4.10 The communication event associated with a control communi-cation pair (q; t) 2 Cij is comij:q.This notation represents the action of agent i communicating its local state to agentj at communication state q. That is, communication occurs after the communicationsequence s for (q; t) occurs. A communication event comij:q is observable by bothagents i and j but is controllable only by agent i.We illustrate our strategy for choosing communication states with the plant shownin �gure 4.6 (a). In this example, agent 1 sees a1 and controls events a1 and c whileagent 2 sees and controls b2. The interpreted system constructed from this plant andlegal automaton is not Kripke-observable because agent 1 does not know that eventc should be disabled at state 4. In particular, agent 1 cannot distinguish among thefollowing global states (which correspond to the sequences in which agent 1 sees a1a1):� (3; f3; 4; 5; 6; 7g; f3; 4; 5; 6; 7g) where cG and cE hold;� (4; f3; 4; 5; 6; 7g; f3; 4; 5; 6; 7g) where cG and :cE hold;� (5; f3; 4; 5; 6; 7g; f3; 4; 5; 6; 7g) where :cG and :cE hold;74

2
1

2

1

2

1

1

2

1

1

2

2

1

2

{0, 2}

{3, 4, 5, 6, 7}

{1, 3, 4, 5, 6}

b

ba

b

{0, 1}

{3, 4, 5, 6, 7}

{2, 3, 4, 5, 7}

a

a

a

b

a
a

7

a

b

b

b

(a)

cc

0

2

3

5

6

4

1

(c)(b)Figure 4.6: The projection automata of a DES plant G: (a) the plant G; (b) PG1;(c) PG2.� (6; f3; 4; 5; 6; 7g; f3; 4; 5; 6; 7g) where :cG and :cE hold; and� (7; f3; 4; 5; 6; 7g; f3; 4; 5; 6; 7g) where :cG and :cE hold.Because of the con
icting truth values for cE at the �rst two global states, agent 1does not have enough knowledge to make the correct control decision about c.Back at the plant in �gure 4.6(a), agent 1's lack of knowledge in IDES(G;E)corresponds to the existence of sequences t; t0, event �̂ 2 �1;c and P1(t) = P1(t0)where t0�̂ is legal but t�̂ is illegal: t = b2a1, t0 = a1b2 and �̂ = c. Therefore, byTheorem 4.1 we can �nd a communication state q where agent 2 can communicate q2to agent 1, allowing the latter agent to distinguish between t0�̂ and t�̂.The good states with respect to t0�̂ are 0, 1 and 3, while the bad states withrespect to t�̂ are 0, 2 and 4. A maximal-P pair (in fact, the only maximal-P pair inthis case) for t and t0 is (u; u0) = ("; "). The communication state is determined bythe nature of the events that directly follow u and u0.75

The next event after u is b2 and the next event after u0 is a1. This corresponds tothe second category of states described in de�nition 4.6. Therefore, agent 2 commu-nicates along the illegal sequence t where the communication sequence has the formu�2 and the communication state is �G(u�2; qG0). Since u = " and �2 = b2, the controlcommunication pair for agent 2 is (2; b2a1), where the communication sequence is b2.We use the same procedure and �nd another t = a1b2cb2a1, t0 = a1b2ca1b2 and�̂ = c. This leads to another control communication pair for agent 2: (6; a1b2cb2a1),where the communication sequence is a1b2cb2.4.2.3 How to incorporate communication into GcomWe represent the action of communication from one agent to another as a newevent that is added to the plant. To this end we de�ne a set �com to store events thatrepresent communication and a set Qcom to keep track of all new states we will needto incorporate the events of �com into the plant.Formally, to incorporate communication into our system, we create a new automa-ton: Gcom = (QGcom;� [�com; �Gcom; qGcom0)where the set of states QGcom := QG [Qcom, the alphabet is � [�com and the initialstate qGcom0 := qG0 . The identi�cation of a communication state q 2 QG (where agent icommunicates to agent j) and a communication sequence s gives rise to the creationof a new state qc which is added to Qcom and a new event comij:q which is addedto �com. We will sometimes want to refer to those communication events whereagent i communicates to agent j. Thus we partition �com into disjoint sets �comij , fori; j 2 f1; 2g and i 6= j. Prior to incorporating communication, Gcom is simply a copyof G. That is, Qcom = ;, �com = ; and �Gcom = �G.76

:ycomji

z

β

γ

c

x

y

β

z

y

x

y

(b)(a)

α

γ

α

Figure 4.7: Adding a communication event to an automaton: (a) before communi-cation; (b) after communication.Figure 4.7 illustrates how a communication event is added to Gcom. Let (y; ��
) 2Cji be a control communication pair for the sequence in �gure 4.7(a). That is, statey is a place where agent j communicates to agent i. For the pair (y; ��
), we createa new state yc and a communication event comji:y. The communication event is atransition from state yc to y (shown in �gure 4.7(b)).To accommodate the new communication event, the transition function for Gcommust be updated and extended. Update the transition function �Gcom by removing�Gcom(�; x) = y. Add the following transitions:�Gcom(�; x) = yc;�Gcom(comji:y; yc) = y: (4.7)In addition, we update the communication alphabet �com = �com [fcomji:yg andupdate the state set Qcom = Qcom [fycg.Observation 4.1 Suppose a sequence v 2 L(Gcom) leads to a state q 2 QGcom but q 6277

Qcom. That is, �Gcom(v; q0) = q. Then by the way in which Gcom is constructed from G,the version of this sequence that appears in L(G), say v0, (i.e., all the communicationevents have been removed from v) also leads to state q. That is, �G(v0; q0) = q.We can now describe what sequences agents would see after communication eventsare added to the plant in �gure 4.6(a). For the �rst t and t0, without communicationagent 1 sees a1. With the addition of the communication event at state 2, eitheragent 1 sees com21:2a1 and knows the plant is along a path to an illegal sequence, orit sees a1 (with no communication event) and knows that plant is along a path to alegal sequence.For the second t and t0, without communication agent 1 sees a1a1. With theaddition of the communication event at state 6, either agent 1 sees a1com21:6a1 andit knows that plant is along a path to an illegal sequence, or it sees a1a1 and knowsthat the plant is along a path to a legal sequence.4.2.4 Formally adding control communication pairs to GcomWe present the �rst of three main procedures that transform G into Gcom. Pro-cedure 4.1 describes how to incorporate the control communication pairs into Gcom.The second and third procedures, presented in section 4.3, render the communicationprotocol derived from Gcom well-de�ned.Procedure 4.1 : Identifying Communication for Control1. Initially Gcom = G, �com = ;, QGcom = QG and �Gcom = �G. We also initializeC12 = C21 = ;.2. Identify those states at which Kripke-observability fails for IDES0(G;E), i.e., astate in the monitoring automaton A.78

3. Using Theorem 4.1, identify control communication pairs (q; t) and their corre-sponding control twins t0 for agent 1 and for agent 2. We use the monitoringautomaton A to identify t and t0. Update the appropriate set of control com-munication pairs Cij = Cij [f(q; t)g, for i; j 2 f1; 2g and i 6= j.2 Procedure 4.1Procedure 4.1 identi�es the control communication pairs (q; t) that indicate wherean agent discloses its local state to another agent. This information must now betranslated into places where we add communication events to the augmented plantGcom. The following procedure elucidates a strategy for incorporating the communi-cation event associated with each (q; t) 2 C12 [C21. That is, a communication eventis added, after sequence s occurs, at state q in Gcom.Procedure 4.1a : Steps to Building Gcom from GFor each (q; t) 2 Cij, for i; j 2 f1; 2g and i 6= j:� Create a new state qc. If qc 62 Qcom, update the state set: Qcom = Qcom [fqcg.� Create a new event called comij:q which represents the action of agent i com-municating local view qi to agent j. If comij:q 62 �com, update the alphabet:�com = �com [fcomij:qg.� Update the transition function �Gcom. Suppose the communication sequence forstate q has the form s = u� where �G(u; qG0) = q0 and �G(�; q0) = q. Thenif �Gcom(�; q0) = q (i.e., no communication has been added at state q yet) wemust �rst remove this transition from �Gcom. The following transitions are thenadded to �Gcom (see �gure 4.8 for an example):�Gcom(�; q0) = qc;�Gcom(comij:q; qc) = q:79

qG
0

}
qG

0

β

α

γ

com :q
ij

s

β

α

γ

q

z q

qc

z

(a) (b)

q q

Figure 4.8: Adding a communication event to Gcom to state q. (a) Before commu-nication for communication sequence s = �� for agent i. (b) After communicationadded to state q.It could be the case that a communication event representing communicationfrom agent i to agent j has already been added to state q in Gcom. That is, morethan one communication sequence associated with the elements of Cij leads tostate q. A communication event comij:q is added to state q only once. Or itcould be the case that a communication event representing communication fromagent j to agent i has already been added to state q in Gcom. This scenario isshown in �gure 4.9(a). If a communication event from agent j to agent i hasbeen added to state q already (i.e., �Gcom(�; q0) 6= q), we create a new state qccand update Qcom: Qcom = Qcom [fqccgThis situation arises if (q; t) 2 Cji \ Cij, where the communication sequence iss = u� such that � 2 �i;o \ �j;o, since a communication state where agent icommunicates to agent j occurs only after an event that agent i sees. Then we80

qG
0

com :q
ji

q c

u

γ

q

z

(a)

q

σ

qG
0

com :q
ji

qc

σ

com :q
ij

z

γ

q

(b)

q

u

qcc

Figure 4.9: Adding an additional communication event to Gcom at state qc. (a)Another communication event has previously been added at state q. (b) After addinga second communication event.remove the following transition from Gcom:�Gcom(�; q0) = qc:Add the following transitions to �Gcom (see �gure 4.9(b) for a graphical repre-sentation): �Gcom(�; q0) = qcc�Gcom(comij:q; qcc) = qc: 2 Procedure 4.1aWe interpret the appearance of two consecutive communication events in Gcom as atwo-way broadcast between agents i and j. That is, each agent communicates itslocal state to the other at the same time. Note that, by construction of Gcom, oneevent will always correspond to a control communication pair in Cij and the other81

to an element of Cji. We elaborate on the e�ect this has on the construction of awell-de�ned communication protocol in section 4.4.The time complexity of Procedures 4.1 and 4.1a is dominated by step 3 of Pro-cedure 4.1: �nding the control communication pairs. The other steps in the pro-cedures can be accomplished in constant time. We use our knowledge model toidentify states where Kripke-observability fails, and thus where we can reconstructsequences that give rise to control communication pairs. As noted previously, adynamic-programming algorithm to �nd the paths of these sequences takes O(n3)time, where n is the number of states in the monitoring automaton.4.2.5 Communication that solves the control problemWe must formally show that when agent i �nds a control sequence indistinguish-able from its corresponding control twin, the addition of a communication event alongthe communication sequence allows agent i to distinguish these two sequences inGcom.We begin by describing what it means for a sequence in G to be translated into Gcom.We de�ne an operation that \erases" communication events and extend our def-inition of Pi in (3.3) as follows. Let P̂ be a mapping from (� [�com)� to �� andtherefore (�com)� ! ". Similarly, P̂i becomes a mapping from (�[�com)� to ��i;o andagain (�com)� ! ". Despite expanding the domain of Pi, P̂i recognizes the same setof sequences as its predecessor. The only di�erence is that now P̂i \erases" not justthe events in �o n �i;o but also those events in �com from a string t.We will want to describe a sequence in L(G) when it is transformed by communi-cation events and appears in L(Gcom) after following Procedure 4.1.Definition 4.11 For two sequences t 2 L(G) and tc 2 L(Gcom), we say tc is acommunication-equivalent sequence for t if L(Gcom) is the language generated82

by the Gcom that results from the completion of Procedure 4.1 and�G(t; qG0) = �Gcom(tc; qGcom0)and P̂ (tc) = t:Thus, a communication-equivalent sequence contains any communication events thatoccur along t and any communication events that occur directly after t. From nowon we use tc to refer to a communication-equivalent sequence for t generated by theGcom produced by completing Procedure 4.1.We de�ne a mapping P ci (for i = 1; 2) to be a canonical projection from (� [�com)� to (�i;o [�com)�. We want to use this mapping to show that if we add acommunication event along a control sequence t and not along its control twin t0(according to Theorem 4.1) the two sequences will no longer look alike to the agentmaking the control decision at t or t0.Lemma 4.2 For a control sequence t and its control twin t0 de�ned with respect toagent i (i.e., Pi(t) = Pi(t0)), after following Procedure 4.1, P ci (tc) 6= P ci (t0c).Proof. Since Pi(t) = Pi(t0) we know that agent j will be communicating at leastonce to agent i. Let comji:q be such a communication event added to t. Since theplant has been rewritten such that t and t0 do not share communication states, thestate q does not appear along t0. Therefore, after Procedure 4.1 is complete, comji:qwill not be added along t0. Therefore P ci (tc) 6= P ci (t0c). 2 Lemma 4.2It remains to be shown that after adding the remaining communication events tothe rest of the plant (i.e., for consistency), the communication-equivalent sequencefor control sequence t remains distinguishable from the updated communication-equivalent sequence for the control twin t0.83

4.3 Communication for ConsistencyOur communication goal is two-fold: (i) to have agents communicate at some placethat will lead to a control solution|we identi�ed this place as the state after a com-munication sequence occurs; and (ii) to have the plant re
ect the intent of each agentto communicate at all places that they cannot distinguish from the communicationstate.This seems like a straightforward process. We proceed na��vely and add a commu-nication event to the plant for each control sequence t that appears in (q; t) 2 Cij.But we must take into consideration that as we take care of adding communicationevents with respect to one control sequence, the addition of a new communicationevent may alter the situation for other control sequences. This was a point that was�rst raised in [31]. We will return to this observation shortly.We formally de�ne what we mean for Gcom to satisfy consistency:Definition 4.12 A system Gcom is said to be consistent if for all (q; t) 2 Cij (wherei; j 2 f1; 2g and i 6= j), and for all qc 2 Qcom such that �Gcom(qc; comij:q) = q, andfor all y 2 QGcom such that yi = qci , �Gcom(y; comij:q) must be de�ned, where yi; qci areagent i's local views of states y and qc, respectively.That is, whenever we identify a communication state q from a control communicationpair (q; t) for an agent, not only does a communication event exit from state qc (e.g.,�Gcom(qc; comij:q) = q)) it must also exit all states y 2 QGcom when agent i's localview of y is equal to agent i's local view of qc.Figure 4.10 illustrates a scenario we must preclude. Suppose that agent 1 sees andcontrols events a1 and d while agent 2 sees and controls events b2; c2 and d. The lefthand side of �gure 4.10 contains a Gcom. The right hand side of �gure 4.10 containsthe projection automaton of Gcom with respect to agent 2. This particular Gcom isnot consistent. Note that the local view of communication state 4c for agent 2 is84

com
21

:4

b
2

a1 b
2

b
2

a1

c
2

4 c

c
2 b

2

b
2

{ 6 } { 4 }{ 5 }

com
21

:4

{ 2, 5 }

{ 0, 1 }

{ 3, 4 }c

d

0

1 3

6

2

7

5

d

4 Figure 4.10: A Gcom that does not satisfy consistency.f3; 4cg. Similarly, the local view of state 3 for agent 2 is f3; 4cg. Our de�nition ofconsistency says that the communication event com21:4 must exit from every state inGcom that shares that same local view as the communication state 4c. There is nocommunication event de�ned at state 3, thus violating consistency.The reason that we will want to preclude this type of scenario (the projectionautomaton on the right hand side of �gure 4.10) is because the projection automatonwill form the basis of an agent's communication protocol. The idea is that if acommunication event occurs at a particular state, an agent must communicate. Ifmore than one event is de�ned at that state, an agent would not have a clear directiveas to when communication should happen. For example, when agent 2 is at statef3; 4cg it is not straightforward when communication should occur. We clarify thisnotion, which we refer to as a well-de�ned communication protocol, in section 4.4.One option for adding additional communication events to Gcom would be toidentify all the states in G that are indistinguishable from state �G(s; qG0) (for all scorresponding to the control communication pairs in Cij [Cji). Then add commu-nication events to the corresponding states in Gcom. This is the correct strategy ifnone of the communication sequences contain communication events. However, thefollowing scenario could unfold: suppose that agent j must communicate for control85

to agent i at state x and suppose that its local view of x is xj = fx; y; zg. Thus,in G, agent j is unable to distinguish plant states x, y and z. Further suppose thatbecause of some prior communication from agent i, agent j can distinguish x and yin Gcom. In this case, xj really just consists of the plant states x and z. An intent tocommunicate at plant state y constitutes a communication that is unnecessary.Our strategy re�nes the local views of communication states calculated for eachagent with respect to the original plant G by taking into account the e�ects of priorcommunication along a communication sequence. We identify the relationships be-tween the control communication pairs by building a dependency graph for the ele-ments of Cij [Cji. A dependency graph of an object graphically illustrates all of itsrelations to other objects. The relationship of interest here is whether communicationsequence s for a control communication pair (q; t) contains a pre�x that either lookslike another communication sequence to the appropriate agent or that is anothercommunication sequence. We use the dependency graph to identify which communi-cation events should be added to the communication sequences before any new eventsare added to Gcom. We describe this approach in section 4.3.1. Our strategy con-cludes by considering the rest of the sequences in the plant (i.e., all the sequencesthat are not communication sequences). For all sequences v 2 L(G) (such that vis not a communication sequence) that are indistinguishable from a communicationsequence s (according to communicating agent i), we will add a communication eventto the Gcom at state �G(v; qG0) only if v has identical dependencies on the controlcommunication pairs to s.We begin by introducing some terminology we will need for describing how were�ne the agents' local view of Gcom.Definition 4.13 A pair (x; v) consisting of a state x 2 QG and a sequence v 2 ��,such that �G(v; qG0) = x, is compatible with a control communication pair (q; t)286

