
Sequences that Lead to Failure

in Decentralized Supervisory Control

by

Arezou Mohammadi

A thesis submitted to the

Department of Electrical and Computer Engineering

in conformity with the requirements for the degree of

Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

September 2003

Copyright c© Arezou Mohammadi, 2003

Abstract

In decentralized supervisory control problems a necessary condition for su-

pervisors to exist, called co-observability, can be checked using an algorithm

reviewed in this work. It is proved that the algorithm also can be employed

to check whether the legal language is controllable with respect to the plant,

which together with the co-observability, is necessary and sufficient for decen-

tralized supervisors to exit. Although controllability and co-observability can be

checked using the algorithm, it is necessary to develop a method to determine

all the problematic sequences of events that cause failure of controllability or

co-observability. This general method, called the all-paths method, is developed

based on the algorithm. Running the all-paths method results in a set of tuples

of sequences that violate controllability or co-observability. Another method is

proposed, namely the some-paths method, which is simpler to implement than

the all-paths method. The some-paths method gives a non-empty subset of the

tuples of the sequences resulting from the all-paths method, if the legal language

is not controllable or co-observable with respect to the plant. The some-paths

method is implemented and applied to some examples. Telecommunication pro-

tocols are examples whose problematic sequences could be extracted using the

suggested methods. Protocols of the data link layer of OSI architecture are a

class of telecommunication protocols. Three examples of these protocols are

provided and modelled to verify whether they fail. The protocols are verified

manually.

i

Acknowledgements

I would like to extend my special thanks to my supervisor Professor Karen

Rudie for her guidance, encouragement, and support throughout my Master’s

program. She is a great source of knowledge and I was lucky to be her student.

I would like to thank Professor Kai Salomaa for the guidance and helpful com-

ments that he kindly gave me throughout my work. I would also like to thank

Professor Fadi Alajaji and Professor Tamás Linder. Without their support I

could not study in my favorite area. I am thankful of my colleagues in the DES

lab, especially Lenko for the burden of changing the format of the figures.

I can never thank my dear husband Firouz enough for his boundless support,

kindness, encouragement, and the lucky life that he has provided for me. Great

appreciation goes to my parents and my sister and brother for their unconditional

love and their encouragement throughout my study and my life that gives me

motivation to continue this way.

I am grateful to Professor K. Salomaa, Professor I. M. Kim, Professor C. H.

Yeh, and Professor C. MacDougall for their useful comments in my defence.

I would like to thank Professor Karen Rudie for the financial support she

provided. Also, thanks are due to the School of Graduate Studies at Queen’s

University for its financial support through the Queen’s Graduate Awards pro-

gram.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vii

1 Introduction 1

1.1 Introduction . 1

1.2 Literature Review . 2

1.3 Contribution . 3

1.4 Thesis Overview . 4

2 Background 6

2.1 Basic Definitions . 6

2.2 Centralized Control . 8

2.3 Decentralized Control . 10

3 What Violates Co-Observability or Controllability 16

3.1 How to Check Co-observability or

Controllability . 17

3.1.1 Co-observability . 17

3.1.2 Controllability . 21

iii

3.2 Sequences of Events that Violate Co-observability or Controllability 23

3.2.1 All-Paths Method . 25

3.2.2 Some-Paths Method . 35

3.3 Computational Complexity . 38

4 Examples 41

4.1 Simple Examples . 42

4.1.1 Violation of co-observability due to agent 2 43

4.1.2 Violation of co-observability due to agents 1 and 2 43

4.1.3 The triples resulting from the some-paths method and the

all-paths method . 45

4.1.4 Multiple triples that violate co-observability 46

4.1.5 Triples and pairs that violate co-observability or control-

lability . 47

4.2 Telecommunication Protocols and Decentralized Supervisory Con-

trol . 48

4.2.1 SW1 Protocol . 50

4.2.2 SW2 Protocol . 115

4.2.3 SW3 Protocol . 116

4.3 Verification of Telecommunication Protocol Examples 117

5 Conclusions and Future Work 120

5.1 Conclusions . 120

5.2 Future Work . 121

Bibliography 122

Appendix A 127

Vita 129

iv

List of Figures

2.1 Automata E and G, where Σc,1 = {a}, Σc,2 = {c}, and Σuc = {b}. 13

2.2 Automata E and G, where Σc,1 = {c}, Σc,2 = {c}, Σo,1 = {a},

and Σo,2 = {b}. 14

3.1 Automata E and G, where Σc,1 = {c}, Σc,2 = {c}, Σo,1 = {a},

and Σo,2 = {b}. 24

3.2 Automaton M . 26

3.3 The binary tree corresponding to Example 3.1 29

4.1 An example where co-observability is violated because agent 2

does not have enough observations. 43

4.2 An example where co-observability is violated because neither

agent 1 nor agent 2 has enough observations. 44

4.3 An example where co-observability is violated due to agents 1 and

2 both having insufficient observations. 45

4.4 An example where multiple triples violate co-observability. . . . 46

4.5 An example where both co-observability and controllability are

violated. 47

4.6 Automata CHNL-m and CHNL-l 54

4.7 Decomposition of a finite-state machine into two smaller structures 66

v

4.8 Automata L-0, L-1, L-2, and L-3, which are applied in automaton

A.SNDR-t . 81

4.9 Automata M-0, M-1, M-2, and M-3, which are applied in automa-

ton A.SNDR-t . 82

4.10 Automata T-0, T-1, T-2, and T-3, which are applied in automa-

ton A.SNDR-t . 83

4.11 Automaton A.SNDR-t, page 1 of 2 84

4.12 Automaton A.SNDR-t, page 2 of 2 85

4.13 Automata A.SNDR-a and A.SNDR-b 86

4.14 Automata A.SNDR-c and A.SNDR-d 87

4.15 Automaton A.RCVR, page 1 of 12 88

4.16 Automaton A.RCVR, page 2 of 12 89

4.17 Automaton A.RCVR, page 3 of 12 90

4.18 Automaton A.RCVR, page 4 of 12 91

4.19 Automaton A.RCVR, page 5 of 12 92

4.20 Automaton A.RCVR, page 6 of 12 93

4.21 Automaton A.RCVR, page 7 of 12 94

4.22 Automaton A.RCVR, page 8 of 12 95

4.23 Automaton A.RCVR, page 9 of 12 96

4.24 Automaton A.RCVR, page 10 of 12 97

4.25 Automaton A.RCVR, page 11 of 12 98

4.26 Automaton A.RCVR, page 12 of 12 99

4.27 Automaton A.piggyback, page 1 of 3 100

4.28 Automaton A.piggyback, page 2 of 3 101

4.29 Automaton A.piggyback, page 3 of 3 102

4.30 Automaton CHNL(i), i = 1, 2, ..., 56 102

4.31 Automata Order-A-SND-a and Order-A-SND-b 103

vi

4.32 Automata Order-A-SND-c and Order-A-SND-d 104

4.33 Automata Order-B-RCVR-a and Order-B-RCVR-b 105

4.34 Automata Order-B-RCVR-c and Order-B-RCVR-d 106

4.35 Automata Order-A-RCVR-a and Order-A-RCVR-b 107

4.36 Automata Order-A-RCVR-c and Order-A-RCVR-d 108

4.37 Automata Order-B-SND-a and Order-B-SND-b 109

4.38 Automata Order-B-SND-c and Order-B-SND-d 110

4.39 Automata SND-A0, SND-A1, SND-A2, and SND-A3 111

4.40 Automata SND-B0, SND-B1, SND-B2, and SND-B3 112

4.41 Automaton CHNL of [24], where a ∈ {send0}, b ∈ {rcv0, lose, cksumerr},

c ∈ {send1}, d ∈ {rcv1, lose, cksumerr}, e ∈ {sendack}, and

f ∈ {rcvack, lose, cksumerrack}. 119

vii

Chapter 1

Introduction

1.1 Introduction

A discrete-event system (DES) is a set of consecutive discrete events. All se-

quences of the events begin from an initial state and a state transition is caused

when an event occurs. However, all possible sequences of events that could hap-

pen in the system may not be desired sequences. The system behavior should

be restricted to achieve a demanded behavior. Therefore, the system should

be controlled, and so a controller (or supervisor) needs to be determined. The

controller restricts the behavior of the system by preventing some controllable

events from occurring and allowing others to occur. Discrete-Event Systems

considers this approach.

Given a fixed system, a single controller that is able to obtain the desired

behavior is a solution to the centralized control problem. However, sometimes

to solve the problem it is necessary to find two or more controllers. If they

can be found, a solution to the decentralized control problem is determined. In

this work we focus on the case of two supervisors that co-operate to control a

system. Sometimes there do not exist supervisors that can effect decentralized

1

control. This situation arises if and only if there exist certain tuples of illegal

and legal sequences of events in the system. If the tuples are found, we may be

able to recognize how to change the system physically. The new system could

then be controlled by decentralized supervisors to achieve the desired behavior.

However, this thesis does not address how to change the system to obtain the

new system.

In this thesis, we find a method to represent the tuples of illegal and le-

gal sequences that cause failure in a decentralized control problem with two

controllers.

1.2 Literature Review

Supervisory control theory studies discrete-event systems in a framework was

initiated by Ramadage and Wonham [14, 16, 15]. It models a system and applies

control-theoretic techniques to find some controllers to constrain the system’s

behavior (plant) to achieve a desired subset of it (legal language). In fact the goal

of supervisory control theory is to prevent undesired sequences of events from

happening. Therefore, some agents (supervisors) should be found to restrict the

behavior of the plant via a control decision [14, 15, 33, 11, 2, 32].

Centralized and decentralized supervisory control are two different approaches

to look at DES problems. Centralized supervisory control studies control tech-

niques to solve a DES problem using a single supervisor [14, 33, 11, 2].

Decentralized supervisory control gives more flexibility to solve complex

problems. Also, some problems such as telecommunication protocols [26, 28],

distributed computer problems [30, 29, 27, 1], parallel computing systems [1, 3,

6], multiprocessor systems with shared memory [27, 30], and distributed data-

base systems [12] are naturally distributed and should be dealt with using a

decentralized approach. Decentralized supervisory control looks for decentral-

2

ized controllers whose combined control actions achieve the desired behavior.

One may ask under what conditions there exist some distributed controllers

as a solution to a supervisory control problem. Rudie and Wonham have pre-

sented necessary and sufficient conditions for the existence of a solution to the

problem of finding decentralized supervisors [23]. These conditions are referred

to as co-observability and controllability. Later, Rudie and Willems introduced a

polynomial-time algorithm to check co-observability for prefix-closed problems

[20, 19]. It is shown in this thesis that this algorithm can be used to check

controllability too.

On the other hand, it is shown by Rudie and Wonham that in some cases

the sequences of events that cause the failure of a distributed protocol, such

as communication protocols, are sequences that violate co-observability or con-

trollability [24, 23]. In this thesis it is proved that the algorithm offered in

[20, 19, 21] can also be used to check controllability. Based on some ideas pro-

vided in [21, 19], we present a method to determine the sequences that violate

co-observability or controllability and a version of that method that determines

some sequences that cause failure of co-observability or controllability. We also

model some communication protocol examples to show how one can use the

techniques of [24, 20] to find failures of the protocols.

1.3 Contribution

The following items summarize the contribution of this research:

• It is proved that the algorithm in [21, 19] can be applied to check the

controllability of a legal language with respect to a plant.

• A method (called the all-paths method) is provided to find all sequences of

events that cause failure of controllability or co-observability of the legal

3

language with respect to the plant. Some concepts used in the method are

taken from [19] and [25].

• A simplified version of the all-paths method (called the some-paths method)

is provided. The simplified version finds some sequences of events that

violate controllability or co-observability of the legal language with respect

to the plant.

• A software implementation in C of the some-paths method is developed.

• Three protocols for the data link layer of OSI architecture are modelled

and verified manually using the concepts of discrete-event systems.

1.4 Thesis Overview

This thesis is organized as follows. The second chapter contains the funda-

mental concepts of discrete-event systems such as centralized and decentralized

supervisory control, controllability, and co-observability.

In the third chapter, the algorithm given in [21, 19], which checks co-observability,

is presented. Then, we prove that the automaton construction given in the pa-

per can be used to check controllability at the same time. The next section of

this chapter introduces a general method that we developed to find all illegal

sequences of events and their corresponding legal sequences of events that vi-

olate controllability or co-observability. The method uses some ideas from the

algorithm in [21, 19]. Another method is then presented to find some coun-

terexamples for co-observability and/or controllability which are a subset of the

results of the general method. The computational complexity of the second

method is given.

The second method is the one which is implemented in software for the thesis.

In Chapter 4 some examples are presented. Using the software, some counterex-

4

amples for co-observability and controllability of each example are found. This

chapter continues with a brief overview of telecommunication protocols and ex-

plains why they are examples of decentralized control problems and why the

aforementioned method can be used to find sequences that cause failures in a

telecommunication protocol. This chapter also describes some protocols in the

data link layer of OSI architecture. These protocols are modelled and manually

verified. It is explained why the implementation can be used theoretically, but

not practically, to find the sequences of events that lead to failure in each of the

protocols.

Finally, the last chapter contains conclusions and some suggestions for future

work.

In appendix A, the concept of regular expression is explained.

5

Chapter 2

Background

2.1 Basic Definitions

Supervisory control theory models discrete-event processes and uses some control

techniques to restrict the behavior of a process to prevent the occurrence of

undesired behavior.

A DES can be modelled by automaton G = (Σ, Q, δ, q0, Qm), where Σ is the

set of all possible events that can occur within the system, Q is the set of states,

q0 ∈ Q is the state from which the system starts, and Qm ⊆ Q is the set of

marked states. The function δ : Σ × Q −→ Q is the transition function. Let σ

be an event. The notation qj = δ(σ, qi) indicates that when the system is in state

qi, occurrence of σ transfers the system to state qj. So, G can be represented

by a directed graph whose nodes are the states in Q and whose edges are the

transitions between any two states. A sequence of events can be represented by

a concatenation of symbols from Σ. The set Σ∗ is the set of all finite sequences of

events over Σ including the null string (ε). Any subset of Σ∗ is called a language.

Given a language L, the prefix-closure of L, denoted by L̄, is the set containing

all prefixes of all strings in L. Typically, given a sequence s, s̄ represents the

6

set containing all the prefixes of s. Since all strings are prefixes of themselves,

L ⊆ L̄. The language L is said to be prefix-closed if L = L̄.

Now we can extend the definition of δ from a domain of Σ×Q to Σ∗×Q as

follows:

δ(ε, q) = q

(∀σ ∈ Σ, s ∈ Σ∗)δ(sσ, q) = δ(σ, δ(s, q))

Hence, δ indicates to which state a sequence of events will lead. A state q ∈ Q

is reachable if ∃s ∈ Σ∗ such that q = δ(s, q0). A state q ∈ Q is co-reachable if

∃s ∈ Σ∗ such that δ(s, q) ∈ Qm, i.e., if there is a path from the state q to a

marked state. An automaton whose states are all reachable and co-reachable is

called trim.

A DES can be expressed by two languages Lm(G) and L(G). The language

L(G) is the set of all possible event sequences which may be generated in the

plant, i.e.,L(G) = {s | s ∈ Σ∗ and δ(s, q0) is defined}. The language L(G)

is called the generated language. The language Lm(G) is the set of all event

sequences that represent the completion of some tasks, i.e., Lm(G) = {s | s ∈

Σ∗ and δ(s, q0) ∈ Qm}. The language Lm(G), which is a subset of L(G), is called

the marked language.

Consider two automata G1 and G2 as follows:

G1 = (X1,Σ1, ζ1, x0,1, Xm,1)

G2 = (X2,Σ2, ζ2, x0,2, Xm,2)

The parallel composition (‖) of the automata G1 and G2 is the following au-

tomaton:

G1 ‖ G2 = (X1 ×X2,Σ1 ∪ Σ2, δ, (x0,1, x0,2), Xm,1 ×Xm,2)

where

7

δ((x1, x2), e) =





(δ1(x1, e), δ2(x2, e)) if δ1(x1, e) and δ2(x2, e) are defined.

(δ1(x1, e), x2) if δ1(x1, e) is defined and δ2(x2, e) is not.

(x1, δ2(x2, e)) if δ2(x2, e) is defined and δ1(x1, e) is not.

undefined otherwise

The definition of an automaton can be extended to what is called a non-

deterministic automaton. A non-deterministic automaton has a transition func-

tion δ : Σ×Q→ 2Q, i.e., an event from state Q can lead to more than one other

state.

2.2 Centralized Control

The aim of supervisory control is to find a controller to impose supervision on

the plant to achieve a prescribed legal behavior. From the controller perspec-

tive, some events are controllable and others are uncontrollable. So, Σc, the set

of controllable events, consists of those events that the controller may enable

(permit to occur) or disable (prevent from occurring) and Σuc, the set of un-

controllable events, contains those which cannot be prevented from occurring.

Also, the event set Σ can be divided into disjoint sets Σo and Σuo, which are

observable and unobservable events, respectively.

The mapping P : Σ∗ −→ Σ∗

o is called the canonical projection. It is defined

recursively as follows:

P (ε) = ε

P (σ) = ε if σ ∈ Σ\Σo

P (σ) = σ if σ ∈ Σo

P (sσ) = P (s)P (σ) ∀σ ∈ Σ, s ∈ Σ∗.

The projection operator P erases the events from the given sequences that are

8

unobservable to the supervisor. Given a language K, P (K) stands for the lan-

guage defined by {P (s) | s ∈ K}. The inverse projection of P is specified

as P−1 : 2Σ∗

o −→ 2Σ∗

. It is defined on the sets of strings (or languages) as

P−1(K) = {t | P (t) ∈ K}. A supervisor observes a filtered version of sequences

of events that are physically possible in the plant. It disables or enables any of

the controllable events throughout its observation to yield a desired subset of

the plant behavior. This subset is called the legal language, E. So the behavior

of the plant should be constrained by a supervisor to a legal pre-determined

language.

A supervisor S is identified by a pair (T, ψ), where T is an automaton which

recognizes a language over the same event set as the plant G, and ψ, called a

feedback map, is a map from the event set and states of T to the set {enable,

disable}. Let X be the set of states of T. The map ψ must satisfy the following

constraint:

ψ(σ, x) = enable if σ ∈ Σuc and x ∈ X

i.e., uncontrollable events cannot be disabled. The automaton T tracks and

controls the behavior of G. The automaton T changes state based on the events

generated by G. At each state x of T, the control rule ψ(σ, x) dictates whether

σ is to be enabled or disabled at the corresponding state of G.

The behavior of the closed-loop system is the set of generated sequences of

events when the plant is under the control of S = (T, ψ). It can be represented

by an automaton S/G. The language L(S/G) is the set of strings generated by

both G and S, and where each event in the string is enabled by ψ. The language

Lm(S/G) denotes the marked behavior of the system. It contains those strings

in L(S/G) that are marked by both G and S.

A closed-loop system is nonblocking if every string generated by the closed-

loop system can be completed to a marked string in the system, i.e., if Lm(S/G) =

9

L(S/G).

In centralized supervisory control, the aim is to look for one supervisor that

observes the sequences P (L(G)) and controls the plant by manipulation of the

controllable events, to guarantee a desired behavior.

2.3 Decentralized Control

In contrast to centralized control, decentralized supervisory control addresses

systems, which because of their physical specifications, require us to apply mul-

tiple supervisors to yield the desired subset of plant behavior.

In this thesis we are going to study a class of decentralized control problems,

called Global Problems (GP) in [23]. To study the solution to GP, we need to

examine a special case of it, which is called Global Problem with Zero Tolerance

(GPZT) [23]. For convenience we call GP the “decentralized problem” and

GPZT the “narrowed decentralized problem” from now on.

The following definitions are used in the decentralized control problems. Con-

sider a supervisor Si which imposes a specific legal behavior on a plant by dis-

abling or enabling the controllable events in Σi,c ⊆ Σ, when it observes some

subset Σi,o ⊆ Σ. Another supervisor can be defined which makes the same con-

trol decision as Si on Σi,c, enables all events in Σ\Σi,c, makes the same transitions

as Si on Σi,o and stays in the same state for events in Σ\Σi,o. The supervisor

is denoted by S̃i. The supervisor S̃i acts on all of Σ while Si acts only on a

subset of Σ, so Si is called the local supervisor and S̃i is its global extension.

Consider two local supervisors S1 = (T1, φ) and S2 = (T2, ψ) acting on G, where

T1 = (X,Σ, ζ, x0, Xm) and T2 = (Y,Σ, η, y0, Ym). The conjunction of S1 and S2

is the supervisor denoted by S1 ∧ S2 = (T1 × T2, φ ∗ ψ), where

T1 × T2 = (X × Y,Σ, ζ × η, (x0, y0), Xm × Ym)

10

and ∀x ∈ X, y ∈ Y, σ ∈ Σ,

(ζ × η)(σ, (x, y)) =





(ζ(σ, x), η(σ, y)) if ζ(σ, x) and η(σ, y) are defined

undefined otherwise

(φ ∗ ψ)(σ, (x, y)) =





disable if φ(σ, x) = disable, and ψ(σ, y) = disable

enable otherwise

It is shown in [34] that

L(S1 ∧ S2/G) = L(S1/G) ∩ L(S2/G)

Lm(S1 ∧ S2/G) = Lm(S1/G) ∩ Lm(S2/G)

In this thesis we focus on the following problem of decentralized supervisory

control.

Decentralized Problem (DP) (GP in [23]): Given a plant G over an alphabet

Σ, a legal language L(E) ⊆ Lm(G), a minimally adequate language L(A) ⊆

L(E), and sets Σ1,c,Σ2,c,Σ1,o,Σ2,o ⊆ Σ, construct local supervisors1 S1 and S2

such that

L(A) ⊆ L(S̃1 ∧ S̃2/G) ⊆ L(E)

and such that S̃1 ∧ S̃2 is a nonblocking supervisor for G. Here, for i = 1, 2,

supervisor Si can observe only events in Σi,o and control only events in Σi,c and

S̃i is the global extension of Si. The set of uncontrollable events, Σuc, consists

of Σ\(Σ1,c ∪ Σ2,c). The language L(E) represents the legal or desired behavior

and L(A) is the minimum set of sequences that must be achieved in closed loop.

Any solution to DP should be contained in some given range of languages.

Hence, this case introduces a synthesis problem with tolerance. To study DP,

1In fact, the supervisors must also satisfy a technical condition called completeness [23, 32].

11

we first consider a special case of DP, namely, L(A) = L(E). The Narrowed

Decentralized Problem (GPZT in [23]) is defined as follows.

Narrowed Decentralized Problem (NDP): Given a plant G over an alphabet

Σ, a legal language L(E), Ø 6= L(E) ⊆ Lm(G), and sets Σ1,c,Σ2,c,Σ1,o,Σ2,o ⊆ Σ,

construct local supervisors S1 and S2 such that

Lm(S̃1 ∧ S̃2/G) = L(E)

and such that S̃1 ∧ S̃2 is a nonblocking supervisor for G.

For DP, the aim is to find supervisors to constrain the system behavior

to a language which lies in a given range of languages. This means that the

languages under consideration in this case are prefix-closed. In contrast, since

NDP requires supervisors to recognize a language equal to some given language,

it is not necessary to require that the language be prefix-closed. If the endpoints

of the range of behavior in DP are equal, namely A = E, DP is reducible to

NDP with a prefix-closed specification. Using this property, a solution to DP

can be derived from the solution to NDP. Necessary and sufficient conditions

of existence of the solution to NDP are presented in [23, theorem 4.1]. The

theorem says that there exist supervisors S1 and S2 that solve NDP if and only

if L(E) is controllable and co-observable with respect to G, P1, P2. We define

these properties below.

A language K ⊆ L(G) is controllable with respect to G if

KΣuc ∩ L(G) ⊆ K.

In this definition, for any language L and M , LM = {st | s ∈ L, t ∈ M}. Let

L(G) be a physically possible behavior and K be a legal behavior. Informally,

K is controllable with respect to the plant if for any sequence of events s that

starts out as a legal sequence (s ∈ K), the occurrence of an uncontrollable event

(σ ∈ Σuc) which is physically possible (sσ ∈ L(G)) does not lead the sequence

12

out of the legal range (sσ ∈ K). For example, consider automata E and G in

Figure 2.1. In Figure 2.1, dashed-lines represent transitions that are in G and

not in E. In this example, the legal language in not controllable with respect to

the plant, because the sequence s = abc is a legal sequence, the event σ = b is

an uncontrollable event, and the sequence sσ = abcb is physically possible but

is not a legal sequence.

Figure 2.1: Automata E and G, where Σc,1 = {a}, Σc,2 = {c}, and Σuc = {b}.