Cij, for i; j 2 f1; 2g and i 6= j, if Pi(v) = Pi(s);where s is the communication sequence for (q; t) and v 6= s.That is, prior to incorporating communication events into Gcom, we identify any se-quence v that leads to state x and is indistinguishable to agent i from communicationsequence s. Note that by not permitting v = s, we eliminate (q; s) from being com-patible with (q; t).Let X (q; t) = f(x; v) j (x; v) is compatible with (q; t) 2 Cijg. We want to beable to identify places in the plant where we add communication events to producewell-de�ned communication protocols: sequences that are indistinguishable to theagent sending a communication for control after it observes s. Moreover, we wantto narrow down our set of such places agents communicate and omit any pairs (x; v)such that v ends in a sequence unobservable to the communicating agent. We removethese pairs because we assume that an agent communicates the instant it observesthe communication sequence.Definition 4.14 A pair (x; v)2 X (q; t) is called a compatible communicationpair for (q; t) if 6 9w 2 �� n��i;o such that v = uw (i.e., the last event in v is in �i;o).We state our assumption regarding where we place communication events alongsequences that are indistinguishable from a communication sequence to a communi-cating agent.Assumption 4.1 If the system is at a communication state, we assume that commu-nication from one agent to another happens the instant the communication sequenceoccurs and thus before the system makes any more transitions|including transitionsthat are unobservable to the communicating agent.We want to apply this assumption to any sequences that look like the communi-cation sequence. This means that if two pairs (x; v) and (x0; v0) are both compatible87

with a control communication pair (q; t) 2 Cij and v0 = vw, where w is a sequencethat is unobservable to agent i, then we want to communicate after v occurs and notafter v0 occurs. In fact, as will become apparent, when the appropriate communi-cation event is added to state x in Gcom, sequence v0 (previously indistinguishablefrom both v and s) will no longer look like either v or s to the communicating agent.Subsequently, (x0; v0) will no longer be compatible with (q; t).If (x; v) is a compatible communication pair for (q; t) 2 Cij, then (x; v) is added toa set Ccompatij (for i; j 2 f1; 2g and i 6= j). The communication event comij:q is addedto Gcom at state x according to step 3 in Procedure 4.1 (substituting x for q and vfor s).In the following subsections, we formally describe the two stages involved in addingcommunication events to Gcom so that the e�ects of prior communication can beincorporated into the �nal communication protocol.4.3.1 Re�ning local views of control communication pairsWhen we say Gcom satis�es consistency, we want to make sure that the appropri-ate communication event for agent i is added at states in Gcom that agent i cannotdistinguish. We want to make sure that an agent's local view of a state in Gcomis correct. That is, there are some situations where we may be required to updatethe local view an agent has of a particular state from G to Gcom. If there are anyprior communications from another agent that occur along the communication se-quence, then an agent's local view of state q could change. We want to look atsequences identi�ed by Procedure 4.1 as requiring communication and see if thereare earlier communications that occur along those sequences. We �rst will see if thecommunication-equivalent sequence sc could contain any communication events. Thisis because an earlier communication may have altered an agent's view of a sequence.There are two situations that give rise to a communication sequence containing88

more than one communication event. For instance, after Procedure 4.1, if a controlsequence s0 2 L(G) is a pre�x of another control sequence s 2 L(G), then sc 2L(Gcom) will contain the communication event associated with the identi�cation of s0.Therefore we do not want to add communication events everywhere a communicatingagent i sees P ci (s). Rather, we want to add communication events to Gcom whenagent i sees P ci (sc).The other circumstance where a communication sequence could contain more thanone communication event is shown in �gure 4.11. Suppose that we have two commu-nication sequences s and s0 corresponding to communication states q and q0, where(q; t) 2 Cij and (q0; t0) 2 Cji. Assume that no communication events were added alongs or s0 during Procedure 4.1 (see �gure 4.11(a)). The communication event associ-ated with (q0; t0), namely comji:q0 is added to state q0 as described in Procedure 4.1.Similarly, comij:q is added to state q (see �gure 4.11(b)). Further suppose that thereexists a pre�x v of communication sequence s (i.e., v 2 s) such that Pj(v) = Pj(s0).That is, in the original plant, agent j cannot distinguish states q0 and x. Therefore,a communication event comji:q0 should be added to the plant after v occurs (see�gure 4.11(b)). Similarly, when adding communication events after those sequencesthat to agent j look like s 2 L(G), we really mean that we append communicationevents only to sequences that agent j cannot distinguish from the updated version ofs, namely sc.This example illustrates some of the subtle issues involved in incorporating com-munication into the analysis of decentralized control problems. The situation in�gure 4.11 would be more complicated if s0c contained an additional communicationevent. Would agent j still �nd v indistinguishable from the updated s0? If not,then we would have to update �Gcom by removing transition �Gcom(comji:q0; xc) andremoving state xc from Qcom.
89

q s c}
qc

x c

s s

ji
:qcom

ji
:qcomq c

q

x

q

v

w

(a)

s

q
0

} v

w

q

x

ij
:qcom

c

(b)

q
0

Figure 4.11: Communication sequences can contain communication events: (a)Suppose that s; s0 2 L(G) are communication sequences such that s = vw andPj(v) = Pj(s0) where agent i communicates after s, agent j communicates after s0;(b) The updated version of the communication sequences s0c; sc 2 L(Gcom).We can resolve some of these issues if we establish the relationships that the con-trol communication pairs have with respect to each other. Does the communicationsequence for a control communication pair (q; t) contain a pre�x that is indistinguish-able from the communication sequence for the pair (q0; t0)? How do we communicatefor control at \every state that looks like q0" and \every state that looks like q" if, atthe same time, the communication sequence for (q0; t0) also contains a pre�x that isindistinguishable from the communication sequence for (q; t)?We introduce some terminology to identify when a communication event is pre-ceded by another communication event:Definition 4.15 We say that a control communication pair (q; t) depends on con-trol communication pair (q0; t0) if we can �nd a compatible communication pair (x; v)for (q0; t0) such that v 2 s and �G(v; qG0) = x, where s is the control communication90

sequence for (q; t).That is, a communication sequence for (q; t) potentially contains another communica-tion event, namely the event associated with the control communication pair (q0; t0).In Procedure 4.2 we restrict our attention to whether a control communication pairdepends on any other control communication pair.To detect some of the potential \dependencies" between control communicationpairs, we build a dependency graph D. We use D to clarify the form of the communi-cation sequences for the control communication pairs. That is, we want to determinehow many (if any) and in which order other communication events could occur alonga communication sequence. The graph consists of all the communication pairs inC12 [C21. There is a directed edge from (q; t) 2 Cji to (q0; t0) 2 Cij if (q; t) depends on(q0; t0). The edge is labeled \(x; v)" if state x occurs somewhere along s (the controlcommunication sequence for (q; t)), v 2 s and agent i cannot distinguish state x fromstate q0 (i.e., (x; v) is a compatible communication pair for (q0; t0). This edge labelingis unique for each pair of control communication pairs. It is not possible to have both(x; v) and (x0; v0) compatible with (q0; t0) such that v and v0 are pre�xes of s. Thatis, if Pi(v) = Pi(v0) and v; v0 2 t, such that �G(v; qG0) = x and �G(v0; qG0) = x0, thenx = x0 and v = v0 (since neither v nor v0 can end in events that are unobservable toagent i).For the remainder of this discussion, we represent D as a matrix. The dependencygraph contains n1 + n2 nodes, where jC12j = n1 and jC21j = n2. Thus D is an(n1 + n2)� (n1 + n2) matrix.The �rst n1 row and column entries contain information pertaining to the depen-dencies of the control communication pairs in C12. The next n2 rows and columnscontain dependency information about the control communication pairs in C21.For convenience, we do not refer to the entries of the matrix by the numerical rowand column (i.e., D[3; 4] indexes the entry in row 3 and column 4 of D). Instead, we91

use the notation D[(q; t); (q0; t0)] to refer to the row and column in D that containsinformation about the control communication pairs (q; t) and (q0; t0), respectively.For D[(q; t); (q0; t0)] corresponding to D[i; j], if i � n1 then (q; t) 2 C12 (otherwise(q; t) 2 C21) and if j � n1 (q0; t0) 2 C12 (otherwise (q0; t0) 2 C21). If D[(q; t); (q0; t0)] = ;,then (q; t) is not dependent on (q0; t0). That is, none of the states x that occur alongthe path to sequence s at state q coupled with any of the pre�xes of s (i.e., v 2 s)forms a pair (x; v) that is compatible with (q0; t0). If D[(q; t); (q0; t0)] 6= ;, then (q; t)depends on (q0; t0) and D[(q; t); (q0; t0)] contains a compatible communication pair for(q0; t0) that satis�es De�nition 4.14.The dependency graph could contain cycles. We say an undesirable cycle occursin D when there are control communication pairs (q; t) 2 C12, (q0; t0) 2 C21 and(q̂; t̂); (q00; t00) 2 C12 [C21 such that D[(q; t); (q0; t0)] 6= ; and D[(q0; t0); (q; t)] 6= ; (acycle involving just two states) or a longer cycle such as� D[(q; t); (q̂; t̂)] 6= ;,� D[(q̂; t̂); (q0; t0)] 6= ;,� D[(q0; t0); (q00; t00)] 6= ; and� D[(q00; t00); (q; t)] 6= ;.The form of the cycle is important: there must be an alternation of a pair in C12 anda pair in C21 or a pair in C21 and a pair in C12 to constitute an undesirable cycle.We use the dependency graph to determine if any other communication events couldoccur along a communication sequence (as identi�ed at the completion of Procedure4.1). Figure 4.12 shows a scenario that would give rise to a cycle of length 2 in thedependency graph. This represents a situation where somewhere prior to reachingstate q along sequence s there is another sequence v (i.e., v 2 s) that agent 1 cannotdistinguish from s0 (i.e., P1(v) = P1(s0)). Therefore communication event com21:q092

com :q
12

q

x

q

21
com :q

v

{s

c

{s

v

x

q

qc

(a) (b)Figure 4.12: A scenario that results in a cycle in D. Let P1(v0) = P1(s) andP2(v) = P2(s0): (a) event com21:q0 could occur before event com12:q; (b) event com12:qcould occur before event com21:q0.could be added at state x prior to com12:q. At the same time, there is anothersequence v0 2 s0 such that agent 2 cannot distinguish v from s (i.e., P2(v0) = P2(s)).Similarly, com12:q could be added at state x0.We break cycles inD as follows: resolve the mutual dependency by choosing a pair(q; t) 2 Cij in the cycle that depends on the fewest number of control communicationpairs in the other set of control communication pairs (i.e., the fewest non-emptycolumn entries for pairs in Cji). Note that we can break the cycle by randomlychoosing any of the control communication pairs involved in the cycle. We choosehere to break a cycle by �xing a communication event for an agent at a controlcommunication pair that has the fewest number of potential communications fromanother agent preceding its own occurrence. This corresponds to picking the pair thathas the fewest non-empty entries in its row of the dependency graph. By selecting93

(q; t) to be the place where the cycle is broken, we indicate that communicationwith respect to the communication event for (q0; t0) will not occur along s and \�x"communication by setting D[(q; t); (q0; t0)] = ;. We consider that the non-empty entryat D[(q0; t0); (q; t)] is an entry that cannot be changed. It is now the case that (q; t)no longer depends on (q0; t0) but (q0; t0) still depends on (q; t). An example of how toresolve cycles in D is presented after Procedure 4.2.The following procedure identi�es states in the plant where a communication event(other than the one associated with control communication pair (q; t)) occurs alongthe path to state q via communication sequence s.Procedure 4.21. Let XV be the set of all compatible communication pairs (x; v) for all controlcommunication pairs in Cij[Cji. We only want to consider a particular subset ofXV at this point, namely the subset that contains the (x; v)'s such that v occursalong a communication sequence s. Let XV4:2 = f(x; v) j (x; v) satis�es De�nition4.15 and gives rise to a dependency of (q; t) on (q0; t0); for (q; t); (q0; t0) 2 Cij [Cjig. Initialize all entries of D to ;.2. We indicate possible dependencies as follows. For (q; t); (q0; t0) 2 C12 [C21:D[(q; t); (q0; t0)] = (x; v)if (q; t) depends on (q0; t0) and (x; v) is a compatible communication pair for(q0; t0) of the form in De�nition 4.15.3. Detect and resolve cycles in D. A cycle of length two, for instance, occurs when9(q; t) 2 Cij and 9(q0; t0) 2 Cji such thatD[(q; t); (q0; t0)] 6= ; andD[(q0; t0); (q; t)] 6=;. Algorithms to detect cycles of length greater than 2 exist [5]. We will chooseto break the cycle with the control communication pair that is part of the cyclesuch that if the pair is in Cij (respectively, Cji) it depends on the fewest number94

of other control communication pairs in Cji (respectively, Cij). For instance,if we choose (q; t) 2 Cij we tally the number of non-empty entries along row(q; t) in the columns corresponding to all (q0; t0) 2 Cji. Do this for all pairsinvolved in the cycle and pick the pair with the fewest number of dependencies.Set D[(q; t); (q0; t0)] = ; and consider that the communication represented byD[(q0; t0); (q; t)] 6= ; is communication that must occur. If more than one cycleis detected, then after each cycle is resolved check the updated D to see if thepreviously-detected cycles still exist.4. Mark all control communication pairs (q; t) 2 C12 and (q0; t0) 2 C21 \incompati-ble".5. If a row of D contains all ; entries, mark the corresponding control communi-cation pair \compatible".6. While there still exist \incompatible" control communication pairs:� Choose an \incompatible" control communication pair that depends ononly \compatible" pairs. That is, pick a row of D corresponding to an \in-compatible" control communication pair where all the non-empty columnentries correspond to pairs already marked \compatible". Let (q; t) 2 C12be the chosen row of D. Find the control communication pair (~q; ~t) associ-ated with the communication event that occurs just prior to the occurrenceof com12:q along t (i.e., D[(q; t); (~q; ~t)] 6= ;). Using D, we want to �nd outif it is possible that s would contain the same communication events (inthe same order) as ~s. Because (~q; ~t) is marked \compatible", the number ofcommunication events that occur along its communication sequence ~s hasalready been determined. To see if (q; t) still depends on (~q; ~t), comparethe entries in the corresponding rows of D. Because we are not interestedin the dependency that a control communication pair has with itself (by95

de�nition D[(q; t); (q; t)] = ;), we block out the column entries for (q; t). Inaddition, we block out the column entries for (~q; ~t) because we are tryingto ascertain whether or not this dependency is still valid. That is, if all theother entries in the two rows corresponding to (q; t) and (~q; ~t) coincide, weassume that (q; t) still depends on (~q; ~t) and therefore D[(q; t); (~q; ~t)] 6= ;.(a) If the remaining entries in the two rows do have the same patternof empty and non-empty entries, then we are done examining thiscommunication control pair. We have found a valid dependency.(b) If the remaining entries in the two rows do not have the same patternof empty and non-empty entries and if row (~q; ~t) contains non-emptyentries that row (q; t) does not, then set D[(q; t); (~q; ~t)] = ;. Thismeans that control sequence ~t contains communication events that tdoes not|and will not since we do not add entries to D at this point.(c) If the remaining entries in the two rows do not have the same patternof empty and non-empty entries and if row (q; t) contains non-emptyentries that row (~q; ~t) does not, then check the other dependencies for(q; t) before deciding that D[(q; t); (~q; ~t)] = ;. this means that controlsequence ~t contains fewer communication events than t, but until wecheck the rest of the dependencies for (q; t), we do not know whetheror not t still depends on ~t.(d) Repeat from (a) until all dependencies for (q; t) have been checkedor until a valid dependency is found. Note that if (q; t) has an ad-ditional dependency, for example (q̂; t̂), then rows (q; t) and (q̂; t̂) ofD are compared as described above except that the row entries forpreviously-checked dependencies, such as (~q; ~t), of (q; t) are ignored.
96

We do this because we are checking the potential placement of com-munication events along t in the reverse order of appearance. That is,since the row for (q; t) in D indicates that the communication eventassociated with (~q; ~t) would occur after the communication event asso-ciated with (q̂; t̂), we can disregard the entry for (~q; ~t) when comparingrows (q; t) and (q̂; t̂). Mark (q; t) \compatible".7. Initialize Ccompat12 = Ccompat21 = ;. These are sets that store the compatible com-munication pairs (x; v) as identi�ed by the non-empty entries in the �nal versionof D. For (q; t) 2 C12 [C21 and (q0; t0) 2 Cij, where s0 is the communicationsequence for (q0; t0), if D[(q; t); (q0; t0)] = (x; v) and if P ci (vc) = P ci (s0c) then:Ccompatij = Ccompatij [f(x; v)g: 2 Procedure 4.2Procedure 4.2 identi�es compatible communication pairs (x; v), for each control com-munication pair (q; t) found in Procedure 4.1, that occur along control communicationsequences. The purpose of this procedure is to re�ne|if necessary|an agent's localview of communication states in light of any communication it receives from anotheragent prior to reaching a communication state.This procedure will always terminate because we break any cycles that occur inthe dependency graph. In addition, we only remove dependencies fromD. Thus we donot need to worry about inadvertently introducing new cycles into D when we breakexisting cycles. At the conclusion of Procedure 4.2, we have the sets of compatiblecommunication pairs that give rise to dependencies between control communicationpairs. We must next translate the entries in Ccompat12 [Ccompat21 into communicationevents that are added to Gcom.Procedure 4.2a : Steps to Building Gcom from G, Part 297

1. For each (x; v) 2 Ccompatij , for i; j 2 f1; 2g, i 6= j and (x; v) is a compatiblecommunication pair for (q; t) 2 Cij:� Create a new state xc. If xc 62 Qcom, update the state set: Qcom = Qcom [fxcg.� Update the transition function �Gcom. Suppose that v has the form v = v0�where �G(v0; qG0) = x0 and �G(�; x0) = x. Then if �Gcom(�; x0) = x (i.e., nocommunication has been added at state x yet) we must �rst remove thistransition from �Gcom. The following transitions are then added to �Gcom�Gcom(�; x0) = xc;�Gcom(comij:q; xc) = x:As in Procedure 4.1a, if there is already a transition of comij:q at state xc,we do not add the same event more than once as a transition out of xc. Ifthe communication event comji:q has already been added to Gcom at statexc, then create a new state xcc and update Qcom:Qcom = Qcom [fxccg:Update �Gcom as follows. Remove�Gcom(�; x0) = xc:and add the transitions �Gcom(�; x0) = xcc�Gcom(comij:q; xcc) = xc:The two consecutive communication events are added to state x if (x; v) 2Ccompatij \ Ccompatji , for i; j 2 f1; 2g and i 6= j.98

2 Procedure 4.2aNote that when a compatible communication pair (x; v) is identi�ed for a controlcommunication pair (q; t), with which we associate the communication event comij:q,the communication event that is added to Gcom at state x is also comij:q.We make a similar assumption regarding the structure of G as described in sec-tion 4.2.1. We want to add a communication event comij:q at state x in Gcom corre-sponding to an (x; v) identi�ed in Procedure 4.2. If sequences other than v lead tostate x (i.e., there exists v0 2 L(G) such that �G(v0; qG0) = x) and these sequences arenot associated with a compatible communication pair for (q; t), we want to split statex into x1 and 2. We split x as follows: for all v such that �G(v; qG0) = x, if (x; v) is acompatible communication pair for (q; t), update �G so that �G(v; qG0) = x1; otherwise�G(v; qG0) = x2. We assume that the plant G has been rewritten to accommodate alloccurrences of the above scenario. The same comments about time complexity forthis procedure made in section 4.2.1 apply here.The time complexity for Procedure 4.2 is dominated, as was Procedure 4.1, bystep 1: �nding the set of compatible communication pairs. Once again we can use anO(n3) dynamic-programming algorithm to reconstruct the paths of these sequences,where n is the number of states in the monitoring automaton. Initializing the matrixin step 2 takes O(n2) time and we can use a depth-�rst search algorithm (O(n + e)where e is the number of transitions in the plant) to detect cycles. Breaking cyclessimply involves removing an edge. Steps 6 and 7 also take O(n2) time. Overall, theprocedure is, because of step 1, O(n3).The �nal step, as given further on in Procedures 4.3 and 4.3a, is to �nd theremaining compatible communication pairs for the updated version of the controlcommunication pairs.We �rst consider an example of resolving cycles in the dependency graph. Fig-ure 4.13 contains part of a plant G, where the control communication pairs have been99

1d

2a

2b
1d

2b

σ
2

2a

1e

1d

2a

1e

2b

c2

1a

σ
1

2b

c1

1d

2

5

8

c2

σ
2

11

47

48

2ac1

1

14

15

3

6

9

12

24

25

10

13

26

28

27

7

4

0

Figure 4.13: A portion of a plant that would give rise to cycles in a dependencygraph.
100

a priori established as: C12 = f(11; a2b2c1d1c2); (12; c1a2d1b2e1a2)g andC21 = f(13; c1d1a2e1b2c2a1)g. For this example, D is a 3� 3 matrix (i.e., n1 = 2 andn2 = 1). The rows and columns of D correspond to the following control communi-cation pairs:� row (and column) 1: (11; a2b2c1d1c2);� row (and column) 2: (12; c1a2d1b2e1a2); and� row (and column) 3: (13; c1d1a2e1b2c2a1).From the plant in �gure 4.13 we identify the compatible communication pairs forthe control communication pairs noted above:� (4; c1d1) and (6; c1a2d1) are compatible with (11; a2b2c1d1c2), where its commu-nication sequence is s = a2b2c1d1, since P1(c1d1) = P1(c1a2d1) = P1(s);� (10; c1d1a2e1) is compatible with (12; c1a2d1b2e1a2), where s = c1a2d1b2e1, sinceP1(c1d1a2e1) = P1(s); and� (5; a2b2) and (9; c1a2d1b2) are compatible with (13; c1d1a2e1b2c2a1), where s =c1d1a2e1b2, since P2(a2b2) = P2(c1a2d1b2) = P2(s).The following dependencies between control communication pairs exist:� (11; a2b2c1d1c2) depends on (13; c1d1a2e1b2c2a1) because there is a compatiblecommunication pair|(5; a2b2)|for (13; c1d1a2e1b2c2a1) that is a pre�x of thecommunication sequence for (11; a2b2c1d1c2);� (12; c1a2d1b2e1a2) depends on (11; a2b2c1d1c2) and (13; c1d1a2e1b2c2a1) becauseof the compatible communication pairs (6; c1a2d1) and (9; c1a2d1b2), respec-tively; and 101

� (13; c1d1a2e1b2c2a1) depends on (11; a2b2c1d1c2) and (12; c1a2d1b2e1a2) becauseof the compatible communication pairs (4; c1d1) and (10; c1d1a2e1), respectively.The dependency graph for C12 [C21 contains several cycles:D = 264 ; ; (5; a2b2)(6; c1a2d1) ; (9; c1a2d1b2)(4; c1d1) (10; c1d1a2e1) ; 375In particular, there is a cycle involving communication states 12 and 13:D[(12; c1a2d1b2e1a2); (13; c1d1a2e1b2c2a1)] = (9; c1a2d1b2)and D[(13; c1d1a2e1b2c2a1); (12; c1a2d1b2e1a2)] = (10; c1d1a2e1):That is, the communication event com12:12 that occurs for communication pair(12; c1a2d1b2e1a2) could be preceded by com21:13 at state 9 because agent 2 can-not distinguish state 9 from 13. At the same time, agent 1 cannot distinguish state10 from state 12, and com12:12 could occur at state 10|just before com21:13 happensin accordance with the control communication pair (13; c1d1a2e1b2c2a1).If both compatible communication pairs (9; c1a2d1b2) and (10; c1d1a2e1) are addedto the set of compatible communication pairs Ccompat21 and Ccompat12 , one of the com-munication pairs constitutes unnecessary communication. Figure 4.14 shows what(12; c1a2d1b2e1a2) and (13; c1d1a2e1b2c2a1) would look like if the two compatible com-munication pairs mentioned above were added to Gcom at states 9 and 10. Thecommunication sequences become c1a2d1b2com21:13c1 and c1d1a2e1com12:12b2. If wethen go back and check the compatible communication pairs, it is the case that neither(9; c1a2d1b2) nor (10; c1d1a2e1) are compatible with the new version of their respec-tive control communication pairs. For instance, (9; c1a2d1b2) is no longer compati-ble with (13; c1d1a2e1b2c2a1) because after adding the communication event com12:12102

c1

2a

2a

1d

1e

1d

2b

2b

com
12

:12

1e

com
21

:13

9c 10 c

0

1

3 4

12

76

10

13

9

Figure 4.14: Adding unnecessary communication.to state 10, the communication sequence for this control communication pair be-comes c1d1a2e1com12:12b2c2a1 and since the communication event com12:12 is notadded to c1a2d1b2, it is the case that P2(c1a2d1b2) 6= P2(c1d1a2e1com12:12b2). Ifthe no-longer-compatible communication pair (9; c1a2d1b2) is removed from Ccompat21 ,the control communication pair at state 12 is once again (12; c1a2d1b2e1a2). Atthis point, (10; c1d1a2e1) is also once again a compatible communication state for(12; c1a2d1b2e1a2). Note that if (9; c1a2d1b2) is not removed from C21 and is added toGcom, all that happens is that agent 2 sends its local state to agent 1 even though agent1 does not need this additional information (i.e., to satisfy consistency or to solve thecontrol problem). An analogous situation occurs if we instead remove (10; c1d1a2e1)from Ccompat12 and update the communication pairs accordingly.To break the cycle involving states 12 and 13, we will choose one of these statesto communicate at and update the dependency graph. We choose state 12 because,according to the row for (12; c1a2d1b2e1a2) inD, it depends on only one pair in C21 (onenon-empty entry in the last n2 entries of the row) while the corresponding calculation103

for state 13 reveals that state 13 depends on two pairs in C12. We update D as follows:D[(12; c1a2d1b2e1a2); (13; c1d1a2e1b2c2a1)] = ;;and therefore communication at state 13 must depend on state 12 and we do notallow the corresponding entry to change fromD[(13; c1d1a2e1b2c2a1); (12; c1a2d1b2e1a2)] = (10; c1d1a2e1):The updated dependency graph isD = 264 ; ; (5; a2b2)(6; c1a2d1) ; ;(4; c1d1) (10; c1d1a2e1) ; 375We cannot mark control communication pair (12; c1a2d1b2e1a2) \compatible" becausethis pair still depends on an \incompatible" pair (11; a2b2c1d1c2).Of the remaining incompatible control communication pairs, a cycle exists betweencommunication states 11 and 13. By breaking the cycle between states 12 and 13,state 12 now does not depend on state 13 but state 13 does depend on state 12. Thatis, there will be a communication event com12:12 along the path to state 13. Weneed to see if this change to the dependency graph in any way a�ects the cycle weinitially detected between states 11 and 13 (since the path to state 13 will contain acommunication event not originally considered when we �rst listed the dependenciesthat formed D). Since state 13 depends on state 12, for state 11 to depend onstate 13 it must be the case that state 11 also depends on state 12 (i.e., the eventcom12:12 would have to appear at the same place with respect to projection). SinceD[(11; a2b2c1d1c2); (12; c1a2d1b2e1a2)] = ;, state 11 does not depend on state 12 andhence it now does not depend on state 13. We remove the potential dependency of(11; a2b2c1d1c2) on (13; c1d1a2e1b2c2a1):D[(11; a2b2c1d1c2); (13; c1d1a2e1b2c2a1)] = ;:104

The dependency graph becomesD = 264 ; ; ;(6; c1a2d1) ; ;(4; c1d1) (10; c1d1a2e1) ; 375The row (11; a2b2c1d1c2) now contains all ; entries and we mark this pair \compati-ble".We now go back and revisit the row for pair (12; c1a2d1b2e1a2) the only non-emptycolumn entry is for the \compatible" pair (11; a2b2c1d1c2):D[(12; c1a2d1b2e1a2); (11; a2b2c1d1c2)] = (6; c1a2d1):To see if this dependency is still valid, we block out the column representing(11; a2b2c1d1c2) and compare the rows of these two control communication pairs (i.e.,the �rst and second rows minus the �rst column). Both rows contain ; in the secondcolumn, and ; in the third column. Therefore, com12:11 does occur in conjunctionwith communication pair (6; c1a2d1). We mark (12; c1a2d1b2e1a2) \compatible".We check the only remaining \incompatible" pair (13; c1d1a2e1b2c2a1) again. Thetwo non-empty entries in the third row represents a dependency on a \compatible"pair (11; a2b2c1d1c2) and on the �xed communication for breaking the cycle with(12; c1a2d1b2e1a2). The closest communication event is associated with the \�xed"communication dependency associated with (12; c1a2d1b2e1a2) so we check it �rst.Note that when the column representing the pair (12; c1a2d1b2e1a2) is blocked out,the rows corresponding to the control communication pairs involving states 12 and13 are equivalent: column 1 in both rows is non-empty and column 3 in both rowscontains ;. Therefore, the dependency is still valid. The pair (13; c1d1a2e1b2c2a1) ismarked \compatible". The �nal dependency graph for the control communication
105

pairs is D = 264 ; ; ;(6; c1a2d1) ; ;(4; c1d1) (10; c1d1a2e1) ; 375 (4.8)We examine each non-empty entry (x; v) of D to see if incorporating communicationevents into v means that the updated v is still indistinguishable from the updated com-munication sequence associated with the dependency. The �rst possible compatiblecommunication pair (x; v) = (6; c1a2d1) represents a dependency of (12; c1a2d1b2e1a2)on (11; a2b2c1d1c2), via the latter's communication sequence s = a2b2c1d1, becauseP1(v) = P1(s). When these sequences are updated with communication events|adding the appropriate event after each v and each s|we have vc = c1a2d1com12:11and sc = a2b2c1d1com12:11. In this case P c1 (sc) = P c1 (vc) = c1d1com12:11. We gothrough a similar procedure for D[(13; c1d1a2e1b2c2a1); (11; a2b2c1d1c2)] = (4; c1d1)for the same communication sequence s and �nd that the projections of these up-dated sequences are also the same. When D[(13; c1d1a2e1b2c2a1); (12; c1a2d1b2e1a2)] =(10; c1d1a2e1) note that communication will also be added to v after c1d1 because ofthe presence of the compatible communication pair (4; c1d1). For this pair, vc =c1d1com12:11a2e1com12:12 and sc = c1a2d1com12:11b2e1com12:12. Since P1(vc) =P1(sc) = c1d1com12:11e1com12:12, we also add this (x; v) to our set of compati-ble communication pairs. Therefore Ccompat12 = f(4; c1d1); (6; c1a2d1); (10; c1d1a2e1)g,Ccompat21 = ;.Note that there is more than one way to break a cycle. We choose to �x com-munication for the control communication pair that depends on the fewest numberof other pairs. In the event that each pair in the cycle depends on the same numberof other pairs, the choice of a pair where communication is �xed is made at random.Di�erent versions of D simply means that there is more than one way to arrangecommunication dependencies for the control communication pairs.106

We want to describe a sequence in L(G) as it appears after following Procedure4.2. At this point L(Gcom) is the language generated by the Gcom that results fromthe completion of Procedure 4.2. We write btc for the sequence in L(Gcom) such that�G(t; qG0) = �Gcom(btc; qGcom0)and P̂ (btc) = t:We abuse terminology and also refer to btc as a communication-equivalent sequencefor t. In Procedure 4.1 communication events are added to control sequences. InProcedure 4.2 new communication events are added only to control sequences.In Lemma 4.2 we showed that any communication event added to Gcom afterfollowing Procedure 4.1 is su�cient to distinguish a control sequence t from its controltwin t0. We want to make a similar statement about the distinguishability of t and t0after Procedure 4.2 is completed.Lemma 4.3 For a control sequence t and its control twin t0 de�ned with respect toagent i (i.e., Pi(t) = Pi(t0)), after following Procedure 4.2, P ci (btc) 6= P ci (ct0c).Proof. (By contradiction) Let Pi(t) = Pi(t0) and assume P ci (btc) = P ci (ct0c).By Lemma 4.2 there is a comji:q along tc that does not appear along t0c (respectively,the event appears along t0c and not along tc), i.e., (q; t) is an element of Cji identi�edin step 3 of Procedure 4.1.Suppose that we added comji:q along t0c according to step 7 of Procedure 4.2. Notethat an event comji:q could only get added in one place along t0c according to Proce-dure 4.2. Then the matrix D (representing the dependency graph) has the followingentry: D[(q0; t0); (q; t00)] = (x; b);107

where b 2 t0, �G(b; qG0) = x, t00 is some sequence that passes through q, (x; b) is acompatible communication pair for (q; t00) and therefore Pj(b) = Pj(s), where s is thecommunication sequence for (q; t00).We must �rst determine if we can �nd such a pre�x b of t0. Should b exist, we wouldadd the communication event along t0 at state x.We begin by �nding b 2 t0 such that Pj(s) = Pj(b) and such that b satis�es De�-nition 4.14. By Procedure 4.1, a comji:q added along t00 right after s implies thats = u�j for some u 2 ��, �j 2 �j;o. From De�nition 4.6 there are two forms for t0 weconsider when t00 = u�jv.Case 1. t00 = u�jv and t0 = u0�iv0, where �i 2 �i;o.Since s = u�j, we want to �nd b 2 t0 such that Pj(b) = Pj(u�j).Claim 4. b 62 u0.Proof. This is because if b 2 u0, then u0 = bb0 for some b0 2 ��:Pj(u) = Pj(u0) (since (u; u0) is a maximal-P pair)= Pj(bb0)= Pj(u�j)Pj(b0) (since Pj(s) = Pj(b))= Pj(u)Pj(�j)Pj(b0):This is only possible if Pj(�j)Pj(b0) = ", but �j 2 �j;o so Pj(�j) 6= ". 2 Claim 4Since b 62 u0, b = u0v00�jv000 for some v00; v000 2 (� n �j;o)�.(Since b 2 t and Pj(b) = Pj(u�j)= Pj(u)�j= Pj(u0)�j:)For b to satisfy de�nition 4.14, it must be the case that b = u0v00�j since v000 2(� n�j;o)�. 108

Since b 2 t0, 9b00 2 �� such that t0 = bb00. Thereforet0 = u0v00�jb00: (4.9)Previously we assumed that t0 = u0�iv0: (4.10)Equating (4.9) and (4.10) we havev00�jb00 = �iv0Therefore, the �rst event in v00 must be �i, i.e., 9v0000 such that v00 = �iv0000.Therefore, b = u0�iv0000�j and t0 = u0�iv0000�jb00.Case 2. t00 = u�jv and t0 = u0�̂jv0, where �̂j 2 �j;o and �̂j 6= �j (since (u; u0)is a maximal-P pair). Since s = u�j, we want to �nd a pre�x b of t0 such thatPj(b) = Pj(u�j). As in Claim 4, it can be shown that b 62 u0.As in Case 1, since b 62 u0, b = u0v00�jv000 for some v00; v000 2 (� n �j;o)�. Additionally,as in Case 1, we truncate b to satisfy de�nition 4.14 so that b = u0v00�j.Since b 2 t0, 9b00 2 �� such that t0 = bb00. Thereforet0 = u0v00�jb00: (4.11)Previously we assumed that t0 = u0�̂jv0: (4.12)Equating (4.11) and (4.12) we havev00�jb00 = �̂jv0Thus, the �rst event in v00 must be �̂j but v00 2 (� n �j;o)�. Therefore, no such b canbe constructed. Since no such b exists we do not consider this case any further.109