Given a plant G over alphabet Σ, sets Σ1,c,Σ2,c,Σ1,o,Σ2,o ⊆ Σ, canonical

projections P1 : Σ∗ −→ Σ∗

1,o, P2 : Σ∗ −→ Σ∗

2,o, a language K ⊆ Lm(G) is co-

observable with respect to G , P1, and P2 if

s, s′, s′′ ∈ Σ∗, P1(s) = P1(s
′), P2(s) = P2(s

′′)⇒

∀σ ∈ Σ1,c ∩ Σ2,c s ∈ K ∧ sσ ∈ L(G) ∧ s′σ, s′′σ ∈ K ⇒ sσ ∈ K

∧ ∀σ ∈ Σ1,c\Σ2,c s ∈ K ∧ sσ ∈ L(G) ∧ s′σ ∈ K ⇒ sσ ∈ K

∧ ∀σ ∈ Σ2,c\Σ1,c s ∈ K ∧ sσ ∈ L(G) ∧ s′′σ ∈ K ⇒ sσ ∈ K

∧ s ∈ K ∩ Lm(G) ∧ s′, s′′ ∈ K ⇒ s ∈ K

The control decisions made by an agent are based on the agent’s view of

the system, i.e., the sequences containing only the events that the agent can

observe. Consider any two sequences of events, namely s and s′, that look the

same to an agent and any event σ ∈ Σc, where sσ and s′σ can happen physically

in the plant. The control decision made by the agent to disable or enable event

σ after sequences s or s′ would be the same. Language K is co-observable with

respect to a plant when for any event σ ∈ Σc, there is at least one agent that

13

is able to make the correct control decision about σ. The set of controllable

events, Σc, is Σ1,c ∪ Σ2,c. The last conjunct of co-observability expresses that

at least one supervisor should determine without ambiguity whether or not a

given string should be marked. This conjunct is automatically satisfied when

the languages are prefix-closed. For example, consider automata E and G in

Figure 2.2. Again, dashed-lines represent transitions that are in G but not in

E. In this example, E is not co-observable with respect to G, P1, and P2.

This can be seen by considering s = abaa, s′ = baaa, s′′ = ba, and σ = c.

Then P1(s) = P1(s
′), P2(s) = P2(s

′′), σ ∈ Σ1,c ∩ Σ2,c, s, s
′σ and s′′σ are legal

sequences, sσ is physically possible, but sσ is an illegal sequence. The notion of

co-observability is extendible to include any number of fixed local supervisors,

not just two.

Figure 2.2: Automata E and G, where Σc,1 = {c}, Σc,2 = {c}, Σo,1 = {a}, and

Σo,2 = {b}.

An algorithm in [23] is presented to check co-observability. We are going

to use this algorithm and its results to present a method for extracting the

sequences of events that violate controllability or co-observability of the legal

14

language with respect to the plant.

15

Chapter 3

What Violates Co-Observability

or Controllability

In Section 3.1.1 of this chapter, we describe the algorithm that is presented in

[21, 19]. The algorithm constructs an automaton M from the plant G and the

legal language L(E). Automaton M contains some families of paths from the

initial state to the marked state.1 Each path keeps track of strings that violate

the co-observability of L(E) with respect to G. In Section 3.1.2 we prove that

the automaton M, which is constructed by the algorithm, can also be used to

decide the controllability of L(E) with respect to G. The automaton M contains

some families of paths each of which corresponds to an ordered n-tuple of legal

and illegal sequences of events. Each of these sequences causes failure in co-

observability or controllability of L(E) with respect to G. In Section 3.2.1,

we present a method to find all such sequences of events using the algorithm

and some methods provided in [19, 21]. In Section 3.2.2, another method is

given that picks one path of each family of paths in automaton M, to find its

1When we say that automaton M “contains a path”, we mean that the language generated

by M contains a string that appears as labels of a path in M that starts at the initial state

(and may contain cycles).

16

corresponding pair or pairs of (illegal, legal) sequences. The latter method is

implemented in this thesis. In Section 3.3, the computational complexity of the

implemented method will be studied.

3.1 How to Check Co-observability or

Controllability

3.1.1 Co-observability

In [19, 21, 20] an algorithm is given to construct an automaton M; this automa-

ton can be examined in order to decide the co-observability of a prefix-closed lan-

guage L(E) with respect to G where L(E) ⊆ L(G) and E and G are finite-state

automata. Automaton M keeps track of strings that violate the co-observability

of L(E) with respect to G, if the strings end with controllable events. Given

G = (QG,Σ, δG, qG
0 , Q

G
m) and E = (QE,Σ, δE, qE

0 , Q
E), the automaton M can be

constructed as follows [19, 21, 20].

Let d indicate an element that is not in QE ∪QG, and call d the dump state.

M = (QM ,Σ, δM , qM
0 , Q

M
m)

where

QM = QE ×QE ×QE ×QG ∪ {d}

qM
0 = (qE

0 , q
E
0 , q

E
0 , q

G
0)

QM
m = {d}

In the definition of δM , sometimes at state (q1, q2, q3, q4) of QM , the following

17

set of conditions is referred to:

(∗)





δE(σ, q3) is not defined

δG(σ, q4) is defined

δE(σ, q1) is defined if σ ∈ Σ1,c

δE(σ, q2) is defined if σ ∈ Σ2,c

Each transition in M is specified by a pair which includes an event σ from Σ

and a number i from {0, 1, ..., 6}. The number i in the pair labelling a transition

denotes “transition type”. The notation (σ, i) is considered as an input symbol.

So, each path in M can be specified by sequences of pairs (σ1, i1)(σ2, i2)...(σn, in).

The transition function δM is defined as follows, where the notation a
(σ,i)
7−→ b

represents δM((σ, i), a) = b.

For σ 6∈ Σ1,o, σ 6∈ Σ2,o,

(q1, q2, q3, q4)
(σ,1)
7−→ (δE(σ, q1), q2, q3, q4)

(q1, q2, q3, q4)
(σ,2)
7−→ (q1, δ

E(σ, q2), q3, q4)

(q1, q2, q3, q4)
(σ,3)
7−→ (q1, q2, σ

E(σ, q3), δ
G(σ, q4))

(q1, q2, q3, q4)
(σ,4)
7−→ (δE(σ, q1), δ

E(σ, q2), δ
E(σ, q3), δ

G(σ, q4))

(q1, q2, q3, q4)
(σ,0)
7−→ d if (∗)

For σ 6∈ Σ1,o, σ ∈ Σ2,o,

(q1, q2, q3, q4)
(σ,1)
7−→ (δE(σ, q1), q2, q3, q4)

(q1, q2, q3, q4)
(σ,5)
7−→ (q1, δ

E(σ, q2), δ
E(σ, q3), δ

G(σ, q4))

(q1, q2, q3, q4)
(σ,4)
7−→ (δE(σ, q1), δ

E(σ, q2), δ
E(σ, q3), δ

G(σ, q4))

(q1, q2, q3, q4)
(σ,0)
7−→ d if (∗)

For σ ∈ Σ1,o, σ 6∈ Σ2,o,

(q1, q2, q3, q4)
(σ,2)
7−→ (q1, δ

E(σ, q2), q3, q4)

(q1, q2, q3, q4)
(σ,6)
7−→ (δE(σ, q1), q2, δ

E(σ, q3), δ
G(σ, q4))

18

(q1, q2, q3, q4)
(σ,4)
7−→ (δE(σ, q1), δ

E(σ, q2), δ
E(σ, q3), δ

G(σ, q4))

(q1, q2, q3, q4)
(σ,0)
7−→ d if (∗)

For σ ∈ Σ1,o, σ ∈ Σ2,o,

(q1, q2, q3, q4)
(σ,4)
7−→ (δE(σ, q1), δ

E(σ, q2), δ
E(σ, q3), δ

G(σ, q4))

(q1, q2, q3, q4)
(σ,0)
7−→ d if (∗)

For σ ∈ Σ, δM(σ, d) is undefined

The occurrence of a certain event may lead to several states in automaton

M as defined by the transition function δM , so the above construction results in

a nondeterministic automaton M.

In [19, 21, 20], it is shown that in automaton M, each 4-tuple labelling of a

state (q1, q2, q3, q4) keeps track of strings s, s′, and s′′. For strings s, s′, s′′ ∈ Σ∗,

σ ∈ Σ, the sequence s′σ leads to q1, the sequence s′′σ leads to q2, the sequence s

leads to q3, and the sequence sσ leads to q4. The states q1, q2, q3, and q4 are used

to indicate if s′σ ∈ L(E), s′′σ ∈ L(E), s ∈ L(E), and sσ ∈ L(G), respectively.

It is proved in [19] that a path ends in state d in automaton M by a controllable

event if and only if prefix-closed language L(E) is not co-observable with respect

to G. State d is the only marked state in automaton M.

[19, proposition 3.1]: Given automaton E and G, the language L(E) is not

co-observable with respect to G if and only if M recognizes a nonempty language,

in other words, if and only if there is a path in M from the initial state to the

dump state where the path ends in a controllable event.

In Section 3.1.2 of this work, we prove that the language L(E) is not con-

trollable with respect to G if and only if there exists a path in M from the initial

state to the dump state that ends in an uncontrollable event. Each path from

the initial state to the marked state can be expressed by a sequence of pairs

of (event, transition-type). Each pair represents a transition. Any arbitrary

19

sequence of transitions in M is denoted by sM . In [21, 19], the authors present

three projection maps that take sequences in M as inputs to produce strings s,

s′, and s′′. These strings are counterexamples to co-observability if they end up

in an event σ ∈ Σ1,c ∪ Σ2,c.

The projection maps are defined as follows:

F1((α, i)) =





α if i = 1, 4, 6

ε otherwise

F2((α, i)) =





α if i = 2, 4, 5

ε otherwise

F3((α, i)) =





α if i = 3, 4, 5, 6

ε otherwise

For j = 1, 2, 3, Fj(ε) = ε and for s ∈ Σ∗, σ ∈ Σ, j ∈ {0, 1, 2, ..., 6}, Fj(s(σ, i)) =

Fj(s)Fj((σ, i)).

Then s, s′, s′′ are defined as follows:

s′ = F1(s
M)

s′′ = F2(s
M)

s = F3(s
M)

Transitions between 4-tuples in M are constructed to keep track of sequences

s, s′, s′′ as well as to guarantee that P1(s) = P1(s
′) and P2(s) = P2(s

′′).

In the next subsection, we are going to apply the two following claims,

[19, claim 1]:If sM ∈ L(M)\Lm(M) then F3(s
M) ∈ L(E), and if sM leads to

state (q1, q2, q3, q4) in M, then F3(s
M) leads to state q3 in E and F3(s

M) leads to

state q4 in G.

[19, claim 6]:Given s, s′, s′′ ∈ L(E) such that P1(s) = P1(s
′) and P2(s) =

P2(s
′′), then there exists a sequence sM ∈ L(M)\Lm(M) such that F3(s

M) = s,

20

F1(s
M) = s′, and F2(s

M) = s′′.

3.1.2 Controllability

We claim that the algorithm presented in [19, 21] can also be applied to check

controllability. In other words, prefix-closed language L(E) is not controllable

with respect to G if and only if the automaton M constructed in Section 3.1.1

contains a path ending in marked state d by an uncontrollable event. To prove

the above claim, the following two claims should be demonstrated.

(a) If there is a path in automaton M that ends in the marked state d by an

uncontrollable event, then L(E) is not controllable with respect to G.

(b) If prefix-closed language L(E) is not controllable with respect to G, then

there exists at least one path from the initial state to the marked state in

automaton M that terminates with an uncontrollable event.

Proof (a): Let sM(σ, 0) be a sequence of events in M from the initial state to

the marked state whose last transition is of the form (σ, 0) where σ ∈ Σuc. There-

fore, sM is a sequence that leads to a state, which we denote by (q1, q2, q3, q4),

just before the marked state, d.

Let s := F3(s
M), and apply [19, claim 1] to get

s ∈ L(E) (3.1)

The state (q1, q2, q3, q4) leads to the marked state via the occurrence (σ, 0), where

σ ∈ Σuc and this happens when (∗) holds. Hence,

sσ ∈/L(E) (3.2)

sσ ∈ L(G) (3.3)

Language L(E) is prefix-closed, namely L(E) = Lm(E).

21

From 3.1, 3.2, 3.3, and the fact that σ ∈ Σuc, we conclude that L(E) is not

controllable with respect to G.

Proof (b): Suppose that L(E) is not controllable with respect to G. That is,

∃σ ∈ Σuc, ∃s ∈ L(E), sσ ∈ L(G), sσ ∈/L(E) (3.4)

Since L(G) is prefix-closed and sσ ∈ L(G),

s ∈ L(G) (3.5)

Let s′ := s and s′′ := s. Then, from [19, claim 6], there exists a sequence

sM ∈ L(M)\Lm(M) such that F3(s
M) = s.

Suppose that sM leads to (q1, q2, q3, q4) in automaton M. Consider the fol-

lowing facts





sM ∈ L(M)\Lm(M),

s = F3(s
M),

s ∈ L(E), and

L(E) = Lm(E)

and using [19, claim 1], we can conclude,

s leads to q3 in E (3.6)

s leads to q4 in G (3.7)

So, from (3.6) and the fact that sσ ∈/L(E),

δE(σ, q3) is not defined (3.8)

and from (3.7) and the fact that sσ ∈ L(G),

δG(σ, q4) is defined. (3.9)

Accordingly, from (3.8), (3.9), and the fact that σ ∈ Σuc, we conclude that (∗)

holds.

22

Hence, (σ, 0) leads (q1, q2, q3, q4) to the marked state, d, in automaton M,

where σ ∈ Σuc. Therefore, there is a path that ends with an uncontrollable

event from the initial state to the marked state in automaton M.

3.2 Sequences of Events that Violate Co-observability

or Controllability

In the general problem of distributed supervisory control, DP, defined in Section

2.3, we seek supervisors S1 and S2 such that there exists a language K,

L(A) ⊆ K ⊆ L(E),

K = L(S1 ∧ S2/G),

and K is a prefix-closed language.

If L(A) = L(E), such supervisors can be found if and only if L(E) is controllable

and co-observable with respect to G [23]. Using automaton M, co-observability

and controllability can be checked. The supervisors do not exist if and only if

there are some tuples of legal and illegal sequences of events that cause failure

in controllability or co-observability of L(E) with respect to G. In other words,

the supervisors do not exist if and only if there is a path in automaton M from

the initial state to the marked state. If the path ends with an event in Σc, then

it corresponds to ordered tuples of legal and illegal sequences that violate co-

observability. Otherwise, if it ends with an event in Σuc, the path corresponds

to pairs of (illegal, legal) sequences that cause a failure in controllability of

L(E) with respect to G. In general, automaton M may contain some families of

paths from the initial state to the marked state, and each family may contain

some cycles. Each cycle may repeat any number of times. Accordingly, an

infinite number of paths can be identified. Moreover, each family of paths may

23

correspond to many pairs of (illegal, legal) or triples of (illegal, legal, legal)

sequences that violate controllability or co-observability of L(E) with respect to

G.

In [19, 21], it is shown that automaton M encodes all sequences that vio-

late co-observability and a method is provided for mapping any given path in

automaton M to the sequences that violate co-observability. Let us find the se-

quences of events that violate co-observability or controllability of the following

example.

Figure 3.1: Automata E and G, where Σc,1 = {c}, Σc,2 = {c}, Σo,1 = {a}, and

Σo,2 = {b}.

Example 3.1 We return again to Figure 2.2, reproduced here as Figure 3.1.

As explained in Section 2.3, if s = abaa, s′ = baaa, s′′ = ba, and σ = c, then the

tuple (sσ, s′σ, s′′σ) violates co-observability. The sequences s = aba, s′ = baa,

s′′ = ba, and event σ = c are another set that cause failure of co-observability for

the above example. For Example 3.1, by going through some of the self-loops an

arbitrary number of times, we can find an infinite number of sets of sequences

that violate co-observability. In Section 3.2.1 we present a method to extract all

24

tuples that cause failure in co-observability or controllability. In Section 3.2.2

we present a method that is simpler to implement and picks up just one path of

each family of paths in M and finds its corresponding tuple of legal and illegal

sequences of events. The method provided in 3.2.2 finds some tuples, each of

which corresponds to a family of paths in automaton M.

3.2.1 All-Paths Method

The following steps should be used to find all tuples of (illegal, legal) or (illegal,

legal, legal) sequences of events that violate co-observability or controllability

of L(E) with respect to G. We apply the following steps to Example 3.1 to

illustrate how the all-paths method works.

(a) Given E, G, and Σ1,c,Σ2,c,Σ1,o,Σ2,o ⊆ Σ, we generate automaton M [21].

Each transition from one state to another state in automaton M is labelled

by the pair of 〈event, transition-type〉. Automaton M can be constructed

so that it consists of only reachable and co-reachable states. Furthermore,

the number of its states could be decreased if we minimize automata E

and G and then construct automaton M [10].

– Applying this step to Example 3.1 results in the automaton M rep-

resented in Figure 3.2.

(b) Using the algorithm presented in [7], we convert automaton M to a regular

expression that characterizes Lm(M). In each step of the algorithm, the

length of the resulting regular expression can be shortened; at each iter-

ation, the regular expressions that are generated are simplified using the

following rules:

ε∗ ⇒ ε

25

Figure 3.2: Automaton M

(ε) ⇒ ε

(R1R2)R ⇒ R1R2R

R(R1R2) ⇒ RR1R2

26

εR ⇒ R

Rε ⇒ R

εε ⇒ ε

R +R ⇒ R

ε+ ε ⇒ ε,

where R, R1, and R2 are arbitrary regular expressions and ε is a regular

expression with length zero.

– For Example 3.1, the resulting regular expression is

RE=〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 6〉〈a, 6〉∗(〈a, 4〉+〈a, 2〉)(〈a, 4〉+〈a, 6〉

+〈a, 2〉)∗〈c, 0〉+〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 2〉〈a, 2〉∗(〈a, 4〉+〈a, 6〉)(

〈a, 4〉+〈a, 6〉+〈a, 2〉)∗〈c, 0〉+〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 4〉(〈a, 4〉+

〈a, 6〉+ 〈a, 2〉)∗〈c, 0〉

Each operand of the resulting regular expression is a pair of 〈event, tran

sition− type〉.

(c) We add notation “.” between any two consecutive operands or between

a “∗” and an operand in the regular expression. Then, we reduce the

resulting regular expression, which is in infix format, to its equivalent

postfix format and convert the postfix expression to a binary tree.

In infix notation each operator is placed between its corresponding two

operands, for example a + b. Postfix format is the case where each op-

erator succeeds its corresponding operands, for example ab+. A postfix

expression can be reduced to a binary tree easily.

– The infix regular expression obtained is step (b) is transformed to the

following postfix expression:

27

postfix RE=〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 6〉〈a, 6〉∗〈a, 4〉〈a, 2〉+ 〈a, 4〉

〈a, 6〉〈a, 2〉++∗〈c, 0〉.........〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 2〉〈a, 2〉∗〈a, 4〉

〈a, 6〉+〈a, 4〉〈a, 6〉〈a, 2〉++∗〈c, 0〉.........〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 4〉

〈a, 4〉〈a, 6〉〈a, 2〉+ +∗〈c, 0〉.......+ +

In Figure 3.3, part of the binary tree for this postfix expression is

displayed.

(d) A family of paths consists of all the paths which are the same, once their

cycles are removed. Automaton M might consist of several families of

paths. The regular expression and the binary tree constructed in step

(c) are other representations of automaton M. Using the binary tree, the

regular expression can be decomposed to some smaller regular expressions,

each of which corresponds to a set of families of paths in automaton M, that

for convenience, we will call a DRE (Decomposed Regular Expression)

from now on. The collection of DREs generated in this step captures all

sequences accepted by automaton M.

(e) Each DRE is a regular expression in postfix format. We reduce it to a

binary tree and then transform the tree to an infix expression. Then, we

remove the “.” notation from the infix expression.

– For Example 3.1, step (d) results in three DREs in postfix format, and

each of them is transformed here to its corresponding infix expression.

The three expressions in infix format are

DRE1 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 6〉〈a, 6〉∗(〈a, 4〉+〈a, 2〉)(〈a, 4〉+

〈a, 6〉+ 〈a, 2〉)∗〈c, 0〉

DRE2 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 2〉〈a, 2〉∗(〈a, 4〉+〈a, 6〉)(〈a, 4〉+

〈a, 6〉+ 〈a, 2〉)∗〈c, 0〉

DRE3 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 4〉(〈a, 4〉+〈a, 6〉+〈a, 2〉)∗〈c, 0〉

28

Figure 3.3: The binary tree corresponding to Example 3.1

29

We show how subsequent steps of the all-paths method work on DRE1.

Similarly, one would also need to apply these steps to DRE2 and DRE3.

(f) If the DREi contains an expression of the form (R1 + R2 + ...)∗, then we

convert it to its equivalent form, that is (R∗

1R
∗

2...)
∗ where Ri, i = 1, 2, ...,

is a regular expression. The reason will be explained in step (l).

– For Example 3.1, The regular expression DRE1 obtained in step (e)

is converted to the following form in this step:

DRE1 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 6〉〈a, 6〉∗(〈a, 4〉+〈a, 2〉)(〈a, 4〉∗

〈a, 6〉∗〈a, 2〉∗)∗〈c, 0〉

(g) If the DRE includes an expression of the form S(R1 + R2 + ...) or (R1 +

R2+...)S, then we convert it to its equivalent form, which is SR1+SR2+...

or R1S + R2S + ..., respectively, where S and Ri, i = 1, 2, ..., are regular

expressions .

– The regular expression resulting from step (f) for Example 3.1 is

expressed in a new form, T1 + T2,

T1 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 6〉〈a, 6〉∗〈a, 4〉(〈a, 4〉∗〈a, 6〉∗〈a, 2〉∗)∗

〈c, 0〉

and

T2 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 6〉〈a, 6〉∗〈a, 2〉(〈a, 4〉∗〈a, 6〉∗〈a, 2〉∗)∗

〈c, 0〉.

Now, each DRE is a regular expression in the form T1 + T2 + ... , where Ti,

i = 1, 2, ..., is a regular expression that does not contain +. We call each Ti a

term. We do the following steps for each term that is acquired in step (g). For

the example, we pick T1 to illustrate the subsequent steps of the method. We

should apply the same steps to T2 as well.

30

(h) Before explaining this step, it is illustrative to examine Example 3.1.

– Consider the regular expression T1 derived in step (g). If we apply

F1, F2, and F3 to T1, then we get the following families of sequences

for s, s′, and s′′, respectively:

s ∈ abb∗aa∗a(a∗a∗)∗

s′ ∈ bb∗aaa∗a(a∗a∗)∗

s′′ ∈ bb∗a(a∗a∗)∗

However, not all triples of elements from the above families will yield

counterexamples to co-observability. For example, the sequences

t = abaaaa

t′ = bbaaa

t′′ = baaa

are sequences in s, s′, and s′′, respectively, but P1(t) 6= P1(t
′) even

though P2(t) = P2(t
′′). To see how t, t′, and t′′ could be produced

directly from T1, we consider two paths of M that are elements of T1.

The first path in T1 is

〈b, 1〉〈a, 6〉〈b, 5〉〈a, 6〉〈a, 2〉(〈a, 4〉〈a, 6〉2〈a, 2〉)〈c, 0〉

and the second path is

〈b, 1〉〈b, 1〉〈a, 6〉〈b, 5〉〈b, 5〉〈a, 6〉〈a, 6〉〈a, 2〉〈c, 0〉

We will see that their corresponding sequences s, s′, and s′′ are not

the same. The sequences s1, s
′

1, and s′′1 for the first path are abaaaa,

baaaaa, and baaa, respectively, and the s2, s
′

2, and s′′2 for the second

path are abbaa, bbaaa, and bba, respectively. We can observe that

31

P1(s1) 6= P1(s2) and P2(s1) 6= P2(s2). Thus, each path should be

studied separately.

What the aforementioned example illustrates is that we cannot just apply

F1, F2, and F3 to the language (or family of sequences) T1 to yield all the

tuples that violate co-observability or controllability. So, what we do is the

following: for each regular expression in T1 of the form R∗, replace R∗ by

RIi , i=1, 2,, i.e., the Kleene star is replaced by an arbitrary constant.

– If we apply the current step to the regular expression T1, we get the

new form of expression T1, which is

T1 = 〈b, 1〉〈b, 1〉I1〈a, 6〉〈b, 5〉〈b, 5〉I2〈a, 6〉〈a, 6〉I3〈a, 4〉(〈a, 4〉I4〈a, 6〉I5

〈a, 2〉I6)I7〈c, 0〉

The idea behind this step is that, whereas R∗ stands for an arbitrary

number of occurrences of the sequences in R, RIi fixes the number at some

specific value and the s and s′ will have to share the same index so that

if, say, event a appears 6 times in s then it must appear 6 times in s′

(presuming that a is observable to agent 1). Similarly, events observable

by agent 2 must appear the same number of times in both s and s′′.

(k) Using the following projection maps F1, F2, and F3 (Section 3.1.1) and F4,

we find σ, s, s′, and s′′ to identify the pairs of (illegal, legal) sequences

or triples of (illegal, legal, legal) sequences of events that cause failure in

controllability or co-observability of L(E) with respect to G:

F1((α, i)) =





α if i = 1, 4, 6

ε otherwise

F2((α, i)) =





α if i = 2, 4, 5

ε otherwise

32

F3((α, i)) =





α if i = 3, 4, 5, 6

ε otherwise

F4((α, i)) =





α if i = 0

ε otherwise

For j = 1, 2, 3, 4, Fj(ε) = ε and for s ∈ Σ∗, β ∈ Σ, Fj(s(β, i)) =

Fj(s)Fj((β, i)).

– For the example, we get the following s, s′, and s′′ in this step:

s = abbI2aaI3a(aI4aI5)I7

s′ = bbI1aaaI3a(aI4aI5)I7

s′′ = bbI2a(aI4aI5)I7

(l) Suppose s′ contains regular expression RIk . If R is a regular expression

where none of its events is observable by agent 1, then it is not necessary

that the sequences represented by R appear the same number of times in

s′ as in s. In this case, regular expression RIk should be changed to RJl ,

where Jl is unique, and l = 1, 2,

Also, when s′′ includes regular expression RIk and none of the events of R

is observable by agent 2, by the same reasoning as above, RIk should be

reduced to RJl .