By Case 1, we do have a place where the communication event comji:q could be addedto t0. We add a communication event just after b occurs. That is, the communicationevent is added after the last event observable to agent j, e.g., after u0v00�j. It remainsto be shown that this additional event now leads to a contradiction to the assumptionthat ct00c and ct0c are indistinguishable.After Procedure 4.1 either no communication events were added to t0 or some commu-nication events were added to t0|but not the event comji:q since it was only addedto t. We consider the e�ect of adding comji:q after bbc in ct0c (i.e., add the event tostate x).Let t̂c = cuc�jcomji:qcvc and ct0c = cu0c�idv0000c�j comji:q db00c.P ci (cuc�j comji:q cvc) = P ci (cu0c�idv0000c�j comji:q db00c)P ci (cuc)P ci (�j)P ci (comji:q)P ci (cvc) =P ci (cu0c)P ci (�i)P ci (dv0000c)P ci (�j)P ci (comji:q)P ci (db00c)P ci (cuc) comji:q P ci (cvc) =P ci (cu0c)�iP ci (dv0000c) comji:q P ci (db00c) (since �j 62 �i;o)If P ci (cuc) = P ci (cu0c) then we have a contradiction because P ci (�i) 6= ". However, ifP ci (cuc) 6= P ci (cu0c) then we must show it is not possible for P ci (cuc) = P ci (cu0c)�iP ci (dv0000c).Suppose that P ci (cuc) = P ci (cu0c�idv0000c). It should be the case, by Lemma 4.1, thatthese sequences look the same with the communication events \erased":P̂i(cuc) = P̂i(cu0c�idv0000c)Pi(u) = Pi(u0�iv0000) (by de�nition of P̂i)Pi(u) = Pi(u0)Pi(�i)Pi(v0000)= Pi(u)Pi(�i)Pi(v0000) (since (u; u0) is a maximal-P pair)110

However, this implies that Pi(�i) = " which is not possible since �i 2 �i;o.2 Lemma 4.34.3.2 Re�ning local views of compatible communication pairsIf an agent's local view of a communication state in the original plant includesstates that do not lie along a communication sequence, then we need to determinewhether or not these states are still part of the agent's local view of the communicationstate in Gcom. We identify the compatible communication pairs for each controlcommunication pair and determine whether or not any prior communication alongthe communication sequence (as identi�ed in Procedure 4.2) a�ects the agent's viewof the compatible communication pairs.In the course of �nding the remaining compatible communication pairs of Gcom,we will want to discuss dependencies between compatible communication pairs andcontrol communication pairs:Definition 4.16 A compatible communication pair (x; v) for control communica-tion pair (q; t) depends on control communication pair (q0; t0) if we can �nd acompatible communication pair (x0; v0) for (q0; t0) such that, for w 2 ��, v = v0w and�G(w; x0) = x.Our strategy amounts to identifying all the remaining compatible communicationpairs (x; v) for all control communication pairs (q; t). We subsequently determine if agiven compatible communication pair depends on any control communication pairs.If the dependencies for (x; v) match the dependencies in row (q; t) of D, then we addthe appropriate communication event to state x in Gcom.We build a dependency graph D̂ and refer to it only in its matrix form. D̂ is ann3 � (n1 + n2) matrix where n3 is the number of compatible communication pairs inXV n XV4:2 and n1 and n2 are still the number of control communication pairs in111

C12 and C21, respectively. Let XV4:3 = XV n XV4:2. A row in D̂ corresponds to acompatible communication pair (x; v) 2 XV4:3. A non-empty entry in row (x; v) of D̂means that there is a possible communication event that occurs along sequence v butbefore the system reaches state x. Suppose that (x; v) was compatible with controlcommunication pair (q; t) before considering the existence of earlier communicationevents along s. If row (x; v) of D̂ has the same pattern of empty and non-emptyentries as row (q; t) in D, (x; v) may still be compatible with (q; t). To verify that(x; v) is compatible with (q; t) (where (q; t) 2 Cij) we must make certain that anycommunication events that occur before v and s occur in the same order and thatthe sequences still have the same projection for agent i. The communication eventscorresponding to the pairs (x; v) that survive this culling process are added to Gcom.We want to describe a sequence in L(G) as it appears after following Procedure4.3. At this point L(Gcom) is the language generated by the Gcom that results fromthe completion of Procedure 4.3. We write etc for the sequence in L(Gcom) such that�G(t; qG0) = �Gcom(etc; qGcom0)and P̂ (etc) = t:We abuse terminology and also refer to etc as a communication-equivalent sequencefor t.Procedure 4.31. Initialize all entries of D̂ to ;. Initialize all elements of XV4:3 to be \unresolved".2. Indicate potential dependencies of elements (x; v) 2 XV4:3, where (x; v) is acompatible communication pair for (q; t) 2 Cij (for i; j 2 f1; 2g but i 6= j), oncontrol communication pairs (q0; t0) 2 C as follows:D̂[(x; v); (q0; t0)] = (x0; v0)112

if (x; v) depends on (q0; t0) and (x0; v0) is compatible with (q0; t0) as described inDe�nition 4.16.3. If all entries for row (x; v) in D̂ are ; and all entries for row (q; t) in D are;, then Ccompatij = Ccompatij [f(x; v)g. Mark (x; v) \resolved". This representsa situation where no prior communication has occurred before x. Thus if thecommunication sequence s and the sequence v both contain no prior communi-cation events, they still look alike and a communication event associated withs will be added after v.4. While there remain \unresolved" compatible communication pairs (x; v) 2 XV4:3,where (x; v) is a compatible communication pair for (q; t) 2 Cij (for i; j 2f1; 2g; i 6= j):(a) If all the non-empty entries are \resolved" compatible communicationpairs, compare row (x; v) to row (q; t) in D.� For each non-empty entry of row (x; v): if D̂[(x; v); (q; t)] = (x0; v0)and (x0; v0) 62 Ccompat12 [Ccompat21 :D̂[(x; v); (q; t)] = ;:Mark (x; v) \resolved". After checking all the non-empty column en-tries for row (x; v), compare row (x; v) in D̂ to row (q; t) in D. Thisrepresents a situation where a communication event would have beenadded along v if v still looked like v0. Since (x0; v0) is marked \re-solved", it has already tested for membership in Ccompat. Therefore,prior to checking (x; v), it was determined that (x0; v0) was no longer acompatible communication pair for (q; t). Therefore v no longer lookslike v0. 113

(b) If the pattern of empty and non-empty entries is the same for row (x; v) ofD̂ and row (q; t) of D, check to make sure that when the communicationevents are added to v and s (where s is the communication sequence for(q; t)) (x; v) is still compatible with (q; t). That is, for updated versions ofeach communication sequence it is still the case that P ci (fvc) = P ci (fsc). Ifthis is the case, then Ccompatij = Ccompatij [f(x; v)g. 2 Procedure 4.3Procedure 4.3 identi�es compatible communication pairs (x; v), for each control com-munication pair (q; t) found in Procedure 4.1, that occur along any other sequences inthe plant but the communication sequences. As before, once more compatible com-munication pairs are identi�ed, they must be incorporated into Gcom via Procedure4.3a.Procedure 4.3a : Steps to Building Gcom from G, Part Three1. For each (x; v) 2 Ccompatij \XV4:3, for i; j 2 f1; 2g, i 6= j and (x; v) is a compatiblecommunication pair for (q; t) 2 Cij:� Create a new state xc and update the state set: Qcom = Qcom [fxcg.� Update the transition function �Gcom. Suppose that v has the form v = v0�where �G(v0; qG0) = x0 and �G(�; x0) = x. Then if �Gcom(�; x0) = x (i.e., nocommunication has been added at state x yet) we must �rst remove thistransition from �Gcom. The following transitions are then added to �Gcom�Gcom(�; x0) = xc;�Gcom(comij:q; xc) = x:As was the case in Procedures 4.1a and 4.2a, if comij:q has already beenadded at xc, it is not added again. If communication from agent j to agent114

i has been added to state x already (i.e., �Gcom(�; x0) 6= x), then create anew state xcc and update Qcom:Qcom = Qcom [fxccg:Remove the following transition from �Gcom:�Gcom(�; x0) = xc:Add the following transitions to �Gcom:�Gcom(�; x0) = xcc�Gcom(comij:q; xcc) = xc: 2 Procedure 4.3aAs was the case for Procedure 4.2a, when a compatible communication pair (x; v)is identi�ed for a control communication pair (q; t), with which we associate thecommunication event comij:q, the communication event that is added to Gcom atstate x is comij:q. This will be an important feature of the construction of Gcom thatensures the communication protocols of the agents are well-de�ned.We reiterate our comments from section 4.2.1 and those that appeared just afterProcedure 4.2a regarding splitting states to avoid ambiguous communication. Wewant to add a communication event comij:q at state x in Gcom corresponding to an(x; v) identi�ed in Procedure 4.3. If sequences other than v lead to state x (i.e., thereexists v0 2 L(G) such that �G(v0; qG0) = x) and these sequences are not associatedwith a compatible communication pair for (q; t), we want to split state x into x1 andx2. We split x as follows: for all v such that �G(v; qG0) = x, if (x; v) is a compatiblecommunication pair for (q; t), update �G so that �G(v; qG0) = x1; otherwise �G(v; qG0) =x2. As before, we assume that the plant G has been rewritten to accommodateall occurrences of the above scenario. Again, the comments made in section 4.2.1regarding time complexity hold here as well.115

The time complexity of Procedure 4.3, like its predecessors, is also O(n3). This isbecause using XV4:3 in step 1 means that we have to calculate XV nXV4:2. The com-plexity of �nding XV4:2 is O(n3). The other steps of the procedure involve checkingmatrices and can be accomplished in O(n2) time.To illustrate some of the salient parts of Procedure 4.3, we focus on the rows ofD̂ that arise from the partial plant shown in �gure 4.13. Previously, we constructedD for the three control communication pairs: (11; a2b2c1d1c2); (12; c1a2d1b2e1a2) and(13; c1d1a2e1b2c2a1). These three pairs form the columns of D̂ (the same order asD). While there could be more \unresolved" compatible communication pairs for thewhole plant, we can identify two pairs from �gure 4.13 :� (14; c1a2b2) is compatible with (13; c1d1a2e1b2c2a1), where s = c1d1a2e1b2, sinceP2(c1a2b2) = P2(s); and� (15; c1a2b2d1) is compatible with (11; a2b2c1d1c2), where s = a2b2c1d1, sinceP1(c1a2b2d1) = P1(s).We focus on the contents of these rows of D̂. Row (14; c1a2b2) of D̂ is initiallyD̂ = 264 : : : : : : : : :; ; ;: : : : : : : : : 375because (14; c1a2b2) does not depend on any control communication pair. That is,there is no proper pre�x of c1a2b2 that looks|to agent 1|like the sequence leadingto state 11 or the sequence leading to state 12 and there is no proper pre�x ofc1a2b2 that looks|to agent 2|like the sequence leading to state 13. Since all theentries in row (14; c1a2b2) are ;, we mark this pair \resolved". We now compare itto row (13; c1d1a2e1b2c2a1) in D (displayed in (4.8) on p. 100) because (14; c1a2b2) iscompatible with (13; c1d1a2e1b2c2a1). We do not add (14; c1a2b2) to Ccompat21 becauserow (13; c1d1a2e1b2c2a1) in D does not contain all ; entries.116

The corresponding row for (15; c1a2b2d1) isD̂ = 264 : : : : : : : : :; ; (14; c1a2b2): : : : : : : : : 375because (15; c1a2b2d1) depends on control communication pair (13; c1d1a2e1b2c2a1) inthe form of (14; c1a2b2). That is, (14; c1a2b2) is a compatible communication pair for(13; c1d1a2e1b2c2a1) and c1a2b2 is a pre�x of c1a2b2d1.The only dependency for (15; c1a2b2d1) involves a \resolved" pair. But because(14; c1a2b2) was not added to Ccompat21 , after considering the e�ect of communica-tion events, it must no longer be compatible with the control communication pair(13; c1d1a2e1b2c2a1)). Thus the communication event com21:13 is not added to state14. Since (14; c1a2b2) was the compatible communication pair that caused (15; c1a2b2d1)to depend on (13; c1d1a2e1b2c2a1), we consider that this dependency no longer exists.As a result we set D̂[(15; c1a2b2d1); (13; c1d1a2e1b2c2a1)] = ;, leaving row (15; c1a2b2d1)with all its entries ;. It is the case that row (11; a2b2c1d1c2) of D is also a row of; entries. Therefore, we add (15; c1a2b2d1) to Ccompat12 . Figure 4.15 shows the part ofGcom (constructed after following Procedures 4.1, 4.2 and 4.3) that corresponds tothe part of G in �gure 4.13.Notice that prior to adding communication events the sequence c1a2d1b2 leadingto state 9 appears the same to agent 2 as the sequence c1d1a2e1b2 leading to state 13(i.e., both sequences appear as a2b2). For control purposes agent 2 must communicateat state 13. Therefore, prior to the pruning of Procedure 4.2 it appears that agent 2might also have to communicate the same event (i.e., com21:13) at state 9. However,we can see from �gure 4.15 that after various other communications are included, thesequence leading to state 13c is c1d1 com12:11 a2e1 com12:12 b2. This sequence canbe distinguished from the sequence c1a2d1 com12:11 b2 that now leads to state 9. (Toagent 2 the former sequence appears as com12:11 a2 com12:12 b2 whereas the latter117

c2

1a

σ
1

13

26

28

27

σ
2

2a

24

25

2a

1d

2ac1

com
12

:11

c2

σ
2

2b

c1

1d

com
12

:11

2a

1e

com
12

:12

2b

com
21

:13

1d

2b
1d

com
12

:11

com
12

:11

2b

1e

com
12

:12

1

0

c

2

5

8

47

48

 4 c

4

7

c10

10

13c

14

3

15

15c

c 6

6

9

12c

12

11

11

Figure 4.15: The portion of Gcom for the plant in �gure 4.13.118

appears as a2 com12:11 b2.)In a similar vein, prior to adding communication events, the sequence c1d1a2e1leading to state 10 appears the same to agent 1 as the sequence c1a2d1b2e1 lead-ing to state 12. In this case, however, even after other communication events areinserted (such as com12:11 at states 6c and 4c) the event com12:12 at state 10c isincluded because the sequences c1d1 com12:11 a2e1 and c1a2d1 com12:11 b2e1 are stillindistinguishable (i.e., both appear to agent 1 as c1d1 com12:11 e1).In Lemma 4.2 we noted that when agent i could not distinguish between controlsequence t and its control twin t0, incorporating a communication event according toTheorem 4.1 renders the respective communication-equivalent sequences distinguish-able. In Lemma 4.3 we showed that adding additional communications in Procedures4.2 and 4.2a preserved this distinguishability. Now we show that adding additionalcommunication in Procedures 4.3 and 4.3a still preserves the distinguishability ofsequences.Lemma 4.4 If Pi(t) = Pi(t0) (for control sequence t and its control twin t0) and wefollow Procedures 4.3 and 4.3a then P ci (etc) 6= P ci (ft0c).Proof. (By contradiction.) Let Pi(t) = Pi(t0) but P ci (~tc) = P ci (ft0c).Case 1: t0 is a control sequenceIn Procedure 4.3, communication events are added only to those sequences that arenot control sequences. Therefore, since t and t0 are control sequences then btc = etcand ct0c = ft0c. By Lemma 4.3, P ci (btc) 6= P ci (ct0c). Therefore, P ci (etc) 6= P ci (ft0c).Case 2: t0 is not a control sequenceProcedures 4.1 and 4.2 only add communication events to control sequences and thusct0c = t0 (i.e., the communication-equivalent sequence for t0 contains no communicationevents). Because t is a control sequence, etc contains at least one communication event.Suppose that the �rst such communication event is comji:q (i.e., etc = fuc�j comji:q fvc,119

where �G(u�j; qG0) = q).By steps 3 and 4(b) of Procedure 4.3, comji:q is added to ft0c if 9b 2 t0 such that Pj(b) =Pj(s), where s is the communication sequence for some control communication pair(q; t00) (where t00 is some sequence that passes through q). As in Case 1 of Lemma 4.3we can �nd a pre�x of t0 of the form b = u0�iv0000�j where �G(b; qG0) = x. Suppose thatthis is the case and ft0c = fu0c�i gv0000c�j comji:q gb00c.We initially assumed that P ci (etc) = P ci (ft0c):P ci (fuc�j comji:q fvc) = P ci (fu0c�igv0000c�j comji:q gb00c)P ci (fuc)P ci (�j)P ci (comji:q)P ci (fvc) =P ci (fu0c)P ci (�i)P ci (gv0000c)P ci (�j)P ci (comji:q)P ci (gb00c)P ci (fuc) comji:q P ci (fvc) = P ci (fu0c)�iP ci (gv0000c)comji:qP ci (gb00c)(since �j 62 �i;o)(4.13)As with Lemma 4.3, if P ci (fuc) = P ci (fu0c) then we have a contradiction becauseP ci (�i) 6= ". However, if P ci (fuc) 6= P ci (fu0c) then we must show it is not possiblefor P ci (fuc) = P ci (fu0c)�iP ci (gv0000c). Suppose that P ci (cuc) = P ci (cu0c�i dv0000c). By Lemma4.1, these sequences must look the same with the communication events \erased":P̂i(fuc) = P̂i(fu0c�idv0000c)Pi(u) = Pi(u0�iv0000) (by de�nition of P̂i)Pi(u) = Pi(u0)Pi(�i)Pi(v0000)= Pi(u)Pi(�i)Pi(v0000) (since (u; u0) is a maximal-P pair)However, this implies that Pi(�i) = " which is not possible since �i 2 �i;o.2 Lemma 4.4120