– Let us consider the sequences s, s′, and s′′ derived in the previous

step for Example 3.1. Since event a is not observable by agent

2, the event a does not need to be restricted to appear as many

time as it appears in s′′, that is a(aI4aI5)I7 . The number of rep-

etitions of a in s′′ , i.e., I4, I5 and I7, should be changed to the

new indices J2, J3, and J4, respectively. Thus we can find a more

33

general regular expression s′′, while P2(s) = P2(s
′′) is still guaran-

teed. Similarly, this point is considered for the sequence s′. Thus,

for Example 3.1, one family of sequences of events that violates co-

observability of L(E) with respect to G is (sσ, s′σ, s′′σ), where s =

abbI2aaI3a(aI4aI5)I7 , s′ = bbJ1aaaI3a(aI4aI5)I7 , s′′ = bbI2a(aJ2aJ3)J4 ,

σ = c, and I2, I3, ..., J1, J2, ... ∈ {0, 1, 2, ...}.

Had we not done step (f), string s′ might have contained (R1 +R2 + ...)Ii ,

where some Rk’s, k = 1, 2, ..., are partly observable by agent 1 and others

are not. Variable Ii could not be kept unchanged, since some Rk’s are not

observable by agent 1 and therefore it would not be necessary that they

repeat in s′ as many times as in s. So, if we keep Ii, the generality of

the solution would be lost. On the other hand, Ii could not be modified

to a new Jl, since the projection of those Rk’s that are partially observ-

able by agent 1 should appear in s′ as many times as they appear in s.

Thus, (R1 +R2 + ...)∗ should be reduced to its equivalent form, which is

(R∗

1R
∗

2...)
∗. Similar reasoning applies to the case of s′′.

(m) We list the pairs of (illegal, legal) sequences or triples of (illegal, legal,

legal) sequences of events and which property each pair is violating based

on the following rules:

σ ∈ Σ1,o/Σ2,o ⇒ (sσ, s′σ) violates co-observability

σ ∈ Σ2,o/Σ1,o ⇒ (sσ, s′′σ) violates co-observability

σ ∈ Σ1,o ∩ Σ2,o ⇒ (sσ, s′σ, s′′σ) violate co-observability

σ ∈/Σ1,o ∪ Σ2,o ⇒ (sσ, s) violates controllability

– For the above example, since c ∈ Σ1,o ∩ Σ2,o, we conclude that

(sσ, s′σ, s′′σ) violates co-observability, where s = abbI2aaI3a(aI4aI5)I7 ,

s′ = bbJ1aaaI3a(aI4aI5)I7 , and s′′ = bbI2a(aJ2aJ3)J4 .

34

Steps (e) to (g) should be done for each DRE and steps (h) to (m) must be

employed for each term of it. Finally all tuples of illegal and legal sequences of

events that violate controllability or co-observability of L(E) with respect to G

will be extracted.

3.2.2 Some-Paths Method

This section outlines how we can tailor the all-paths method of Section 3.2.1

to find a subset of all violating pairs as counterexamples for controllability or

co-observability.

Automaton M may contain some families of paths. We are going to pick

one of the shortest paths in each family of paths to find its corresponding pair

of (illegal, legal) sequences or triple of (illegal, legal, legal) sequences of events.

This can be accomplished by dropping cycles in each family of paths and picking

one of the remaining paths of the family. The paths obtained by applying the

some-paths method are those formed by setting indices i and j to 0 in the results

obtained by the all-paths method. Since we drop the cycles of each family of

paths in the some-paths method, we do not need to consider the number of

repetitions of cycles, which is specified by i and j, in the all-paths method.

Therefore the some-paths method contains fewer steps and is thus easier to

implement than the all-paths method. Nevertheless the all-paths method finds

all sequences of events that violate controllability or co-observability, whereas

the some-paths method finds only the shortest paths in the families of paths.

The following steps yield the desired results.

Steps (a) to (e) are the same as in the all-paths method. So, applying these

steps to Example 3.1 results in the following:

DRE1 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 6〉〈a, 6〉∗(〈a, 4〉+〈a, 2〉)(〈a, 4〉+〈a, 6〉+

〈a, 2〉)∗〈c, 0〉

35

DRE2 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 2〉〈a, 2〉∗(〈a, 4〉+〈a, 6〉)(〈a, 4〉+〈a, 6〉+

〈a, 2〉)∗〈c, 0〉

DRE3 = 〈b, 1〉〈b, 1〉∗〈a, 6〉〈b, 5〉〈b, 5〉∗〈a, 4〉(〈a, 4〉+ 〈a, 6〉+ 〈a, 2〉)∗〈c, 0〉

Each DREi is the representation of a set of families of paths of the example.

We illustrate the remaining steps of the method for DRE1. The same process

should be done for all DREs.

(f) If there exists an R∗ in the DRE where R is a regular expression, we

exchange it with 〈ε, 9〉. In fact, we drop the cycles of each family of paths.

As mentioned is Section 3.1.1, in automaton M a transition from one state

to an adjacent state is labelled by a pair of the form 〈event, transition-

type〉. In the algorithm of Section 3.1.1 (or of [21, 19]), the transition-type

lies in the range 0 to 6. For implementation, we define dummy transition-

type 9.

– For Example 3.1,

DRE ′

1 = 〈b, 1〉〈ε, 9〉〈a, 6〉〈b, 5〉〈ε, 9〉〈a, 6〉〈ε, 9〉(〈a, 4〉+ 〈a, 2〉)〈ε, 9〉

〈c, 0〉

(g) If the modified DREi, namely DRE ′

i, includes S(R1 + R2 + ...) or (R1 +

R2 + ...)S, where S and the Ri’s are regular expressions, then we convert

it to SR1 or R1S, respectively, i.e., we extract one sequence in the set of

sequences captured by the “+” operation. The resulting expression is the

representation of one family of paths.

– For Example 3.1, the new regular expression assigned to DRE ′

1 is

given by

DRE ′

1 = 〈b, 1〉〈ε, 9〉〈a, 6〉〈b, 5〉〈ε, 9〉〈a, 6〉〈ε, 9〉〈a, 4〉〈ε, 9〉〈c, 0〉

36

(h) Using the following projection maps, we can find s, s′, s′′, and σ of the

resulting regular language,

F1((α, i)) =





α if i = 1, 4, 6

ε otherwise

F2((α, i)) =





α if i = 2, 4, 5

ε otherwise

F3((α, i)) =





α if i = 3, 4, 5, 6

ε otherwise

F4((α, i)) =





α if i = 0

ε otherwise

For j = 1, 2, 3, 4, Fj(ε) = ε and for s ∈ Σ∗, β ∈ Σ, Fj(s(β, i)) =

Fj(s)Fj((β, i)). Then s, s′, s′′, and σ are determined by

s′ = F1(DRE
′

i)

s′′ = F2(DRE
′

i)

s = F3(DRE
′

i)

σ = F4(DRE
′

i)

– Applying this step to DRE ′

1 of step (g) results in the following:

s′ = baaa

s′′ = ba

s = abaa

σ = c

(k) If we consider the set that σ belongs to, we can extract and list the pairs of

(illegal, legal) sequence or triples of (illegal, legal, legal) sequences of events

37

and determine whether the pair violates controllability or co-observability,

by applying the rules in step (m) of the all-paths method.

– For the example, σ = c ∈ Σ1,c∩Σ2,c, so the triple (sσ, s′σ, s′′σ) violates

co-observability.

Steps (e) to (k) should be done for each DRE.

The method gives a list of some (illegal, legal) pairs or (illegal, legal, legal)

triples, where each pair or triple corresponds to a family of sequences that violate

controllability or co-observability. Moreover, the condition (namely, controlla-

bility or co-observability) that is violated can be determined.

3.3 Computational Complexity

We have implemented the some-paths method, because it was easier to imple-

ment than the all-paths method. The some-paths method contains 9 steps. The

asymptotic computational complexity of each step is determined.

(a) It is shown in [21, 19] that the complexity of this step is O(n4), where

n = max{e, g} and e and g are the number of states in automata E and

G, respectively.

(b) Let m be the number of reachable and co-reachable states in automaton

M. We can conclude m is at most n4. The computational complexity of

the algorithm in [25] to convert a finite-state machine to its corresponding

regular expression is O(m3). So, the complexity of this step is O(m3) =

O(n12).

(c) If L is the number of symbols of the regular expression resulting from the

previous step, the complexity of converting it from infix format to postfix

38

format is O(L), and the complexity of reducing the postfix expression to

the binary tree is O(L logL).

(d) This step requires traversal of all states of the binary tree to acquire the

result. If the number of states of the binary tree is L, then the complexity

is O(L logL).

(e) The complexity of converting a postfix expression to its corresponding

binary tree is O(d log d) and the complexity of reducing the binary tree

to its infix expression is O(d log d), where d is the number of symbols of

DRE.

The complexity of the algorithms for each of steps (f), (g), and (h) is O(d)

and it is O(1) for step (k). Steps (e), (f), (g), (h), and (k) should be done for

all DREs. In the worst case, the complexity of the method is O(n12), where

n = max{e, g} and e and g are the number of states in automata E and G,

respectively. The necessary resources, such as time and space to run the algo-

rithms, can be decreased by some manipulations in the algorithm at each step

during implementation, as follows:

• By generating trimmed M, we can get rid of unnecessary states of M. Con-

sequently, the program does not occupy any memory for the unnecessary

states and does not need extra time to process them in the other steps of

the method.

• The automata E and G used to construct M can be minimized. The

automaton M constructed using the minimized E and G may have fewer

states than the automaton M constructed using the original E and G.

• During conversion of the finite-state machine to a regular expression in

step (b), some simplifications are considered. Therefore, the length of

39

the regular expression generated by the algorithm could be made smaller.

Accordingly, less space and shorter time is used by the program to process

it.

Also the following programming techniques are considered in the implemen-

tation to decrease the memory occupied while running the program.

• During the implementation of the data structures linked lists are used

instead of fixed length arrays. So, the implemented program allocates

only as much memory as it needs.

• In the implementation, variable length variables are used instead of fixed

length variables. Therefore, memory is not wasted by a long fixed length

variable of which just a portion is used.

• Memory occupied by variables is released when it is not used anymore.

The some-paths method is a polynomial-time algorithm with computational

complexity O(n12). Even considering the above points in the implementation,

since time and space are not infinite resources, for very large n the program may

either halt because of insufficient memory or continue to run for an unreasonably

long time. Depending on the strategies used in the program, one of these two

cases may happen: insufficient memory or unreasonably long running time. This

will be explored in more detail in Chapter 4.

Steps (a) and (b) of the all-paths method are the determining factors in

computing the asymptotic computational complexity. In other words, steps (a)

and (b) result in the largest exponent in the polynomial bound on computing

time of the all-paths method. These steps are the same as those in the some-

paths method. Therefore, the asymptotic computational complexity of the all-

paths method is the same as that of the some-paths method (namely, O(n12)).

40

Chapter 4

Examples

In Section 4.1 of this chapter, controllability and co-observability of some exam-

ples are verified using the procedure of Section 3.2.2. When controllability or

co-observability does not hold for an example, the program yields some tuples

of illegal and legal sequences of events that cause the failure of controllability or

co-observability.

Telecommunication protocols can be expressed as decentralized control prob-

lems of discrete-event systems. So, the existence of two agents with a reliable

communication protocol between them for data transmission over an unreliable

channel can be checked. This is explained in [24, 23, 18, 22] and restated in

Section 4.2. Then, some protocols in the data-link layer are introduced. The

data-link layer is a layer defined in the OSI architecture for telecommunication

networks. Therefore, data link layer protocols are a subset of telecommunication

protocols. As a result, they can be verified using decentralized DES problem for-

mulations. The protocols in Section 4.2 are studied, modelled by discrete-event

system concepts, and verified manually.

Based on the algorithm in [21, 19], two methods have been presented in the

previous chapter. The program is the implementation of one of them, namely the

41

some-paths method. The program can be applied to detect failures caused by

lack of co-observability or controllability in a decentralized problem in which its

description is given as global specifications and its solution requires decentralized

control. The program can be used to verify a communication protocol and

determine the cause of the failure. Given the computational complexity of the

program, when the number of states in automaton E or automaton G of the input

example is a very large number, either very large memory or a very long time

is necessary to run the program. Memory and time are not unlimited resources.

So, we cannot expect to get the output results for a large input during a limited

time and with limited memory. This is argued in Section 4.3.

4.1 Simple Examples

In this section, controllability and co-observability of some examples are checked

using the method of Section 3.2.2.

For each example the following 6 files are given to the program as inputs:

• Automaton G which represents the plant.

• Automaton E, where L(E) is a prefix-closed language, L(E) ⊆ L(G), and

L(E) is a regular language. Any sequence which is in L(E) is called a legal

sequence. Otherwise, if it belongs to L(G)\L(E), it is called an illegal sequence.

• The controllable event set of agent 1, namely Σ1,c.

• The controllable event set of agent 2, denoted by Σ2,c.

• The observable event set of agent 1, denoted by Σ1,o.

• The observable event set of agent 2, denoted by Σ2,o.

The output of the program is a list of some pairs or triples of illegal and

legal sequences of events. Each listed tuple violates either co-observability or

controllability of L(E) with respect to G. In addition, the program indicates

which condition is violated, namely, co-observability or controllability.

42

4.1.1 Violation of co-observability due to agent 2

This example shows how co-observability is violated when agent 2 needs to

disable an event but does not have sufficient observations to know that the

event should be disabled. This is depicted in Figure 4.1.

Figure 4.1: An example where co-observability is violated because agent 2 does

not have enough observations.

Input:

• Automata E and G depicted in Figure 4.1

•Σ1,c = {b,m}

•Σ2,c = {g, b}

•Σ1,o = {b, g,m}

•Σ2,o = {a, g}

Output:

• s = abm, s′′ = ab, σ = g

Since σ ∈ Σ2,c\Σ1,c, the pair (sσ, s′′σ) violates co-observability of L(E) with

respect to G .

4.1.2 Violation of co-observability due to agents 1 and 2

This examples shows how co-observability is violated when an event should

be disabled, but neither agent 1 nor agent 2 have sufficient observations to

43

determine that the event should be disabled. The example is from [17, example

3.8].

Figure 4.2: An example where co-observability is violated because neither agent

1 nor agent 2 has enough observations.

Input:

• Automata E and G depicted in Figure 4.2

•Σ1,c = {a, y}

•Σ2,c = {b,m, y}

•Σ1,o = {a}

•Σ2,o = {b,m}

Output:

• s = abm, s′ = ab, s′′ = bym, σ = y

Since σ ∈ Σ1,c ∩ Σ2,c, the triple (sσ, s′σ, s′′σ) violates co-observability of L(E)

with respect to G .

44

4.1.3 The triples resulting from the some-paths method

and the all-paths method

This examples shows how co-observability is violated when an event should

be disabled, but neither agent 1 nor agent 2 have sufficient observations to

determine that the event should be disabled. Furthermore, since the finite-state

machine has a self-loop, it can be shown that there is also another triple that

violates co-observability and can be extracted by applying the all-paths method,

but is not produced by the some-paths method.

Figure 4.3: An example where co-observability is violated due to agents 1 and

2 both having insufficient observations.

Input:

• Automata E and G depicted in Figure 4.3

•Σ1,c = {a, f}

•Σ2,c = {a, f, d, b}

•Σ1,o = {a, f}

•Σ2,o = {b}

Output:

• s = aba, s′ = daab, s′′ = daab, σ = f

Since σ ∈ Σ1,c ∩ Σ2,c, the triple (sσ, s′σ, s′′σ) violates co-observability of L(E)

45

with respect to G. The following triple of sequences is another counterexample

to co-observability of L(E) with respect to G. This triple is a subset of the

output of the all-paths method, but not the some-paths method.

• s = adba, s′ = daab, s′′ = daab, σ = f

4.1.4 Multiple triples that violate co-observability

This example shows how multiple triples that violate co-observability can be

extracted by applying the some-paths method.

Figure 4.4: An example where multiple triples violate co-observability.

Input:

• Automata E and G depicted in Figure 4.4

•Σ1,c = Σ2,c = {c}

•Σ1,o = {a}

•Σ2,o = {b}

46

Output:

• s = aba, s′ = baa, s′′ = baa, σ = c

• s = abaa, s′ = baaa, s′′ = ba, σ = c

• s = aba, s′ = baa, s′′ = ba, σ = c

In each case, σ ∈ Σ1,c ∩ Σ2,c, therefore (sσ, s′σ, s′′σ) violates co-observability of

L(E) with respect to G.

4.1.5 Triples and pairs that violate co-observability or

controllability

This example represents a pair that violates co-observability, because agent 2

does not have sufficient observation to disable an event that should be disabled,

and agent 2 is the only agent that can disable the event. Also, there exists

another event that should be disabled, but neither agent 1 nor agent 2 has

sufficient observations to disable it. It is shown that we can also find a pair of

sequences in this example that violates controllability.

Figure 4.5: An example where both co-observability and controllability are vio-

lated.

47

Input:

• Automata E and G depicted in Figure 4.5

•Σ1,c = {a, d}

•Σ2,c = {c, d}

•Σ1,o = {a}

•Σ2,o = {b}

Output:

• s = bf , σ = f

The pair (sσ, s) violates controllability of L(E) with respect to G.

• s = ab, s′′ = bf , σ = c

• s = bfc, s′′ = bf , σ = c

In each case, σ ∈ Σ2,c\Σ1,c, therefore (sσ, s′′σ) violates co-observability of L(E)

with respect to G.

• s = bf , s′ = b, s′′ = ab, σ = d

• s = bf , s′ = b, s′′ = b, σ = d

In each case, σ ∈ Σ2,c ∩ Σ1,c, therefore (sσ, s′σ, s′′σ) violates co-observability of

L(E) with respect to G.

4.2 Telecommunication Protocols and Decen-

tralized Supervisory Control

The problem of data transmission between some agents over an unreliable chan-

nel in the data link layer of OSI network architecture can be described as a

decentralized control problem of discrete-event systems. Various people have

looked at this problem from a DES control perspective [24, 18, 13, 5, 22, 8, 9].

In [24], it was shown how the failure of a protocol corresponds to a violation of

48

co-observability and then a protocol, namely an erroneous version of the alter-

nating bit protocol, was verified. Similarly, a simplified version of Go-Back-n

protocol was checked in [4]. In this section, we model three more complicated

protocols of the data link layer. Theoretically, the all-paths method given in

Section 3.2.1 can be applied to extract all sequences of events that cause fail-

ure of each protocol, and the some-paths method finds some of these sequences.

However, due to the size of the protocols, the computational complexity of the

methods, and the available resources, it is not feasible to apply the methods.

Therefore, we verify each protocol by manually finding a single problematic

sequence of events that causes failure of the protocol.

In the above problems, the existence of some distributed agents that com-

municate with each other via a channel is studied. Each agent can make control

decisions on a subset of events and can observe a subset of events of the sys-

tem. The desired behavior in a telecommunication problem is interpreted as

reliable transmission of data over an unreliable channel. Despite the fact that

the distributed agents make separate observation and control decisions, their

joint behavior should produce the desired behavior, which is a subset of all pos-

sible sequences of events that may happen in the plant. Therefore, a protocol

should be determined for the agents to specify each agent’s behavior. Suppose a

protocol is suggested for such a system. We study whether the protocol restricts

the system’s behavior correctly to guarantee the reliable data transmission over

an unreliable channel. We concentrate on problems with prefix-closed desired

languages. So, their corresponding communication protocol never fails because

of blocking. Thus, we can say the answer to the question of existence of agents

is positive if and only if the candidate communication protocol does not fail be-

cause of one of the following reasons: the desired language either is not control-

lable with respect to the plant or is not co-observable with respect to the plant.

49

Given a candidate protocol, we specify the plant and the desired language and

verify the protocol by checking whether the desired language is controllable and

co-observable with respect to the plant. Moreover, the problematic sequences of

events that cause the failure of the protocol can be identified. They are the same

sequences that violate controllability or co-observability of the desired language

with respect to the plant. In theory, the program, which is the implementation

of the some-paths method, can be applied to find some problematic sequences,

but this process cannot be done in a reasonable amount of time or with limited

memory. Therefore, for each protocol, we indicate a single sequence of events

that causes a failure of the protocol.

4.2.1 SW1 Protocol

Protocol Description

A poor channel wastes a lot of bandwidth on retransmitted data frames. A

strategy for handling errors is to allow the receiver to accept and buffer the

frames following a damaged or lost one. The SW1 protocol does not discard

frames merely because an earlier frame was damaged or lost. In the protocol,

both sender and receiver maintain a window of acceptable sequence numbers,

namely in the set {0, 1, 2, 3}. The window size of the sender and the receiver

equals the maximum sequence number, that is, 3. The receiver has a buffer

reserved for each sequence number within its window. Associated with each

buffer, there exists a bit indicating whether the buffer is full or empty. Whenever

a frame arrives, its sequence number is checked to see if it falls within the window.

If so, and if it has not already been received, it is accepted and stored. This

action is taken whether or not it is the next packet expected by the network

layer. In the SW1 protocol, the accepted frame must be kept within the data

link layer and not passed to the network layer until all the lower-numbered

50

frames have been delivered to the network layer in the correct order.

A timer is associated with each buffer of the sender. When a data frame is

sent to the physical layer, the timer corresponding to the data frame is started. If

the sender’s timer elapses before the sender receives an acknowledgment for the

sent frame, then the sender will presume that the frame sent has been damaged

or lost and will retransmit the frame. We have two agents; namely, agents

A and B. Each agent consists of two modules: a sender and a receiver. The

acknowledgment from receiver B to sender A is piggybacked to the data frames

sent from sender B to receiver A, and vice versa.

The SW1 protocol is a slightly modified version of the sliding window pro-

tocol introduced in [26, 28]. Each of the senders and the receivers of the SW1

protocol includes four different states for windows. The protocol causes transi-

tions from one state to another. The states of the windows are a, b, c, and d.

State a contains 3 buffers for the data frames whose sequence numbers are 0,

1, and 2. Similarly, states b, c, and d refer to windows with 3 buffers for data

frames with sequence numbers (3, 0, 1), (2, 3, 0), and (1, 2, 3), respectively. Let

us consider the window of the sender of an agent. When the window state is a,

it waits to receive 3 consecutive data frames from the higher level, then sends

them to the lower level and sets the timer. The sender advances the window

to the new state, that is, state b, when it receives an acknowledgment for the

transmitted data with sequence number 2. Similarly, the sender advances state

b to state c, state c to state d, and state d to state a. On the other hand, the

receiver gets data frames whose sequence numbers fall within the range of se-

quence numbers considered acceptable by its current window. Then, it transfers

the ordered data frames to the network layer. For example, if the window is

(1, 2, 3) and data frame 3 is received from the physical layer, the receiver waits

for data frames 1 and 2 until it sends them in the correct order to the network

51

layer. But if data frame 1 had been received, it would have sent it right away

to the network layer. When a data frame is sent to the network layer, a timer

is started. There exists only one timer for each receiver. If the timer is needed

when it is already running, the timer is reset to the full timeout interval. The

acknowledgment of the recent state of the window is piggybacked to the data

frames being sent. This piggybacked package is transferred from the current

agent to the other agent. If the acknowledgment is not ready to be piggybacked

to the data frames being sent, the previous acknowledgment is retransmitted by

piggybacking. We call the repeated acknowledgment a dummy acknowledgment.

Also, if the receiver recognizes that a data frame that it received is damaged,

the receiver piggybacks a NAK to the data frames being sent. The receiver then

advances its window. When the current state of the window is a, it is moved to

state b. In the same way, the state can be moved from b to c, or c to d, or d

to a.

Solution Overview

The SW1 protocol is designed to restrict the behavior of the communication

system to a desired behavior. However, the protocol should be verified to de-

termine whether its resulting restricted behavior is acceptable. In other words,

the designer should know if the protocol fails or not. If the restricted behavior

is either not controllable or not co-observable with respect to the plant, then

the protocol fails. In order to verify the protocol using the methods of this

thesis, each of the restricted behaviors and the plant should be modelled by an

automaton.

At first glance, the protocol seems too complicated to model by an equivalent

finite-state machine directly. Thus, the problem of protocol modelling should

be broken into several small problems. Each problem can be studied modularly.

52

We can design the finite-state machine of each module and then combine them

using operations defined on automata such as union, shuffle, Kleene-closure,

intersection, and an operation we define called shuffle-c.

Finally, we obtain two automata. The two resulting automata, namely the

legal language that so far we have called “restricted behavior” and the plant,

represent the performance of the protocol.

In this section, automata that are part of the construction of the model

of the protocol are presented. We explain how to combine these automata

modules to create two larger automata that will capture the plant and the legal

behavior. We identify the events that are controllable and observable by each of

the two agents in the communication system and then check controllability and

co-observability of the legal language with respect to the plant. For the SW1

protocol, some of the problematic sequences of events that violate controllability

or co-observability can be found manually. Nevertheless, it is not easy to find all

such sequences manually. We find sequences that violate co-observability and

show how these sequences relate to failure in the SW1 protocol.

Shuffle-c Operation (‖c)

To facilitate creating the automata that describe the protocol, we define an oper-

ation on automata that combines automata to form a larger composite structure.