4.4 A Well-de�ned Communication Protocol for GcomUp until now, we have been somewhat vague about what we mean for Gcom togenerate well-de�ned communication protocols. Here we provide a formal de�nition:Definition 4.17 A communication protocol PGcomi for agent i is said to be well-de�ned if(8� 2 �comij)(8qPGcomi 2 QPGcomi)�PGcomi (�; qPGcomi)! =)6 9�0 2 ((� [�com) n f�g) such that �PGcomi (�0; qPGcomi)!That is, when the communication protocol for agent i indicates that agent i mustcommunicate to agent j there is no ambiguity in what agent i does. Note that ifGcom is consistent then the protocols generated with Gcom are well-de�ned. When acommunication event for agent i (i.e., � 2 �comij) is de�ned at one of its local statesqPGcomi , that particular communication event is the only event de�ned at qPGcomi .Note that the way in which we add communication events to Gcom ensures thatour communication protocols are well-de�ned (because consistency is satis�ed). Inparticular, we add communication events in such a way that unintentional communi-cation is avoided. Recall our assumption about the structure of G: whenever morethan one sequence leads to a communication state for agent i or a state that agent i�nds indistinguishable from the communication state, this state is split. Thus, afterProcedure 4.1a, for all (q; t) 2 Cij, the communication sequence s is followed only bythe communication event comij:q (i.e., �Gcom(comij:q; qc) = q).Similarly, after Procedures 4.2 and 4.3, if (x; v) is a compatible communicationpair for (q; t) that is added to X compatij , it is because P ci (fvc) = P ci (fsc), where fvc;fsc 2L(Gcom). Again, when adding the communication event comij:q to Gcom with respectto the compatible communication pairs for (q; t) that appear in X compatij , we split any121

states that lead to unintentional communication. That is, without taking into accountthe nuances of two-way communication that could arise, �Gcom(comij:q; xc) = x. Thus,the only event de�ned at qc and any state that agent i �nds indistinguishable fromqc is comij:q. When agent i reaches the state in PGcomi that represents its local viewof qc, the only event that can occur is one in which it must communicate its localview to agent j, thereby satisfying our de�nition of what it means to construct awell-de�ned communication protocol.We illustrate the e�ects that the previously-de�ned procedures have on the con-struction of Gcom from G and therefore on the generation of communication protocolsfor the decentralized agents. Figure 4.16(a) shows a portion of a plant where agent1 sees and controls events a and b while agent 2 sees and controls events b and d;neither agent sees c. After passing the entire G (not shown here) through Procedure4.1, there exists a (q; t) 2 C12 with a communication sequence s = dab as well as a(q0; t0) 2 C21 with a communication sequence s0 = cb. Note that this portion of Gdoes not include a complete speci�cation of t; t0 or their respective control twins. Thissection brie
y explains the mechanics of constructing a communication protocol: nocontrol solution is described.After Procedures 4.1 and 4.1a are complete, the portion of Gcom relevant to Gin �gure 4.16(a) is shown in �gure 4.16(b). Note that communication for controlis added at states 6, corresponding to s0 = cb, and 9, corresponding to s = dab.For this particular portion of G, no other communication events are added alongthe communication sequences. Therefore, after Procedures 4.2 and 4.2a, Gcom is notaltered.There are several compatible communication pairs for (q; t) and (q0; t0) that can beidenti�ed from �gure 4.16(a). In particular, (5; ab) is a compatible communicationpair for (q0; t0) and (5; ab) is also a compatible communication pair for (q; t). WhenProcedure 4.3a is complete, this leads to two-way communication occurring at state122

5 7

0

1 4

2 3

c

b

6 8

b

da

b a
a

b

9

5 7c6

com
21

:6

c9

com
12

:9

0

1 4

2 3

c

b

8

b

da

b a
a

b

6

9
co

m
21

:6

c6

com
21 :6

6

c9

com
12

:9

c3

c5

5

com
12

:9

com
21

:6

5cc

0

41

d

(c)

(a) (b)

a

c b

b

2

a

7

8

9

a

b

3

b

Figure 4.16: Developing well-de�ned communication protocols: (a) portion of plantG; (b) Gcom from G after Procedures 4.1/4.1a; (c) Gcom from G after Procedures4.3/4.3a. 123

5cc. We interpret the presence of two-way communication in a special way. Foreach agent to generate a well-de�ned protocol there must be no ambiguity as towhen an agent sends its local state to another agent. Note that if we calculatedthe projection automaton of Gcom in �gure 4.16(c) for agent 1, after ab occurs agent1 would be at a local state of f5cc; 9cg. At this local state, two events would bede�ned: com12:6 and com21:9. This does not constitute a well-de�ned communicationprotocol because com12:6 is not the only event de�ned at state f5cc; 9cg. Our intentis that after seeing ab agent 1 must communicate its local state. If our plant is toaccurately re
ect our communication intention we must make the following sleight-of-hand: whenever a two-way communication event occurs in the plant, each agent\sees" its own communication event �rst and then observes the event representingthe reception of communication from the other agent. Thus the \view" agent 1 hasof the plant in �gure 4.16(c) reverses the order of the two communication eventsde�ned at states 5cc and 5c. Figure 4.16(c) also re
ects the addition of (3; b), acompatible communication pair for (q0; t0) and therefore the communication eventcom21:6 is added after the new state 3c. The �nal version of Gcom (for the portion ofG in �gure 4.16(a)) after Procedures 4.3/4.3a are �nished is shown in �gure 4.16(c).How do the agents determine their communication protocol from Gcom? Thecommunication protocol is determined by calculating the projection automaton (de-scribed in section 2.1.2) of Gcom with respect to each agent. The projection automataof the portion of Gcom from �gure 4.16(c) are shown in �gure 4.17. For instance, thecommunication protocol for agent 1, illustrated in �gure 4.17(a), indicates that afterseeing b, agent 1 can expect a communication from agent 2. Agent 2 communicatesits local view of state 6. The states agent 1 considers possible after receiving thecommunication is the result of intersecting agent 2's local view of state 6 with agent1's current local state. In our example, this has the result that agent 1 believes thatplant could be in either state 3 or state 6. Since we are not describing the complete124

{ 3, 6 }c c

com
21

:6

{ 5 }

com
21

:6

com
12

:9

a

b

b

a

{ 0, 2, 4 }

{ 1, 8 }

{ 3, 6 }

{ 7 }{ 5 , 9 }

cc

c

c{ 5 , 9 }

com
12

:9

{ 3, 5, 6, 7 }

{ 5 }

com
21

:6

com
12

:9

{ 0, 1, 2 }

{ 4, 8 }

b d

{ 9 }

{ 9 }c

b

{ 3, 5, 6 }c cc c

c

(a)

(b)Figure 4.17: The communication protocols for each agent generated from Gcom in�gure 4.16 (a) PGcom1 for agent 1; (b) PGcom2 for agent 2.
125

control solution for this example, the local views for each agent may be incompletesince they have been determined using only the states illustrated in �gure 4.16.4.5 Constructing IcDES0 from Gcom and EcomWe use the plant we have augmented with communication events Gcom along withthe updated legal automaton Ecom to build a new interpreted system IcDES0. Thetransition function �Ecom of Ecom is characterized by the transitions in Gcom that leadto states in QE. Ecom thus constructed is a sub-automaton of Gcom. Note that thelegal language L(Ecom) contains the communication-equivalent sequences for all thesequences in L(E):L(Ecom) := f etc j (9t 2 L(E)) etc is the communication-consistent sequence for tg:As with IDES0, the set of worlds in IcDES0 are de�ned by the state-based evolu-tion of the sequences in L(Gcom). The updated set of primitive propositions �cDES0includes the propositions from IDES0, and propositions corresponding to the commu-nication events in �com: �cDES0 = � [�com;where �com are the propositions that represent the communication events in �com. Aswe did in section 3.1, to form �cDES0 we want to associate with each � 2 �Gcom twodistinct propositions: one to represent the fact that at a particular state in the plantthe event is de�ned (i.e., is possible), and the other to represent the fact that at thecorresponding state in the legal automaton state the event is de�ned. If �Gcom is �nite,it can be written as �Gcom = f�1; �2; : : : ; �ng. We let �cDES0 = f�Gi ; �Ei ji = 1; : : : ; ng.As before, we partition �cDES0 into two disjoint sets: �cG = f�Gi ji = 1; : : : ; ng and�cE = f�Ei ji = 1; : : : ; ng where �cG and �cE are sets containing j�Gcomj symbols. Toassociate �Gj with its counterpart �Ej , we extend the relation R� from section 3.1 and126

de�ne a relation R�Gcom such that R�Gcom � �cG � �cE and R�Gcom := f(�G; �E)j9�i 2�Gcom where �G = �Gi ; �E = �Ei g.The interpretation for the propositions in �cDES0 is de�ned for all � 2 �Gcom:�cDES(wc)(�G) := (true if �Gcom(�; we)!;false otherwise: (4.14)
�cDES0(wc)(�E) := (true if �Ecom(�; we)!;false otherwise: (4.15)Because of the way in which events in �com are added toGcom, either a communicationevent occurs and is legal or it is unde�ned. Thus at any global state of IcDES0 it willbe the case 8� 2 �com:�cDES0(w)(�G) = true and �cDES0(w)(�E) = true (4.16)or �cDES0(w)(�G) = false and �cDES0(w)(�E) = false: (4.17)4.6 Is IcDES0 Kripke-observable?We will show that if the Kripke structure based on the plant G is not Kripke-observable (but G;E are both observable with respect to P), after constructing Gcom,the resulting Kripke structure for Gcom and Ecom is Kripke-observable.Theorem 4.2 Given IDES0(G;E) that is not Kripke-observable. If we follow Pro-cedures 4.1, 4.2 and 4.3 to construct Gcom and Ecom and subsequently constructIcDES0(Gcom; Ecom), then IcDES0(Gcom; Ecom) is Kripke-observable.Proof. (By contradiction) 127

Recall the de�nition of Kripke-observability: for all w 2 IcDES0, for all (�G; �E) 2R�Gcom it must be the case that either (IcDES0; w) j= :�G _ �E or there exists i 2 G�such that (IcDES0; w) j= Ki:�E .Suppose that IcDES0(Gcom; Ecom) is not Kripke-observable.There must exist w 2 IcDES0 and (�G; �E) 2 R�Gcom where (IcDES0; w) 6j= :�G _ �Eand (8i 2 G�)(IcDES0; w) 6j= Ki:�E. That is,(IcDES0; w) j= (�G ^ :�E) (4.18)and for all i 2 G� there exists w0 2 IcDES0 such that w �i w0 and(IcDES0; w0) j= (�G ^ �E): (4.19)Note that by (4.16) and (4.17), it is not possible for �G; �E to correspond to � 2 �com.Therefore, � 2 � and, since i 2 G�, more speci�cally � 2 � \ �i;c.By de�nition, if w �i w0 then w and w0 have the same local state according to agent i.This means that we can �nd a path in Gcom that leads to we and a path in Gcom thatleads to w0e such that agent i cannot distinguish between these paths. In particular,let a path that leads to we be reconstructed as the sequence etc while a path that leadsto w0e be the sequence ft0c. Since w �i w0,P ci (etc) = P ci (ft0c): (4.20)Let etc be the communication-equivalent sequence for t 2 L(G):P̂ (etc) = t (4.21)and let ft0c be the communication-equivalent sequence for t0 2 L(G):P̂ (ft0c) = t0: (4.22)128

Case 1. Pi(t) 6= Pi(t0)By (4.21), it must also be the case that if all communication events are erased fromagent i's observation of etc that this is exactly agent i's view of t:P̂ (P ci (etc)) = Pi(t): (4.23)Similarly, by (4.22) P̂ (P ci (ft0c)) = Pi(t0): (4.24)If we apply the P̂ operator to both sides of (4.20) we get (from (4.23) and (4.24))Pi(t) = Pi(t0), which contradicts the assumption.Case 2. Pi(t) = Pi(t0)By de�nition, there must exist v; v0 2 IDES0 such that v �i v0, t leads to state vand t0 leads to state v0 where v; v0 are states in the monitoring automaton A. SinceA generates the same language as G, we also know that �G(t; qG0) is de�ned andthat �G(t0; qG0) is de�ned. In particular, �G(t; qG0) = ve and �G(t0; qG0) = v0e whereve; v0e 2 QG.From (4.18) we know that �Gcom(�; we) is de�ned but that �Ecom(�; we) is not de�ned.By Observation 4.1 in section 4.2.3, we note that if �Gcom(etc; qGcom0) = we then it isthe case that �G(P̂ (etc); qG0) = we. Thus, using (4.21), we have �G(t; qG0) = we. Since,from above, �G(t; qG0) = ve, we have ve = we.By the construction of Gcom, since �Gcom(�; we) is de�ned and since � 2 �, it mustalso be the case that �G(�; we) is de�ned. Similarly, since �Ecom(�; we) is not de�nedit must be that �E(�; we) is not de�ned. Further, it must be the case (since ve = we)that (IDES0; v) j= �G ^ :�E: (4.25)129

From (4.19) we know that �Gcom(�; w0e) is de�ned and that �Ecom(�; w0e) is also de�ned.Again, we can use Observation 4.1 to conclude that if �Gcom(ft0c; qGcom0) = w0e then�G(P̂ (ft0c); qG0) = w0e. Therefore it is also the case that �G(t0; qG0) = w0e. And since�G(t0; qG0) = v0e, we have v0e = w0e.By the construction of Gcom, since �Gcom(�; w0e) and �Ecom(�; w0e) are de�ned and since� 2 �, it is also the case that �G(�; w0e) and �E(�; w0e) are de�ned. Thus it must bethe case that (IDES0; v0) j= �G ^ �E: (4.26)By (4.25) and (4.26) and the fact that v �i v0, we know that (IDES0; v) j= :Ki:�E .Since the above reasoning works for all i 2 G�, Kripke-observability fails for IDES0 atv|in particular, corresponding to sequences t and t0.Also by (4.25) we have t� 2 L(G) but t� 62 L(E). Similarly, by (4.26) we have t0� 2L(G) and t0� 2 L(E) so t, t0 and � satisfy the hypothesis of Theorem 4.1. Thereforewe apply Procedures 4.1 through to 4.3a. By Lemma 4.4, P ci (etc) 6= P ci (ft0c), whichcontradicts (4.20). Therefore there exists i 2 G� such that (IcDES0; w0) j= Ki:�E .2 Theorem 4.24.7 Minimal CommunicationIn section 4.2 we discussed our strategy for constructing a set of control commu-nication pairs where one agent communicates to another agent to solve the controlproblem. Although communication at every (q; t) 2 Cij will lead to agent j makingall its correct control decisions, it may be that we can eliminate extraneous commu-nication. That is, some subset of control communication pairs (i.e., ~Cij � Cij) willalso lead to a control solution. 130

What do we mean by saying an element of Cij represents extraneous communi-cation? One of our communication goals is to communicate enough information toallow each agent to distinguish a bad state from an indistinguishable good state(s).We choose each (q; t) 2 Cij so that bad states can be distinguished from good states.It could be the case that the communication for (q; t) is necessary to allow agent jto distinguish a set of bad state from a several sets of look-alike good states. Or itis possible that a compatible communication pair (x; v) 2 Ccompatij (where (x; v) is nota compatible pair for (q; t)) occurring prior to (q; t) provides agent j with enoughinformation to make the correct control decision. We want to �nd a set of commu-nications that does not contain extraneous communication pairs. In addition, wewant the the set of communications to satisfy consistency for Gcom. We seek a set ofminimal communications.The notion of minimality for a set of communications was introduced in [31]where a set of communications is minimal when it is the case that if \any one eventoccurrence is not communicated from an agent to the other, the agents will not beable to achieve their objectives". We adopt this notion of minimality for examiningcommunication in decentralized discrete-event control problems. The objectives ofagents in our system is to solve the control problem and satisfy consistency.Definition 4.18 Let C := C12 [C21 and Ccompat := Ccompat12 [Ccompat21 . A set ofcommunication pairs C [Ccompat for a plant Gcom is said to be minimal if 6 9 (a; b) 2C[Ccompat such that (C [Ccompat)nf(a; b)g also solves the control problem and rendersGcom consistent.Were such an extraneous (a; b) to exist, it would mean that either by the time theplant reached state a one of the agents already had enough information to solve thecontrol problem or (a; b), which had been added because it was compatible with acontrol communication pair (q; t), is no longer indistinguishable from (q; t) after othercommunication pairs were added to the system.131