Consider two automata G1 and G2 as follows:

G1 = (X1,Σ1, ζ1, x0,1, Xm,1)

G2 = (X2,Σ2, ζ2, x0,2, Xm,2)

The shuffle-c (‖c) of the automata G1 and G2 is the following nondetermin-

istic automaton:

G1 ‖c G2 = (X1 ×X2,Σ1 ∪ Σ2, δc, (x0,1, x0,2), Xm,1 ×Xm,2)

53

where

δc((x1, x2), e) =





(δ1(x1, e), x2) if δ1(x1, e) is defined

(x1, δ2(x2, e)) if δ2(x2, e) is defined

undefined otherwise

For example, if L(G1) = αβ and L(G2) = βγ, shuffle-c yields an automaton

G1 ‖c G2, where L(G1 ‖c G2) = {αββγ, βγαβ, βαγβ, βαβγ, αβγβ}. Consider

the two automata CHNL-m and CHNL-l in Figure 4.6. We observe that abcc

would not be generated by the standard synchronous product operation of [32],

but abcc is legitimate channel behavior. This is why we use shuffle-c to describe

channel behavior; abcc ∈ (CHNL-m ‖c CHNL-l). Since shuffle-c can result in

a nondeterministic automaton, in an implementation that uses shuffle-c, the

resulting automaton would need to be converted to an equivalent deterministic

automaton before the other supervisory control functions could be applied to it.

Figure 4.6: Automata CHNL-m and CHNL-l

54

Event Table

For the protocol SW1, there are two agents, namely agents A and B. Each agent

is able to control a set of events while observing a set of events. To verify the

protocol, we refer to the four event sets described as follows:

• The controllable event set of agent A (Σc,A)

• The controllable event set of agent B (Σc,B)

• The observable event set of agent A (Σo,A)

• The observable event set of agent A (Σo,B)

Table 4.1 contains the definitions of the symbols used in Table 4.2. Table 4.2

lists all events of the protocol, a short description of each event, and indicates

whether the event is in Σc,A,Σc,B,Σo,A, and/or Σo,B. A similar table could be

defined for agent B.

55

Table 4.1: Symbols

Symbol Meaning

!Bi The set containing data frames with any legal sequence number

j of the sender of agent A, namely Aj, where j 6= i.

dummy ack A dummy value that can be used instead of acknowledgment.

ackBj The acknowledgment of the data frame received with sequence

number j by the receiver of agent A.

NAK The acknowledgment that the data frame received by the re-

ceiver of agent A is damaged.

ackB* Dummy acknowledgment, NAK, or the acknowledgment of a

data frame received with any legal sequence number.

!ackBj The set containing Dummy acknowledgment, NAK, and ackBi

for all legal i, where i 6= j.

56

Table 4.2: Event Table

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

gfn-Ai Agent A gets a frame from the

network layer, and assigns the

sequence number i to it.

Σc,A, Σo,A

set-timer-p-Ai The sender of agent A sets the

timer of the frame with sequence

number i, after sending the data

frame to the physical layer.

Σc,A, Σo,A

time-out-p-Ai In the sender of agent A, the

timer of the frame with sequence

number i elapses.

Σo,A

imp-snd-wind-a-A The sender of agent A advances

its window from d to a.

Σc,A, Σo,A

imp-snd-wind-b-A The sender of agent A advances

its window from a to b.

Σc,A, Σo,A

imp-snd-wind-c-A The sender of agent A advances

its window from b to c.

Σc,A, Σo,A

imp-snd-wind-d-A The sender of agent A advances

its window from c to d.

Σc,A, Σo,A

time-out-n-A The timer of the receiver of agent

A elapses.

Σo,A

set-timer-n-A The timer of the receiver of agent

A is started.

Σc,A, Σo,A

57

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

stn-Bi Agent A sends a data frame with

sequence number i to the net-

work layer. This is the same

data frame that was sent from

the sender of agent B to the re-

ceiver of agent A.

Σc,A, Σo,A

lose The channel loses the data while

transmitting it from one agent to

the other agent.

None

stp(Ai, ackBj) Agent A piggybacks ackBj onto

the data frame with sequence

number i of the sender. Then,

agent A sends the piggybacked

information to the physical layer.

Σc,A, Σo,A

stp(A*, ackBj) Agent A piggybacks ackBj onto

the data frame with any legal se-

quence number of the sender or

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

stp(dummy, ackBj) Agent A piggybacks ackBj onto

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

58

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

stp(Ai, ackB*) Agent A piggybacks ackB* onto

the data frame with sequence

number i of the sender. Then,

agent A sends the piggybacked

information to the physical layer.

Σc,A, Σo,A

stp(A*, ackB*) Agent A piggybacks ackB* onto

the data frame with any legal se-

quence number of the sender or

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

stp(dummy, ackB*) Agent A piggybacks ackB* onto

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

stp(Ai, !ackBj) Agent A piggybacks !ackBj onto

the data frame with sequence

number i of the sender. Then,

agent A sends the piggybacked

information to the physical layer.

Σc,A, Σo,A

59

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

stp(A*, !ackBj) Agent A piggybacks !ackBj onto

the data frame with any legal se-

quence number of the sender or

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

stp(dummy, !ackBj) Agent A piggybacks !ackBj onto

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

stp(Ai, NAK) Agent A piggybacks NAK onto

the data frame with sequence

number i of the sender. Then,

agent A sends the piggybacked

information to the physical layer.

Σc,A, Σo,A

stp(A*, NAK) Agent A piggybacks NAK onto

the data frame with any legal se-

quence number of the sender or

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

stp(dummy, NAK) Agent A piggybacks NAK onto

a dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

60

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

stp(Ai, dummy ack) Agent A piggybacks a dummy

acknowledgment onto the data

frame with sequence number i of

the sender. Then, agent A sends

the piggybacked information to

the physical layer.

Σc,A, Σo,A

stp(A*, dummy ack) Agent A piggybacks a dummy

acknowledgment onto the data

frame with any legal sequence

number of the sender or a

dummy value. Then, agent A

sends the piggybacked informa-

tion to the physical layer.

Σc,A, Σo,A

gfp(Bi, ackAj) Agent A gets the data sent

from agent B via the physical

layer. The data contains the

data frame with sequence num-

ber i of the sender of agent B and

ackAj.

Σc,A, Σo,A

gfp(B*, ackAj) Agent A gets the data sent from

agent B via the physical layer.

The data contains a data frame

with any legal sequence number

of the sender of agent B or a

dummy value, and ackAj.

Σc,A, Σo,A

61

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

gfp(dummy, ackAj) Agent A gets the data sent from

agent B via the physical layer.

The data contains a dummy

value and ackAj.

Σc,A, Σo,A

gfp(!Bi, ackAj) Agent A gets the data sent

from agent B via the physical

layer. The data contains !Bi and

ackAj.

Σc,A, Σo,A

gfp(Bi, ackA*) Agent A gets the data sent

from agent B via the physical

layer. The data contains the

data frame with sequence num-

ber i of the sender of agent B and

ackA*.

Σc,A, Σo,A

gfp(B*, ackA*) Agent A gets the data sent from

agent B via the physical layer.

The data contains a data frame

with any legal sequence number

of the sender of agent B or a

dummy value, and ackA*.

Σc,A, Σo,A

gfp(dummy, ackA*) Agent A gets the data sent from

agent B via the physical layer.

The data contains a dummy

value and ackA*.

Σc,A, Σo,A

62

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

gfp(!Bi, ackA*) Agent A gets the data sent

from agent B via the physical

layer. The data contains !Bi and

ackA*.

Σc,A, Σo,A

gfp(Bi, NAK) Agent A gets the data sent

from agent B via the physical

layer. The data contains the

data frame with sequence num-

ber i of the sender of agent B and

NAK.

Σc,A, Σo,A

gfp(dummy, NAK) Agent A gets the data sent from

agent B via the physical layer.

The data contains a dummy

value and NAK.

Σc,A, Σo,A

gfp(B*, NAK) Agent A gets the data sent from

agent B via the physical layer.

The data contains a data frame

with any legal sequence number

of the sender of agent B or a

dummy value, and NAK.

Σc,A, Σo,A

gfp(!Bi, NAK) Agent A gets the data sent from

agent B via the physical layer.

The data contains !Bi and NAK.

Σc,A, Σo,A

63

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

gfp(Bi, !ackAj) Agent A gets the data sent

from agent B via the physical

layer. The data contains the

data frame with sequence num-

ber i of the sender of agent B and

!ackAj.

Σc,A, Σo,A

gfp(B*, !ackAj) Agent A gets the data sent from

agent B via the physical layer.

The data contains a data frame

with any legal sequence number

of the sender of agent B or a

dummy value, and !ackAj.

Σc,A, Σo,A

gfp(dummy, !ackAj) Agent A gets the data sent from

agent B via the physical layer.

The data contains a dummy

value and !ackAj.

Σc,A, Σo,A

gfp(!Bi, !ackAj) Agent A gets the data sent

from agent B via the physical

layer. The data contains !Bi and

!ackAj.

Σc,A, Σo,A

gfp(!Bi, dummy ack) Agent A gets the data sent from

agent B via the physical layer.

The data contains !Bi and a

dummy acknowledgment.

Σc,A, Σo,A

64

Event Name Description Membership in Σc,A,

Σc,B, Σo,A, and Σo,B

gfp(Bi, dummy ack) Agent A gets the data sent

from agent B via the physical

layer. The data contains the

data frame with sequence num-

ber i of the sender of agent B,

and a dummy acknowledgment.

Σc,A, Σo,A

gfp(B*, dummy ack) Agent A gets the data sent from

agent B via the physical layer.

The data contains a data frame

with any legal sequence number

of the sender of agent B or a

dummy value, and a dummy ac-

knowledgment.

Σc,A, Σo,A

Protocol Model

The following is an explanation of how the SW1 protocol can be modelled. We

study the protocol SW1 modularly, and then address each module separately

in order to design its corresponding automaton. The following explanations are

provided to aid in the interpretation of the subsequent figures.

• The automaton in Figure 4.7(a) can be represented by the two structures

shown in Figures 4.7(b) and 4.7(c). That is, the cycle of transitions in

4.7(a) is replaced by a rectangular box in 4.7(c). The rectangular box is

the representation of the automaton in 4.7(b). In this way, an automaton

that would span several pages can be decomposed into smaller figures,

each of which fits on one page. We use this strategy to depict automaton

65

Figure 4.7: Decomposition of a finite-state machine into two smaller structures

66

A.SNDR-t which spans several pages.

• In the automata represented in Figures 4.8-4.40 some edges are labelled

by names which are not listed in Table 4.2. These labels are described in

Table 4.3 and stand for sets of events. In an automaton, an edge labelled

by a set of events should be interpreted as multiple edges, each of which

is labelled by an event from the set.

We make a slight abuse of notation and sometimes write X to stand for both

an automaton X and the language recognized by the automaton, Lm(X). So,

for example, when we write

Y = X ∩ V

for automata X and V, we mean that Y is an automaton that recognizes the

intersection of the language recognized by X and the language recognized by V.