4.7.1 An example system requiring communicationThis section revisits the portion of a plant introduced in �gure 4.13. We will seethat the control and communication solution generated by following Procedures 4.1,4.2 and 4.3 contains extraneous communication. Therefore the procedures applied sofar do not yield a minimal communication set.Figure 4.18 shows a plantG and E where communication between the two supervi-sors/agents is necessary to �nd a control solution. As is clear from the �gure, the au-tomaton in �gure 4.13 is a subautomaton of the plant in �gure 4.18. In this example welet �1;o = �1;c = fa1; c1; d1; e1; f1; m1; �1g and �2;o = �2;c = fa2; b2; c2; f2; g2; h2; �2g.There is one event that neither agent observes: �uo = f
g. The projection automa-ton for each agent is shown in �gure 4.19. When we translate these structures intoan interpreted system IDES, we detect �ve global states where Kripke-observabilityfails:1. Agent 2 does not know whether to disable �2 since it cannot distinguish badstate 56 from good state 47:(56; f1; 3; 8; 14; 29; 30; 55; 56; 57g; f26; 27; 28; 47; 56g);2. Agent 2 does not know whether to disable �2 since it cannot distinguish badstate 38 from good state 24:(38; f10; 12; 13; 24; 25; 26; 35; 37; 38; 40g; f24; 36; 38g);3. Agent 1 does not know whether to disable �1 since it cannot distinguish badstate 39 from good state 27:(39; f27; 39g; f2; 3; 6; 7; 10; 30; 32; 33; 35; 37; 39; 41; 53g);
132

4. Agent 1 does not know whether to disable �1 since it cannot distinguish badstate 51 from good state 58:(51; f49; 50; 51; 58g; f21; 22; 23; 51; 52g);and5. Agent 1 does not know whether to disable �1 since it cannot distinguish badstate 22 from good state 45 :(22; f22; 45g; f21; 22; 23; 51; 52g):For the remainder of the discussion of this example, we will refer to the globalstates using local state labels as noted in �gure 4.19. For example, global state(44; f20; 21; 44g; f16; 20; 43; 44; 45; 46; 50g) becomes (44; 3; 2) since the automaton statef20; 21; 44g in PG1 (at the top of �gure 4.19) has a label of \3". Similarly, the statef16; 20; 43; 44; 45; 46; 50g of PG2 (the bottom half of �gure 4.19) has a label of \2".Why does agent 1 not know whether to disable �1 at global state r(m) = (51; 2; 5)?We focus on the truth assignments to this global state, and in particular the propo-sitions �1G and �1E in �DES: �1G = true;and �1E = false:These values correspond to the fact that at state 51 in the plant (see �gure 4.18),the only event that is de�ned at that plant state is �1 (therefore �1G is true) but thedashed line for the transition means that �1 is not de�ned in the legal automaton(and �1E is false). Agent 1 does not know whether to disable �1 because its localstate r1(m) contains both plant states 51 and 58, which means these states look aliketo agent 1. The truth value of �1E is false at (51; 2; 5) but the truth value of �1E133

1d

2a

2f

m1

h2

m1

1f

2g

1d

1e

2a

1d

1f

h2

2g

2b

c1

c2

1d

σ
2

2b

c1

c2

σ
2

σ
1

m1

m1

σ
1

2a

2b
1d

2b

σ
2

2a

1e

1d

2a

1e

2b

c2

1a

σ
1

2g

h2

σ
1

σ
1

2a

2b

1e

2a

1a

σ
2

σ
1

c1

0

1

14

15

16

17

18
20

42

49

50

51
2 γ

5

8

11

47

48

53

54

55

56

57

52

γ

43

45

46

3

6

9

12

24

25

10

13

26

28

27

58 21

22

23

19
7

4 29

γ

3130

32 33

34 35

36 37

3938

γ

40 41

44

Figure 4.18: A plant requiring communication. Illegal transitions are marked by adashed line.
134

{ 0,2,5,16,17,18,42,43,53,54}
0

1f

P G1

P G2

1σ

m 1

m 1

1σ

{ 0, 1, 4, 29, 31, 42, 49 }a 2

h2

h2

1d

1e

c 1

1σ

a 1

2σ 2σ

c 2

6

2

{ 19, 52 }

3

{ 20, 21, 44 }

{ 22, 45 }

8

{ 23, 46 }

{ 49, 50, 51, 58 }

0

1

g2

{ 16, 20, 43, 44, 45, 46, 50 }
{ 2, 3, 6, 7, 10, 30, 32, 33, 35, 37, 39, 41, 53 }

{ 17 }

f 2

{ 18, 19, 58 }

5

{ 21, 22, 23, 51, 52 }

8

4

2

b2

{ 5, 8, 9, 11, 12, 13, 14, 15, 34, 54, 55 }
3

1

5

9

{ 27, 39 }

{ 4, 6, 7, 9, 11, 15, 31, 32, 33, 34, 36, 47, 48 }

{ 10, 12, 13, 24, 25, 26, 35, 37, 38, 40 }
7

{1, 3, 8, 14, 29, 30, 55, 56, 57 }

4

10

{ 28, 41 }

a 2

6

{ 25, 40 }

7

9

{ 26, 27, 28, 47, 56 }{ 24, 36, 38 }

10

{ 48, 57 }Figure 4.19: The projection automaton for agent 1 (the top of the �gure) and agent2 (bottom of the �gure) for G in �gure 4.18. Italicized numbers in top left of thecorners of each state denote a label we use to refer to the state.
135

at the corresponding global state of plant state 58 (which happens to be (58; 2; 8)) istrue since �1 is de�ned in the plant and the legal automaton according to �gure 4.18.The con
icting truth values for �1E at states that are indistinguishable to agent 1means that agent 1 does not know whether to disable �1 at this point in the system.We have identi�ed the places where Kripke-observability fails, and therefore, usingthe monitoring automaton, we can reconstruct the sequences which an agent cannotdistinguish without further information. There are �ve pairs of sequences that leadto IDES0 not satisfying Kripke-observability:P1(c1d1a2e1b2c2a1) = P1(c1
d1a2e1
a1); (4.27)P1(f1g2h2) = P1(g2f2h2f1); (4.28)P1(g2m1h2m1) = P1(
g2m1m1); (4.29)P2(a2b2c1d1c2) = P2(a2
b2c1c2�2); (4.30)P2(c1a2d1b2e1a2) = P2(c1
a2d1b2a2e1): (4.31)We use Procedure 4.1 to identify the control communication pairs for each agent.For example, agent 1 cannot distinguish the sequences in (4.29) since P1(g2m1h2m1) =P1(
g2m1m1) = m1m1. The maximal-P pair for these sequences is (g2m1;
g2m1).Agent 2 communicates following one of the entries of the maximal-P pair that is im-mediately followed by an event observable to agent 2. Since g2m1 is followed by h2and
g2m1 is followed by m1, agent 2 communicates at state 21 when it sees g2m1h2.The control communication pair is therefore (21; g2m1h2m1), the communication se-quence is g2m1h2 and the associated control twin is
g2m1m1. The complete set ofcontrol communication pairs for this example isC12 = f(11; a2b2c1d1c2); (12; c1a2d1b2e1a2)g; (4.32)C21 = f(13; c1d1a2e1b2c2a1); (16; g2f2h2f1); (21; g2m1h2m1)g:The communication sequence s for each communication control pair is as follows:136

� Agent 1 communicates after seeing s = a2b2c1d1;� Agent 1 communicates after seeing s = c1a2d1b2e1� Agent 2 communicates after seeing s = c1d1a2e1b2� Agent 2 communicates after seeing s = g2� Agent 2 communicates after seeing s = g2m1h2The dependency matrix D has the following row/column assignments:� row/column 1 corresponds to control communication pair (11; a2b2c1d1c2);� row/column 2 corresponds to control communication pair (12; c1a2d1b2e1a2);� row/column 3 corresponds to control communication pair (13; c1d1a2e1b2c2a1);� row/column 4 corresponds to control communication pair (16; g2f2h2f1);� row/column 5 corresponds to control communication pair (21; g2m1h2m1).After Procedure 4.2, the dependency matrix D looks like
D = 26666664 ; ; ; ; ;(6; c1a2d1) ; ; ; ;(4; c1d1) (10; c1d1a2e1) ; ; ;; ; ; ; ;; ; ; (16; g2) ;

37777775Additionally, after Procedure 4.2, we identify the following compatible communi-cation pairs (as shown in section 4.3.1, p. 100):� Ccompat12 = f(4; c1d1); (6; c1a2d1); (10; c1d1a2e1)g;� Ccompat21 = ;. 137

Note that (16; g2) is not added to Ccompat21 because g2 corresponds to the communicationsequence for the control communication pair (16; g2f2h2f1).At the initiation of Procedure 4.3, the set X4:3 contains the following entries (thecorresponding row in D̂ is also indicated):� (15; c1a2b2d1) is compatible with (11; a2b2c1d1c2) (row 1);� (31; c1
d1) is also compatible with (11; a2b2c1d1c2) (row 2);� (32; c1
a2d1) is also compatible with (11; a2b2c1d1c2) (row 3);� (35; c1
d1a2e1) is compatible with (12; c1a2d1b2e1a2) (row 4);� (38; c1
a2d1b2a2e1) is compatible with (12; c1a2d1b2e1a2) (row 5);� (14; c1a2b2) is compatible with (13; c1d1a2e1b2c2a1) (row 6);� (34; c1
a2b2) is also compatible with (13; c1d1a2e1b2c2a1) (row 7);� (54; a2
b2) is also compatible with (13; c1d1a2e1b2c2a1) (row 8);� (43;
g2) is compatible with (16; g2f2h2f1) (row 9);� (50; f1g2) is also compatible with (16; g2f2h2f1) (row 10);� (51; f1g2h2) is compatible with (21; g2m1h2m1) (row 11).

138

The dependency matrix D̂ is initially
D̂ =

2666666666666666666664
; ; (14; c1a2b2) ; ;; ; ; ; ;; ; ; ; ;(31; c1
d1) ; ; ; ;(32; c1
a2d1) ; (34; c1
a2b2) ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; (50; f1g2) ;

3777777777777777777775In section 4.3.2 (p. 108) we determined the membership of (15; c1a2b2d1) (row 1 ofD̂) and (14; c1a2b2) (row 4 of D̂) in C12 (i.e., the former is in the set, the latter is notin the set). We continue here by examining the remaining rows.Rows 2, 3, 7, 8, 9 and 10 of D̂ contain all ; entries. To determine if the correspond-ing compatible communication pair is added to Ccompat, we simply see if the appropri-ate row of D also contains all ; entries. For instance, rows 2 and 3 in D̂ correspondto (31; c1
d1) and (32; c1
a2d1) and both are compatible with (11; a2b2c1d1c2)|row1 in D. Since all three of these rows contain all ; entries, we add (31; c1
d1) and(32; c1
a2d1) to Ccompat12 and mark these two compatible communication pairs \re-solved". Similar analysis of (43;
g2) and (50; f1g2)|checking to see if the entriesin row 4 of D (corresponding to the control communication pair both are compat-ible with, namely (16; g2f2h2f1))|means that (43;
g2) and (50; f1g2) are added toCcompat21 . The two pairs (43;
g2) and (50; f1g2) are marked \resolved". Finally wecompare rows 7 and 8 in D̂ to row 3 in D. Since row 3 of D does not contain all ;entries, we do not add (34; c1
a2b2) and (54; a2
b2) to Ccompat21 . This means that aftercommunication events are added along the communication sequence c1d1a2e1b2 andalong the sequences c1
a2b2 and a2
b2, the latter two sequences no longer have the139

the same projection according to agent 2 in L(Gcom) as the communication sequence.We can now check (51; f1g2h2) since all its non-empty elements (i.e., (50; f1g2)) aremarked \resolved". Since (50; f1g2) is in Ccompat21 , this is a communication event thatwill be added to Gcom so it will be inserted along sequence f1g2h2. Thus we do takeits presence into consideration when determining whether or not (51; f1g2h2) is stillcompatible with (21; g2m1h2m1). We compare row 11 of D̂ to row 5 of D and notethat both these rows have the same pattern of empty and non-empty entries. Thatis, the fourth column in each row is non-empty: (16; g2) in D and (50; f1g2) in D̂. Wemust next make certain that the projections of these sequences (once communicationis added) would be the same: P2(g2) = P2(f1g2). We thus add (51; f1g2h2) to Ccompat21 .Similarly we check (35; c1
d1a2e1) and can show that it too is added to Ccompat12 .The �nal set of compatible communication pairs for this example is� Ccompat12 = f(4; c1d1); (6; c1a2d1); (10; c1d1a2e1); (15; c1a2b2d1);(31; c1
d1); (32; c1
a2d1); (35; c1
d1a2e1); (38; c1
a2d1b2a2d1)g;� Ccompat21 = f(43;
g2); (50; f1g2); (51; f1g2h2)g.Note that the sets of control communication pairs and the sets of compatiblecommunication pairs do not form a minimal communication set. For instance, ifagent 2 communicated when the plant is at state 21, the compatible communicationat state 51 would be enough to allow agent 1 to distinguish between the sequenceleading to state 51 and the sequence leading to state 58.4.7.2 A minimal algorithm for communicationOur algorithm for minimal communication uses a \greedy" strategy to optimizeour original set of control communication pairs by removing those we deem extrane-ous. Optimizing this set amounts to removing communication that is not necessary to140

solve the control problem (i.e., remove (q; t) from C). We then must ensure that the�nal set of communications also contains all communication pairs that are compatiblewith the optimized set of control communication pairs.Greedy algorithms are used as a technique for solving optimization problems(see [5] for an excellent summary). A greedy algorithm proceeds by choosing, at everystep, a particular entry in a set of candidates that will maximize the user-de�ned cri-teria for selection. At each step of a greedy algorithm a \best" or maximum candidateis selected and is never exchanged. Thus we must ensure that our selection functionchooses the control communication pair that will optimize our solution at that step.If this selected candidate produces a feasible solution (i.e., can we eventually reacha solution if we choose this value now?) then add the candidate to a �nal set andcontinue until a solution has been reached, or all the candidates have been examinedand no solution was achieved.The goal of solving our decentralized control problem is to have agents distinguishbetween certain \good" states and \bad" states hence making all the correct controldecisions while satisfying consistency. After following Procedures 4.1, 4.2 and 4.3we have a set of communication pairs that, when incorporated into Gcom, will allowagents to solve the control problem. (As noted previously, Gcom is already consistent.)However, it may be the case that the presence of one of the control communicationpairs along with its compatible communication pairs allows an agent to distinguishbetween additional \good" and \bad" states and makes the inclusion of anothercontrol communication pair redundant. The framework of our greedy algorithm isbased on an algorithm presented in chapter 3 of [5].Under what circumstances could a (q; t) allow an agent to distinguish more thanone set of good and bad states in our state-based system? Let (q; t) 2 Cij be a controlcommunication pair chosen to allow agent j to distinguish states along sequence tfrom those along its control twin t0. Further, let (q̂; t̂) 2 Cij be a communication that141

distinguishes the states along t̂ from those along its control twin bt0. There are threescenarios where (q; t) could allow agent j to distinguish more than just the statesalong t and t0.1. Suppose the communication sequence s for (q; t) is a pre�x of the communicationsequence for (q̂; t̂). In addition, let communication at q (after s occurs) besu�cient to allow agent j to distinguish not only t from t0, but also distinguisht̂ from bt0. Then communication at (q̂; t̂) would be unnecessary.2. Suppose (q̂; t̂) depends on (q; t). That is, there exists some (x; v) that is com-patible with (q; t) such that v 2 ŝ, where ŝ is the communication sequence for(q̂; t̂). If communication at (x; v) allows agent j to distinguish states along tfrom those along t0 and t̂ from bt0, then additional communication at (q̂; t̂) wouldbe unnecessary.3. Suppose (x; v), a compatible communication pair for (q; t), is such that v 2 t̂0.Again, if communication at (x; v) allows agent j to distinguish t̂ from t̂0, thenadditional communication at (q̂; t̂) would be unnecessary.We introduce a set New of the form f(q1; t1); (q2; t2); : : : ; (qn; tn)g, i.e., the ele-ments of New are control communication pairs. If an element (q; t) is in the set New,this represents the fact that sequence t needs to be distinguished from its control twint0. Initially this set is precisely C. The set FinalCom is the set of communicationpairs that constitute the optimized output from the greedy algorithm. Initially thisset is ;.Before discussing our greedy algorithm, we �rst describe what characteristics ofour candidate set we want to use to select an optimal subset.The intuition behind our selection strategy, presented in Algorithm 4.1, is thatwe want to count the number of \good" and \bad" pairs of sequences that can be142

distinguished by communication at a given (q; t) 2 C and at all (x; v) compatible with(q; t). In particular, we want to know how many control sequences, as represented byelements in New, can be distinguished from their control twins by communicationassociated with (q; t) and its corresponding set of compatible communication pairs.After all the candidates are examined, we will choose the control communication pairthat allows a given agent to distinguish the most control communication sequencesfrom their control twins (as represented by the elements ofNew). The control commu-nication pair (q; t) and any of its compatible communication pairs that are necessaryto solve part of the control problem are stored in the set control com. We alwaysinclude (q; t) in control com even if (q; t) is not in New. If (q; t) 62 New this meansthat some previously-chosen element of FinalCom or ControlCom also distinguishest from its control twin. In Algorithm 4.1 we put (q; t) in control com because wewant to keep track of the control communication pair associated with the compatiblecommunication pairs that might also be in control com.Algorithm 4.1 is performed for each (q; t) 2 C. We want to �nd out how manycontrol sequences and their respective control twins would be distinguished if com-munication events were added along these sequences at (q; t) and all its compatiblecommunication pairs (x; v).Algorithm 4.1 Selection StrategyInput. A control communication pair (q; t) 2 C and New, the set of control communi-cation pairs representing control sequences that either agent i or j cannot distinguishfrom their control twins with the current set of communication pairs in FinalCom.Output. A set of control communication pairs that agent i or j can distinguishif communication events are added to Gcom at q and at states x for all compati-ble communication pairs (x; v) for (q; t)|denoted distinguish|and the set, denotedcontrol com, that contains (q; t) and those of its compatible communication pairs143

(x; v) pairs that allow agent i or j to distinguish the control sequences associatedwith pairs in distinguish from their control twins.begin1. if (q; t) 2 New thendistinguish f(q; t)gelsedistinguish ;2. control com f(q; t)g3. for all (a; b) 2 New4. b0 control twin for b5. X c(a; b) f(x; v) j (x; v) is compatible with (q; t)and (v 2 b or v 2 b0)g6. for all (c; d) 2 X c(a; b)7. if 6 9y;y0 2 (ci \ cj) (for y 6= y0)where if c is a good (resp., bad) state withrespect to b� then y is a good (resp., bad) statewith respect to b� and y0 is a bad (resp., good)state with respect to b0� then8. distinguish = distinguish [f(a; b)g9. control com = control com [f(c; d)g10. return distinguish, control comendAt step 5 of the algorithm, we collect all the compatible communication pairs for(q; t) that lie along either a control communication sequence in New or its associatedcontrol twin.Step 7 examines each of the compatible communication pairs of (q; t) in X c(a; b).If communication of an agent's local state at (c; d) means that b and b0 can be distin-guished by the appropriate agent (i.e., the intersection of the local views of c do notcontain both a good and bad state with respect to b; b0), then (a; b) is added to theset of communication pairs that (q; t) distinguishes. Since communication at c allowsan agent to make the correct control decision about b and b0, in step 9 (c; d) is addedto the set of communication pairs necessary to solve the overall control problem.Our greedy strategy for decentralized agents is described in Algorithm 4.2. Theset of candidates for this algorithm is the set of control communication pairs C. The144

algorithm selects a subset of the candidate set that allows the appropriate agent todistinguish \good" from \bad" states. Once a candidate is selected and examined, thecandidate is removed from C (step 9). If there are still sequences that remain indis-tinguishable and the selected candidate (i.e., the one that maximizes Algorithm 4.1)distinguishes no sequences, then we cannot reach a solution (step 20). If, though, theselected candidate would allow the appropriate agent to distinguish some sequencesrepresented by the elements in New, then the candidate is added to the �nal setof communication pairs and the sequences the candidate distinguishes are removedfrom consideration. The algorithm continues until either all the control communica-tion pairs have been considered or until there are no more sequences for the agent todistinguish.Algorithm 4.2 Greedy CommunicationThe success of the greedy algorithm depends on how we describe the selectionof a candidate (q; t) in step 3. A control communication pair (q; t) that maximizesAlgorithm 4.1 is a communication that distinguishes the largest number of controlcommunication pairs in the set New from their respective control twins. By the waythat we de�ne the (q; t)'s, each (q; t) distinguishes at least t from its control twin.(Although note that this is only relevant if (q; t) is also in the set New.)It is possible that after step 3 instead of one maximum candidate, we could haveseveral maximal candidate communication pairs (i.e., of the ones that distinguish themost number of elements). In this case, at steps 4 and 5, we randomly select one ofthe maximal candidates.After step 11, FinalCom contains all the (q; t) where the communication of anagent's local view of q would lead to the other agent making the correct control deci-sion. We want to make sure that each element of FinalCom (and any of its compatiblecommunication pairs that might be in ControlCom) distinguishes at least one controlsequence from its control twin that the other elements in FinalCom do not. If this145

is not the case, then we could remove (q; t) from FinalCom and still �nd a controlsolution. Thus at step 14 we determine which control sequences (as represented bythe control communication pairs in the original set C12 [C21) would be distinguishedfrom their control twins by the occurrence of the communication event associatedwith the control communication pair (q; t). The set of control communication pairsthat correspond to these control sequences is denoted here as distinguishC(q;t). Notethat distinguishC(q;t) is also the result of passing (q; t) as a parameter to Algorithm4.1 during the selection of the candidate that maximizes Algorithm 4.1 during the�rst iteration of Algorithm 4.2. We calculate this set for all the other elements(q0; t0) in FinalCom. The union of all these sets is denoted DistinguishC(q0;t0). If weremove from distinguishC(q;t) all those elements that occur in both DistinguishC(q0;t0)and distinguishC(q;t), we are left with the control communication pairs that correspondto the control sequences that can only be distinguished from their control twins whenan agent communicates its local view of q. If the result is the empty set, then anythingthat (q; t) distinguishes can already be distinguished by other elements of FinalCom.Thus (q; t) is removed from FinalCom in step 15. In addition, any of its compatiblecommunication pairs are removed from ControlCom (step 16).Note that step 18 may not have to be calculated since this set may already havebeen calculated by prior utilisation of Procedures 4.2 and 4.3. Thus X compat mightsimply be a subset of Ccompat.The output of the greedy algorithm, FinalCom [X compat, is used to create Gcomin the manner described by Procedures 4.1a, 4.2a and 4.3a. The communicationprotocol for each agent is then generated by calculating the projection automata ofGcom.Theorem 4.3 The set of communication pairs FinalCom [X compat obtained fromexecuting Algorithm 4.2 is a set of minimal communication pairs.146

Proof. (By contradiction)Suppose FinalCom is not a minimal set. Then 9(a; b) 2 FinalCom [X compat suchthat either the control problem can still be solved with (FinalCom[X compat)nf(a; b)gor adding communication events to Gcom with respect to the elements of (FinalCom[X compat) n f(a; b)g means Gcom is still consistent.Case 1. Remove (a; b) from FinalCom.We must argue that there exists some t; t0 that communication at state a distin-guishes that no other element in FinalCom or X compat distinguishes. By step 14 ofAlgorithm 4.2, (a; b) represents either (i) a communication event that uniquely distin-guishes some t from t0 that no other element of FinalCom or X compat does or (ii) (a; b)looks like another element in FinalCom that does uniquely distinguish t; t0. Note thatif there is no t; t0 that communication at state a uniquely distinguishes, (a; b) would beremoved from FinalCom in steps 15 and 16 of Algorithm 4.2. Thus, if (a; b) satis�es(i) and is removed from FinalCom, the control problem cannot be solved, leading toa contradiction. Similarly, if (a; b) satis�es (ii), that is, (a; b) is a compatible commu-nication pair for an element of FinalCom, say (d; e), then the removal of (a; b) meansthat no communication event will be added to Gcom for state a in Procedure 4.3a.That is, �Gcom(dc; comij:d) = d and there will be a state y in QGcom (either y = acor y = acc) that has the same local view as dc but �Gcom(y; comij:d) is not de�nedeven though yi = dci . This violates the our notion of consistency from De�nition 4.12.Therefore the system is no longer consistent, leading to a contradiction.Case 2. Remove (a; b) from X compat.By the de�nition of X compat in step 18 of Algorithm 4.2, removing (a; b) means that acommunication event will not be added to state a in Procedure 4.3a. Using the samereasoning as for Case 1, the removal of (a; b) means the system is no longer consistent.This contradicts our assumption. 147

2 Theorem 4.3Note that if some algorithm other than Procedures 4.1, 4.2, and 4.3 was used togenerate a communication solution to the decentralized control problem, then Algo-rithm 4.2 could still be used to pare the solution down to a minimal communicationset.We return to the example of �gure 4.18. Our input to the greedy algorithm is theset of control communication pairs in (4.32). The �rst control communication pair tomaximize distinguish of Algorithm 4.1 is (21; g2m1h2m1). It is the pair correspondingto a communication that would allow an agent to distinguish the largest number ofcontrol sequences from their control twins: (4.28) and (4.29) are both distinguishedby (21; g2m1h2m1) and its compatible communication pair (51; f1g2h2).We remove (21; g2m1h2m1) and (16; g2f2h2f1) fromNew and remove (21; g2m1h2m1)from C. The set FinalCom now contains (21; g2m1h2m1) and ControlCom contains(51; f1g2h2).At the next iteration we choose the control communication pair in C that distin-guishes the most number of the remaining elements in New.In this case, we have a three-way tie for a candidate that maximizes distinguishof Algorithm 4.1: each of (11; a2b2c1d1c2), (12; c1a2d1b2e1a2) and (13; c1d1a2e1b2c2a1)distinguishes one of the control sequence/control twin pairs associated with an elementof New. We randomly choose (12; c1a2d1b2e1a2) and remove it from C and removethe element of New whose control sequence/control twin it distinguishes (namelyitself). FinalCom is now f(21; g2m1h2m1), (12; c1a2d1b2e1a2)g while ControlCom isstill f(51; f1g2h2)g.The next iteration of the algorithm sees a two-way tie for a maximal element:(13; c1d1a2e1b2c2a1) and (11; a2b2c1d1c2) distinguish one element each in New. Theselection of (11; a2b2c1d1c2) is random, once again, and we remove it from bothNew (since it distinguishes the control sequence associated with it from its control148

twin) and C. FinalCom is f(21; g2m1h2m1), (12; c1a2d1b2e1a2), (11; a2b2c1d1c2)g andControlCom is f(51; f1g2h2)g.The element maximizing the selection algorithm in the last iteration of the greedyalgorithm is (13; c1d1a2e1b2c2a1), and like the previous two iterations, it distinguishesthe control sequence associated with itself from its control twin. FinalCom for thisexample is f(21; g2m1h2m1), (12; c1a2d1b2e1a2), (11; a2b2c1d1c2), (13; c1d1a2e1b2c2a1)g.ControlCom is f(51; f1g2h2)g.At this point, New = ;. We want to make sure that each element in FinalComrepresents a communication that allows an agent to uniquely distinguish at leastone control sequence t from its control twin t0. Using the original set of controlcommunication pairs C12[C21, we calculate the following for the elements of FinalComusing Algorithm 4.1:distinguish(21;g2m1h2m1) = f(21; g2m1h2m1); (16; g2f2h2f1)g; (4.33)distinguish(12;c1a2d1b2e1a2) = f(12; c1a2d1b2e1a2)g; (4.34)distinguish(11;a2b2c1d1c2) = f(11; a2b2c1d1c2)g; (4.35)distinguish(13;c1d1a2e1b2c2a1) = f(13; c1d1a2e1b2c2a1)g: (4.36)Note that we do not remove any of the elements of FinalCom. For example, tosee if communication with respect to control communication pair (12; c1a2d1b2e1a2)distinguishes anything unique, we take the union of sets marked (4.33), (4.35) and(4.36) and subtract this from (4.34). The result is not empty, therefore we leave(12; c1a2d1b2e1a2) in FinalCom. We repeat this exercise for each of the other ele-ments in FinalCom. By step 17 of Algorithm 4.2, FinalCom = f(21; g2m1h2m1),(12; c1a2d1b2e1a2), (11; a2b2c1d1c2), (13; c1d1a2e1b2c2a1), (51; f1g2h2)g.The compatible communication pairs were previously calculated at the beginningof this section. The only ones not included are the compatible communication pairsfor (16; g2f2h2f1). Thus X compat = f(4; c1d1), (6; c1a2d1), (10; c1d1a2e1), (15; c1a2b2d1),149

(31; c1
d1), (32; c1
a2d1), (35; c1
d1a2e1), (38; c1
a2d1b2a2d1)g. If we remove any con-trol communication pair from FinalCom we would not be able to solve the controlproblem.The �nal version of Gcom, after adding the communication events associated withthe elements of FinalCom and X compat, is shown in �gure 4.20. The communicationprotocol for each agent is illustrated in �gure 4.21.

150

1d

2a

2f

m1

h2

1f

2g

1d2a

1d

1f

h2

2g

2b

c1

1d

2b

c1

c2

σ
2

m1

m1

σ
1

2a

2b
1d

1d

2g

h2

σ
1

c1

σ
1

51c

com21 :21

σ
1

m1

com21 :21

15
c

com12 :11

σ
2

c2

11
c

com
12

:11

σ
2

2a

com12 :12

12
c

1e

2b

σ
1

1a

13
c

com
21

:13

com12:11

2b

10
c

2a

c
 6

c
 4

com12:11

σ
2

38
c

c2
com12:12

1e

2a

com
12

:12

2b

32
c

com12:11

1e

σ
1

1a

35
c

com
12

:12

1e

2a

31
c

com12:11

0

1

14

16

17

18
20

42

49

50

2 γ

5

53

54

55

56

57

γ

43

45

46

358

19

29

γ

30 44
52

51

23

22

21

21
c

15

48

47

11

8

25

24

12

9

6

28

27

26

13

10

7

4

40

38

36

34

32

41

39

37

γ

35

33

31

Figure 4.20: Gcom, from G in �gure 4.18 after completing Algorithms 4.1 and 4.2.
151

1f

P G1
com

m 1

c 1

1σ

{ 49, 50, 51, 58 }c

{ 4, 6, 11, 15, 31, 32 }c c c c c c

1d

{ 10, 12, 35, 38 }c c c c

1e

{ 39 }

{ 27 }{ 41 }

a 1

1σ

{ 28 }

1σ

a 1

P G2
com

h2

a 2

b2

{ 2, 3, 6, 30, 32, 53 }c c

{ 47 }

2σ

{ 48 }

{ 56 }

c 2

c 2

b2

{ 12 }

{ 24 }

{ 25 }

2σ

a 2

a 2

{ 38 }

{ 40 }

2σ

{ 57 }

{ 13 }

{ 26, 27, 28 }

c 2

{ 17 }

h2

f2

{ 18, 19, 58 }

{ 21, 22, 23, 51, 52 }

{ 19 } { 51 }

com21:21

{ 52 }

1σ

{ 20, 21, 44 }c

{ 45 }

1σ

{ 46 }

{ 21 }

{ 22 }

{ 23 }

m 1

m 1

1σ

com21:21

com12:11

com12:12

com21:13

com12:11

a 2

com12:12

b2

com21:13com12:12

com12:11

com12:12

2σ

com12:11
com21:21

{1, 3, 8, 14, 29, 30, 55, 56, 57 }

{ 0,2,5,16,17,18,42,43,53,54}

{ 4, 6, 7, 9, 11, 15, 31, 32, 33, 34, 36, 47, 48 }

{ 10, 12, 13, 24, 25, 35, 37, 38, 40 }c

{ 13, 26 }

g2

{ 16, 20, 43, 44, 45, 46, 50 }

c { 0, 1, 4, 29, 31, 42, 49 }c

{ 5, 8, 11, 14, 15, 54, 55 } { 6, 32 }c c

{ 11, 15 }
{ 9, 12, 34 }c

{ 36, 38 }c

{ 4, 31 }

{ 7, 10, 33, 35 }c c

{ 10, 35, 37, 39, 41 }

c { 13 }

{ 21, 51 }c c

Figure 4.21: The projection automaton for agent 1 (the top of the �gure) and agent2 (bottom of the �gure) for Gcom in �gure 4.20.152

Chapter 5Conclusions and Future Work5.1 General ConclusionsSeveral general conclusions can be drawn from this work. The results from chap-ter 3 show that it is possible to describe decentralized discrete-event control problemsusing knowledge theory. It is feasible to ascribe knowledge to a supervisor or con-troller, reason about what an agent needs to know to solve the control problem and�nd a control solution. We also used our knowledge models to identify when there isinsu�cient knowledge to reach the correct control solution. Understanding what itmeans for a supervisor to have su�cient knowledge to solve the control problem al-lowed us to determine a strategy for communication whereby a supervisor has enoughinformation to make the correct control decisions.We use the underlying structure of our knowledge model to locate places foragents to communicate. More communication injects knowledge into the system,which allows supervisors to solve a larger class of decentralized control problems.We considered that when an individual supervisor cannot make a correct controldecision it might be possible for the group of supervisors to pool their collectiveinformation to solve the problem. Our strategy of distributed observability did notadequately capture the idea of eliminating the de�cit of knowledge for the knowledge-de�cient supervisors. To make the correct control decision, a supervisor must be ableto distinguish between a circumstance when an event must be disabled and one wherethe event is enabled. Waiting for this information until just prior to making the controldecision can lead to an incorrect control solution, as was suggested in section 3.4.1.153

We are, subject to certain assumptions, able to identify places in the knowledgemodel where one supervisor provides the other with enough information to solve thecontrol problem. We �nd these places based on an understanding of the underlyingstructure of the plant language. As we discuss in the next section, translating thisstrategy into reasoning about places to communicate based strictly on what eachsupervisor knows remains a di�cult problem.5.2 Future WorkIn chapter 3 we described how to translate a DES plant into a knowledge model.If the knowledge model does not satisfy Kripke-observability, then in chapter 4 wedescribed how to update the plant with communication events. The new plant issubsequently translated into a knowledge domain, and we showed that a controlsolution is generated.What knowledge could possibly have been involved in determining a place foragents to communicate information to solve the control problem? We would likeagents to choose places to communicate based on reasoning about the knowledge ofother agents. The knowledge model of section 4.5 is updated in this section.In chapter 4, we assumed that we could identify a place where an agent does notknow whether it is along a \bad" path or a \good" path but where it would know ifinformation were pooled. It seems reasonable to assume that we are able to �nd sucha place because the other agent \knew" whether the system was along a bad path (orequivalently, along a good path). Therefore, an overall solution to the control problemwould exist if the group of agents had enough information to determine whether thesystem was about to generate an illegal or a legal sequence.We extend our knowledge model from chapter 3 so that agents reason about thelack of knowledge other agents have regarding the control problem. An agent that154

knows another agent does not have enough information to make the correct controldecision will communicate the missing knowledge.The set of primitive propositions contains the propositions �G; �E 2 R�. To dealwith the idea that a state is either \good" or \bad" with respect to an agent's viewof a particular sequence in L(G), we introduce new propositions (two for each event� 2 �) for each agent i 2 G: goodstatei(�); badstatei(�).
�DES0(w)(goodstatei(�)) := 8>>>>>>>><>>>>>>>>:

true if 9u0; v0; t 2 �� such that�G(u0; qG0) = we;�G(v0; we)!; and Pi(u0v0) = Pi(t) andu0v0�; t� 2 L(G) and u0v0� 2 L(E);t� 62 L(E)false otherwise:Suppose w represents a state that occurs along a particular sequence in L(G) thatleads to another state represented by ~w such that � is legal and controllable by agenti. We denote w as \good" with respect to agent i by setting goodstatei(�) = true ifat ~w, � is legal.
�DES0(w)(badstatei(�)) := 8>>>>>>>><>>>>>>>>:

true if 9u; v; t0 2 �� such that�G(u; qG0) = we;�G(v; we)!; and Pi(uv) = Pi(t0) anduv�; t0� 2 L(G) and uv� 62 L(E);t0� 2 L(E)false otherwise:Suppose w represents a state that occurs along a sequence that leads to another staterepresented by ~w where � is illegal and controllable by agent i. We want to denotew as a \bad" state if at ~w, agent i does not know whether � is legal.An agent i will communicate its local state to agent j if agent i is not confusedabout whether the plant is in a good or bad state (for a particular � controlled by155

agent j) and it knows that agent j is confused:(IDES0; w) j= (Ki(goodstatej(�) _ :badstatej(�)) ^Ki:Kj(goodstatej(�) _ :badstatej(�))) _(Ki(:goodstatej(�) _ badstatej(�)) ^Ki:Kj(:goodstatej(�) _ badstatej(�))):For a given � and a state q along a sequence t such that t� 62 L(G) we considerthat states along t are neither \good" nor \bad". Therefore, at the global statescorresponding to the states along t, from the above de�nition of �DES0 the followingtruth assignments hold at such an w: �DES0(w)(goodstatei(�)) = false and similarly�DES0(w)(badstatei(�)) = false. This is why, in checking the knowledge of agent i atw we do not require the agent to know that w is de�nitely a good state. Rather, wewant an agent to know that a state is either \good" or that a state is \not bad".An agent i communicates if it can tell the di�erence between the good and badstates for agent j at w and agent i knows that agent j cannot determine if the systemis at a good or bad set of states that lead to places in the interpreted system whereagent j must have knowledge to make the correct control decision.We conjecture that a control solution exists if the system satis�es distributedobservability in the following sense: before communication, the knowledge of thegroup must be enough to determine that an agent making a control decision is alonga good path or a bad path; and after communication there must exist an agent thatknows to make the correct control decision.One of the problems with our modal logic approach is that we introduce an over-whelming number of propositions to translate the intuition \agent i knows it is alonga path where it must disable something". Instead, one may want to incorporatetemporal operators and describe the idea that agent j will \eventually" have to com-municate along a given sequence of worlds so that agent i will know to disable �. Or it156

would be interesting to determine if we could describe communication as \eventually"being necessary to make a control decision. If no communication is required along agiven sequence of worlds, we would describe the notion of agent i \always" knowingto disable �. In such a scenario perhaps instead of communicating their local states,agents build up more complicated formulas (such as \agent i knows that agent j doesnot know p") to share.We have implemented our communication strategy using the programming lan-guage C. Future work on our existing strategy for communicating in decentralizedcontrol problems includes relaxing our assumption that the agents do not jointly con-trol events. Can we now characterize a place for agents to communicate informationso that at least one agent can make the correct control decision? In addition, we wantto extend the model for communication to systems with more than two agents.In some situations, it is not possible to synthesize the complete legal language.What we seek is the maximal (since there is no maximum) subset of L(E) suchthat L(E) can be synthesized. Constructing such a subset for decentralized controlis a di�cult problem. It would also be of interest to use knowledge to identify acontrollable and co-observable subset of legal behaviour. Knowledge could play asigni�cant role in this class of problems: we could \roll back" from the global stateswhere Kripke-observability fails and identify the \last" place in the system where wedid not know to make the correct control decision.In real distributed systems, dealing with delays in communication (latency) is asigni�cant problem. Considering latency in our model would further complicate therelationship between communication and control. To address more realistic problemsof distributed systems, such as latency, would require a model that allows for delays incommunication and allows for communication redundancy in the event that a messagefrom an agent does not get through in time.157

5.3 SummaryWe have presented a novel setting in which to reason about the knowledge thatdecentralized discrete-event supervisors need to solve control problems. In addition,we have provided a strategy for introducing communication into the problem-solvingprocess. It is our belief that formalizing the knowledge of decentralized communicat-ing supervisors will continue to play a signi�cant role in identifying new strategies toaddress control issues in distributed systems.

158

Appendix A
This appendix contains several tables of notation. Table A.1 contains notationthat is standard in the DES literature (with the exception of the notation for themonitoring and projection automata). This notation is introduced and de�ned inchapter 2, but appears in other parts of the dissertation.Table A.2 contains notation that appears in the knowledge models presented in[12]. Again, the concepts are consistent with those in the knowledge logic literature,except that we have chosen to identify global states with a w.Table A.3 contains notation that we use to describe both our sequence-based andstate-based knowledge models for DES. Most of this notation is presented in chapter3 and chapter 4.Table A.4 contains notation that we use to describe decentralized DES with com-munication. These concepts are de�ned throughout chapter 4.

159

Automata G = (QG;�; �G; qG0)G The automaton representing the plantQG The set of states in the plant� The alphabet or set of events de�ned for the plant� An event of the alphabet�G The transition function for the plantqG0 The initial state of the plantE The legal automatonA The monitoring automaton�(�; q)! A transition of � from state q is de�neda; c; `; q; x States of an automatonFormal Languages" The empty string�� The set of all �nite sequences over � plus "L(G) The closed behaviour of G (also the language generated by G)L The pre�x-closure of a language Lb; d; t; u; v sequences of a languageSupervisory ControlS A centralized supervisorSi The ith decentralized supervisorP A canonical projection operatorPi A canonical projection operator with respect to SiPGi A projection automaton of G for Si�uc, The set of uncontrollable events�c, The set of controllable events�i;c The set of events controllable by Si�o The set of observable events�i;o The set of events observable by SiTable A.1: Discrete-Event Systems Notation
160

M A Kripke structureK A modal operator for knowledgeD A modal operator for distributed knowledgew A global state or possible worldwe The state of the environmentwi The local state of agent i� An interpretation functionG Group of agents for the knowledge modelI An interpreted systemp; � A primitive proposition� The set of primitive propositionsTable A.2: Knowledge Model Notation
G� The group of agents that can control event �IDES A sequence-based interpreted systemIDES0 A state-based interpreted systemIcDES0 A state-based interpreted systemfor communicating DES�G A primitive proposition for event � in G�E A primitive proposition for event � in E�DES0;�cDES0 Sets of primitive propositions�DES; �DES0; �cDES0 Interpretation functionsKP A knowledge protocolTable A.3: Knowledge Model for DES Notation

161

Gcom A plant that contains communication eventsQGcom The set of states for Gcom�Gcom The transition function for GcomqGcom0 The initial state of Gcom�com The set of communication events; together with �,this is the alphabet for Gcomcomij:q An event in the alphabet of Gcom whereagent i communicates its local view of state q to agent j�comij A subset of �com that contains communication eventswhere agent i communicates to agent j(q; t) A control communication pair(x; v) A compatible communication pair for (q; t)(u; u0) A maximal-P pairC The set of control communication pairsCij The set of control communication pairswhere agent i communicates to agent jCcompat The set of compatible communication pairsCcompatij The set of compatible communication pairswhere agent i communicates to agent jD, D̂ Matrix representation of dependency graphsP̂ , P̂i A canonical projection that \erases" communication eventsP c; P ci A canonical projection that \erases" unobservable eventstc A version of t 2 L(G) as it appears in L(Gcom) after Procedure 4.1btc A version of t 2 L(G) as it appears in L(Gcom) after Procedure 4.2etc A version of t 2 L(G) as it appears in L(Gcom) after Procedure 4.3XV The set of all compatible communication pairs for elements in CXV4:2 The set of compatible communication pairs used in Procedure 4.2XV4:3 The set of compatible communication pairs used in Procedure 4.3FinalCom A set of control communication pairs and some of theircompatible communication pairs: output from Algorithm 4.2X compat The set of compatible communication pairs for theelements of FinalComTable A.4: Communication and DES Notation
162

Bibliography[1] R. J. Aumann. Agreeing to disagree. Annals of Statistics, 4(6):1236{1239, 1976.[2] M. Barbeau, F. Kabanza, and R. St-Denis. Supervisory control synthesis frommetric temporal logic speci�cations. In Proceedings of the Thirty-third AnnualAllerton Conference on Communication, Control and Computing, pages 96{105,1995.[3] G. Barrett and S. Lafortune. On the synthesis of communicating controllers withdecentralized information structures for discrete-event systems. In Proceedingsof IEEE Conference on Decision and Control, pages 3281{3286, 1998.[4] R. I. Brafman and Y. Shoham. Knowledge considerations in robotics and distri-bution of robotic tasks. In Proceedings of the 14th International Joint Conferenceon Arti�cial Intelligence, 1995.[5] G. Brassard and P. Bratley. ALGORITHMICS Theory and Practice. PrenticeHall, 1988.[6] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACMTransactions on Computer Systems, 8(1):18{36, 1990.[7] C. G. Cassandras, S. Lafortune, and G. J. Olsder. Introduction to the modelling,control and optimization of discrete-event systems. In A. Isidori, editor, Trendsin Control: A European Perspective, pages 217{291. Springer-Verlag, 1995.[8] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in su-pervisor synthesis problems with partial observations. Mathematical SystemsTheory, 22:177{211, 1989.[9] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control ofdiscrete-event processes with partial observations. IEEE Transactions on Auto-matic Control, 33(3):249{260, 1988.[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.MIT Press, 1990.[11] J. M. Davoren. On hybrid systems and the modal �-calculus. In P. Antsaklis,W. Kohn, M. D. Lemmon, A. Nerode, and S. Sastry, editors, Hybrid Systems V,Lecture Notes in Computer Science. Springer-Verlag, 1999. To appear.163

[12] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.MIT Press, 1995.[13] J. Glasgow, G. MacEwan, and P. Panangaden. A logic for reasoning aboutsecurity. ACM Trans. Comp. Systems., 10(3):226{264, 1992.[14] V. Hadzilacos. A knowledge-theoretic analysis of atomic commitment protocols.In Proceedings of the 6th ACM Symposium on Principles of Database Systems,pages 129{134, 1987.[15] J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributedsystems. Distributed Computing, 3:159{177, 1989.[16] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributedenvironment. Journal of the ACM, 37(3):549{587, 1990.[17] J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: knowledge-based derivations and correctness proofs for a family of protocols. Journal of theACM, 39(3), 1992.[18] L. Holloway, B. Krough, and A. Giua. A survey of Petri net methods for con-trolled discrete event systems. Journal of Discrete Event Dynamic Systems,6(2):151{190, 1997.[19] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,and Computation. Addison-Wesley, 1979.[20] S. Lafortune and E. Chen. The in�mal closed controllable superlanguage and itsapplication in supervisory control. IEEE Transactions on Automatic Control,35(4):398{405, 1990.[21] Y. Li and W. M. Wonham. Control of vector discrete-event systems I|the basemodel. IEEE Transactions on Automatic Control, 38(8):1214, 1993.[22] Y. Li and W. M. Wonham. Control of vector discrete-event systems II|controller synthesis. IEEE Transactions on Automatic Control, 39(3):512, 1994.[23] F. Lin and W. M. Wonham. On observability of discrete-event systems. Infor-mation Sciences, 44:173{198, 1988.[24] F. Lin and W. M. Wonham. Decentralized control and coordination of discrete-event systems with partial observation. IEEE Transactions on Automatic Con-trol, 35(12):1330{1337, 1990.[25] B. L. Lipman. An axiomatic approach to the logical omniscience problem. InR. Fagin, editor, Theoretical Aspects of Reasoning about Knowledge: Proceedingsof the Fifth Conference, pages 182{196. Morgan Kaufmann, 1994.164

[26] J. S. Ostro� and W. M. Wonham. A temporal logic approach to real time control.In Proceedings of the 24th Conference on Decision and Control, pages 656{657,1985.[27] A. Radiya and R. Sargent. A logic-based foundation of discrete event model-ing and simulation. ACM Transactions on Modeling and Computer Simulation,4(1):3{51, 1994.[28] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discreteevent processes. SIAM Journal on Control and Optimization, 25(1):206{230,1987.[29] P. J. Ramadge and W. M. Wonham. The control of discrete-event systems.Proceedings of the IEEE, 77(1):81{98, 1989.[30] S. L. Ricker and K. Rudie. Know means no: Incorporating knowledge intodecentralized discrete-event control. In Proceedings of the 1997 American ControlConference, pages 2348{2353, 1997.[31] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributeddiscrete-event control system. In Proceedings of the American Control Confer-ence, pages 1965{1970, 1999.[32] K. Rudie and J. C. Willems. The computational complexity of decentralizeddiscrete-event control problems. IEEE Transactions on Automatic Control,40(7):1313{1319, 1995.[33] K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized su-pervisory control. IEEE Transactions on Automatic Control, 37(11):1692{1708,1992.[34] K. G. Rudie. Software for the control of discrete event systems: A complex-ity study. Master's thesis, Department of Electrical Engineering, University ofToronto, 1988.[35] R. Sengupta. Diagnosis and communication in distributed systems. In Proceed-ings of the International Workshop on Discrete Event Systems, pages 144{151,1998.[36] S. Takai and S. Kodama. Decentralized state feedback control of discrete eventsystems. Systems and Control Letters, 22(5):369{375, 1994.[37] J. G. Thistle. Supervisory control of discrete event systems. Mathematical andComputer Modelling, 11/12(23):25{53, 1996.[38] J. G. Thistle and W. M. Wonham. Control problems in a temporal logic frame-work. International Journal of Control, 44:943{976, 1986.165

[39] J. H. van Schuppen. Decentralized supervisory control with information struc-tures. In Proceedings of the International Workshop on Discrete Event Systems,pages 36{41, 1998.[40] Y. Willner and M. Heymann. Supervisory control of concurrent discrete-eventsystems. International Journal of Control, 54(5):1143{1169, 1991.[41] K. C. Wong and J. H. van Schuppen. Decentralized supervisory control ofdiscrete-event systems with communication. In Proceedings of the InternationalWorkshop on Discrete Event Systems, pages 284{289, 1996.

166

VitaEducation M.Sc. Queen's University, 1992Computing and Information ScienceB.Sc. Mount Allison University, 1987MathematicsAwards 1999 European Research Consortium for Informatics andMathematics (ERCIM)Post-doctoral Fellowship1998 Ian MacLeod Award1998 Computing Science Excellence in Teaching Assis-tance Award (inaugural year of award)1997 Best talk of session, American Control Confer-ence, for \Know Means No: Incorporating Knowl-edge into decentralized discrete-event control", co-authored with K. Rudie1995 - 1996 ITRC Research Award1990 - 1994 Queen's Graduate AwardPublications Refereed Journal PublicationsRicker, S. L. and Rudie, K.: Know Means No: IncorporatingKnowledge into Discrete-Event Control Systems. To appearin IEEE Transactions on Automatic ControlRicker, S. L., Sarkar, N. and Rudie, K. (1996) A Discrete-EventSystems Approach to Modeling Dextrous Manipulation. Robot-ica 14: 515{525Ellis, R. E. and Ricker, S. L. (1994) Two Numerical Issues in Sim-ulating Constrained Dynamics. IEEE Transactions on Sys-tems, Man, and Cybernetics 24(1): 19{27
167

Refereed Conferences: Papers in ProceedingsRicker, S. L. and Rudie, K.: Reasoning about knowledge in com-municating decentralized discrete-event systems. To appearin Proceedings of the 1999 IEEE Conference on Decision andControl, Phoenix, AZ, Dec. 1999Ricker, S. L. and Rudie, K.: Knowledge Models for VerifyingProtocols. In Proceedings of the Thirty-sixth Annual AllertonConference on Communication, Control and Computing, Mon-ticello, IL, Sept. 1998, pp. 97-106Ricker, S. L. and Rudie, K.: Know Means No: Incorporatingknowledge into decentralized discrete-event control. In Pro-ceedings of the 1997 American Control Conference, Albuquerque,New Mexico, June 1997, pp. 2348-2353Ricker, S. L. and Ellis, R. E.: 2-D Finite Element Models ofRobotic Tactile Sensors. In Proceedings of the IEEE Interna-tional Conference on Robotics and Automation, Atlanta, May1993, pp. 941-947Ricker, S. L. and Ellis, R. E.: Implications of solid mechan-ics for tactile feedback in teleoperation. In Proceedings ofthe SPIE Conference on Telemanipulator Technology, Boston,Oct. 1992, pp. 208{291Ellis, R. E. and Ricker, S. L.: Two Numerical Issues in Sim-ulating Constrained Dynamics. In Proceedings of the IEEEInternational Conference on Robotics and Automation, Nice,May 1992, pp. 312-318Refereed Conferences: Paper PresentationsLabinaz, G., Rudie, K., Ricker, S. L., Sarkar, N. and Bayoumi,M. M.: A Hybrid System Investigation of Fluid-Filled Tanks.Presented at Mathematical Theory of Networks and Systems,St. Louis, MO, June 24{28, 1996Invited Conference SessionRicker, S. L., Sarkar, N. and Rudie, K.: A Discrete-Event SystemsApproach to Modeling Dextrous Manipulation. Proceedings ofthe Thirty-third Annual Allerton Conference on Communica-tion, Control and Computing, Monticello, IL, October 1995,pp. 156{165 168