67

Table 4.3: The meaning of some labels

Label Meaning

Sn-1 ΣA.SNDR\{imp-snd-wind-a-A}

Sn-2 ΣA.SNDR\{imp-snd-wind-a-A, imp-snd-wind-b-A,

gfp(B*, ackA0), gfp(B*, ackA1)}

Sn-3 ΣA.SNDR\{imp-snd-wind-a-A, imp-snd-wind-b-A,

gfp(B*, ackA0), gfp(B*, ackA1), time-out-p-A0}

Sn-4 ΣA.SNDR\{imp-snd-wind-a-A, imp-snd-wind-b-A,

gfp(B*, ackA0), gfp(B*, ackA1), time-out-p-A0,

time-out-p-A1}

Sn-5 ΣA.SNDR\{imp-snd-wind-b-A}

Sn-6 ΣA.SNDR\{imp-snd-wind-b-A, imp-snd-wind-c-A,

gfp(B*, ackA3), gfp(B*, ackA0)}

Sn-7 ΣA.SNDR\{imp-snd-wind-b-A, imp-snd-wind-c-A,

gfp(B*, ackA3), gfp(B*, ackA0), time-out-p-A3}

Sn-8 ΣA.SNDR\{imp-snd-wind-b-A, imp-snd-wind-c-A,

gfp(B*, ackA3), gfp(B*, ackA0), time-out-p-A3,

time-out-p-A0}

Sn-9 ΣA.SNDR\{imp-snd-wind-c-A}

Sn-10 ΣA.SNDR\{imp-snd-wind-c-A, imp-snd-wind-d-A,

gfp(B*, ackA2), gfp(B*, ackA3)}

Sn-11 ΣA.SNDR\{imp-snd-wind-c-A, imp-snd-wind-d-A,

gfp(B*, ackA2), gfp(B*, ackA3), time-out-p-A3}

Sn-12 ΣA.SNDR\{imp-snd-wind-c-A, imp-snd-wind-d-A,

gfp(B*, ackA2), gfp(B*, ackA3), time-out-p-A3,

time-out-p-A0}

Sn-13 ΣA.SNDR\{imp-snd-wind-d-A}

68

Label Meaning

Sn-14 ΣA.SNDR\{imp-snd-wind-d-A, imp-snd-wind-a-A,

gfp(B*, ackA1), gfp(B*, ackA2)}

Sn-15 ΣA.SNDR\{imp-snd-wind-d-A, imp-snd-wind-a-A,

gfp(B*, ackA1), gfp(B*, ackA2), time-out-p-A2}

Sn-16 ΣA.SNDR\{imp-snd-wind-d-A, imp-snd-wind-a-A,

gfp(B*, ackA1), gfp(B*, ackA2), time-out-p-A2,

time-out-p-A3}

piggy {gfp(!B0, ackA*), gfp(!B1, ackA*), gfp(!B2,ackA*),

gfp(!B3, ackA*), gfp(dummy, ackA*)}

Event-1(i), {stp(An, ackBm)}

i = (n+ 1)(m+ 1),

n = {0, 1, 2, 3},

and m = {0, 1, 2, 3}

Event-2(i), {gfp(An, ackBm), gfp(!An, ackBm), gfp(An, !ackBm),

i = (n+ 1)(m+ 1), gfp(!An, !ackBm), lose}

n = {0, 1, 2, 3},

and m = {0, 1, 2, 3}

Event-1(i), {stp(An, NAK)}

i = n+ 17,

n = {0, 1, 2, 3}

Event-2(i), {gfp(An, ackB*), gfp(!An, ackB*), lose}

i = n+ 17,

n = {0, 1, 2, 3}

Event-1(i), {stp(An, dummy ack)}

i = n+ 21,

n = {0, 1, 2, 3}

69

Label Meaning

Event-2(i), {gfp(An, dummy ack), gfp(!An, dummy ack), lose}

i = n+ 21,

n = {0, 1, 2, 3}

Event-1(i), {stp(dummy, ackBm)}

i = m+ 25,

m = {0, 1, 2, 3}

Event-2(i), {gfp(dummy, ackBm), gfp(dummy, !ackBm), lose}

i = m+ 25,

m = {0, 1, 2, 3}

Event-1(i), {stp(Bn, ackAm)}

i = (n+ 1)(m+ 1) +

28,

n = {0, 1, 2, 3},

and m = {0, 1, 2, 3}

Event-2(i), {gfp(Bn, ackAm), gfp(!Bn, ackAm), gfp(Bn, !ackAm),

i = (n+ 1)(m+ 1) +

28,

gfp(!Bn, !ackAm), lose}

n = {0, 1, 2, 3},

and m = {0, 1, 2, 3}

Event-1(i), {stp(Bn, NAK)}

i = n+ 45,

n = {0, 1, 2, 3}

Event-2(i), {gfp(Bn, NAK), gfp(!Bn, NAK), lose}

i = n+ 45,

n = {0, 1, 2, 3}

70

Label Meaning

Event-1(i), {stp(Bn, dummy ack)}

i = n+ 49,

n = {0, 1, 2, 3}

Event-2(i), {gfp(Bn, dummy ack), gfp(!Bn, dummy ack), lose}

i = n+ 49,

n = {0, 1, 2, 3}

Event-1(i), {stp(dummy, ackAm)}

i = m+ 53,

m = {0, 1, 2, 3}

Event-2(i), {gfp(dummy, ackAm), gfp(dummy, !ackAm), lose}

i = m+ 53,

m = {0, 1, 2, 3}

Le(1) Σ\{gfn-A0, gfn-A1, gfn-A2, gfn-A3}

Le(2) Σ\{stn-A0, stn-A1, stn-A2, stn-A3}

Le(3) Σ\{stn-B0, stn-B1, stn-B2, stn-B3}

Le(4) Σ\{gfn-B0, gfn-B1, gfn-B2, gfn-B3}

Le(5) Σ\{gfn-A0, stn-A0}

Le(6) Σ\{gfn-A1, stn-A1}

Le(7) Σ\{gfn-A2, stn-A2}

Le(8) Σ\{gfn-A3, stn-A3}

Le(9) Σ\{gfn-B0, stn-B0}

Le(10) Σ\{gfn-B1, stn-B1}

Le(11) Σ\{gfn-B2, stn-B2}

Le(12) Σ\{gfn-B3, stn-B3}

71

The automata are explained as follows.

• Automata L-0 to L-3, Figure 4.8

In the following, we explain L-0. The other blocks have a similar descrip-

tion. One of these scenarios occurs in L-0:

– The sender of agent A gets an acknowledgement for data frame A0.

– The sender of agent of A receives a damaged acknowledgement.

– The timer of data frame A0 elapses. In this case, the sender pig-

gybacks an acknowledgment onto data frame A0, sends A0 and the

acknowledgement to the physical layer, and starts the timer of data

frame A0.

• Automata M-0 to M-3, Figure 4.9

In the following, we explain M-0. The other blocks have a similar descrip-

tion. Either of these scenarios may occur in M-0:

– The sender of agent of A receives a damaged acknowledgement.

– The timer of data frame A0 elapses. In this case, the sender pig-

gybacks an acknowledgment onto data frame A0, sends A0 plus the

acknowledgement to the physical layer, and starts the timer of data

frame A0.

• Automata T-0 to T-3, Figure 4.10

Automata T-0 to T-3 are explained as follows. The timer of the receiver

of agent A elapses. Agent A piggybacks the acknowledgement, which is

ready to be sent, onto the last transmitted data frame. Agent A then

sends these to the physical layer.

72

• Automata A.SNDR-t, Figures 4.11 and 4.12

When the sender of agent A advances its window to a (state A in Fig-

ures 4.11 and 4.12), the following sequence of events happens. The sender

receives data frame A0 from the network layer, piggybacks an acknowl-

edgment onto it, and sends the data frame plus the acknowledgement to

the physical layer. Then, the timer corresponding to data frame A0 is

started. The same scenario happens for data frames A1 and A2. Then, if

the sender gets the acknowledgment for data frame 2 while the window is

a (between states A and B in Figure 4.11), the window is advanced to b

(state B). The sequence of events that may happen while the window is b

(between states B and C in Figure 4.11), while the window is c (between

states C and D in Figure 4.12), and while the window is d (between states

D and A in Figure 4.12) follow the same logic as that for window a. Note

that T-0 to T-3, L-0 to L-3, and M-0 to M-3 may occur as indicated in

the rectangles in Figures 4.11 and 4.12.

• Automata A.SNDR-a, A.SNDR-b, A.SNDR-c, and A.SNDR-d, Figures

4.13 and 4.14

Assume the window of the sender of agent A is advanced to a. Before

the sender of agent A advances the window to b, if agent A receives an

acknowledgment of data frame A0, the timer of data frame A0 does not

time out and the sender does not wait for another acknowledgment of data

frame A0 anymore. If agent A receives an acknowledgment of data frames

A1 or A2, the timer of data frames A0 or A1 does not time out and the

sender does not wait for the acknowledgment of data frames A0 or A1.

Automata A.SNDR-b in Figure 4.13 and A.SNDR-c and A.SNDR-d in

Figure 4.14 are similar to automaton A.SNDR-a.

73

• Automaton A.RCVR, Figures 4.15-4.26

Suppose the window at the receiver has advanced to a (state E in Figures

4.15-4.17, and 4.24-4.26). First, let us follow the sequence of events that

occur throughout the path on the right side between states E and F in

Figure 4.15. In this path, the receiver gets a packet containing data frame

B0, sends it to the network layer, starts the timer of the receiver, and

piggybacks the acknowledgment of B0 onto a data frame. Agent A sends

this packet to the physical layer. Then, the receiver gets two consecutive

data packets containing data frames B2 and B1. The receiver sends data

frames B1 and then B2 to the network layer, starts the timer of the receiver,

piggybacks the acknowledgment of B2 to a data frame, and agent A sends

the packet to the physical layer. Then, the window is advanced to b (state

F in Figures 4.15-4.17, and 4.18-4.20).

Now we consider the cycle of transitions in Figure 4.15 going from state

S to state T to state U and back to state S. This cycle represents the

following sequence of events: The receiver of agent A may get a new packet

containing data frame B0 or B3. Neither B0 nor B3 is the correct data

frame to be received in this state of the system. The receiver starts the

timer and then piggybacks NAK onto a data frame, which should be sent

from agent A to agent B. Agent A sends the packet containing NAK to

the physical layer. Using this strategy, the receiver of agent A discards the

wrong data frames and informs agent B of this.

The self-loop at state S in Figure 4.15 can be explained as follows. If the

sender of agent A is ready to send a data frame to the physical layer, while

the receiver is in state S, the receiver piggybacks a dummy acknowledge-

ment onto the data frame and agent A sends the packet containing the

dummy acknowledgement to the physical layer.

74

The other cycles of three transitions and self-loops in automaton A.RCVR

(Figures 4.15-4.26) have similar explanations to the aforementioned cycle

and self-loop that start at state S.

There are five other possible ways that the events associated with the

following actions can be interleaved when the window of the receiver is a:

the receiver gets B0, B1, and B2, sends them to the network layer, starts

the timer of the receiver, and sends the acknowledgments corresponding to

data frames B0, B1, or B2 to the physical layer, and finally advances the

window to b. The preceding actions may place in all possible permutations

of order. These six paths are shown in Figures 4.15-4.17. Similarly, Figures

4.18-4.20, 4.21-4.23, and 4.24-4.26 demonstrate the cases where the window

is between states F and G, G and H, and H and E, respectively.

• Automaton A.piggyback, Figures 4.27-4.29

This automaton is represented in five parts, each of which is a finite-

state machine (FSM). They all start from a common state P. In the first

FSM in Figure 4.27, it is shown that when agent A gets a packet of data

containing B0, the timer of the receiver is started, agent A piggybacks the

acknowledgment of B0 onto the last data frame received from the network

layer (which could be A0, A1, A2, or A3), and then sends the data package

to the physical layer. But if the timer of the receiver elapses before the

timer gets a data frame from the network layer, then agent A piggybacks

the acknowledgment of B0 to a dummy data frame and sends this package

to the physical layer. The second FSM in Figure 4.27 and the two FSMs

in Figure 4.28 capture the above scenario if we replace B0 by B1, B2, or

B3. Finally, the FSM presented in Figure 4.29 indicates that when a data

package containing a damaged or dummy data frame is received by agent

A, the sequences of events that occur are the same as in the aforementioned

75

cases, except that agent A piggybacks NAK to a data frame and sends this

data package to the physical layer.

• Automaton CHNL(i), Figure 4.30

In Figure 4.30, it is shown that after Event-1(i) its corresponding Event-2(i)

happens. For example, if Event-1(i) = {stp(An, dummy ack)}, then

Event-2(i) ∈ {gfp(An, dummy ack), gfp(!An, dummy ack), lose}. There

are 56 possible pais of (Event-1(i), Event-2(i)). In other words, Figure

4.30 captures automata CHNL(1), CHNL(2), ..., and CHNL(56).

• Automata Order-A-SND-a, Order-A-SND-b, Order-A-SND-c, and Order-

A-SND-d, Figures 4.31 and 4.32

Suppose the window of the sender of agent A is a. Automaton Order-A-

SND-a guarantees that the data frames received from the network layer by

the sender of agent A are A0, A1, and A2 in the order specified. Similarly,

automaton Order-A-SND-b in Figure 4.31 and automata Order-A-SND-c

and Order-A-SND-d in Figure 4.32 present the order of the reception of

the data frames from the network layer by the sender of agent A when the

window of the sender is b, c, or d.

• Automata Order-B-RCVR-a, Order-B-RCVR-b, Order-B-RCVR-c, and

Order-B-RCVR-d, Figures 4.33 and 4.34

Assume the window of the receiver of agent B is a. Automaton Order-B-

RCVR-a guarantees that the data frames being sent to the network layer

by the receiver of agent B are A0, A1, and A2, in this order. Similarly, au-

tomaton Order-B-RCVR-b in Figure 4.33 and automata Order-B-RCVR-c

and Order-B-RCVR-d in Figure 4.34 present the order of the transmission

of the data frames to the network layer by the receiver of agent B when

the window of the receiver is b, c, or d.

76

• Automata Order-A-RCVR-a, Order-A-RCVR-b, Order-A-RCVR-c, and

Order-A-RCVR-d, Figures 4.35 and 4.36

Automata Order-A-RCVR-a, Order-A-RCVR-b, Order-A-RCVR-c, and

Order-A-RCVR-d are the dual of automata Order-B-RCVR-a, Order-B-

RCVR-b, Order-B-RCVR-c, and Order-B-RCVR-d, respectively.

• Automata Order-B-SND-a, Order-B-SND-b, Order-B-SND-c, and Order-B-

SND-d, Figures 4.37 and 4.38

Automata Order-B-SND-a, Order-B-SND-b, Order-B-SND-c, and Order-B-

SND-d are the dual of automata Order-A-SND-a, Order-A-SND-b, Order-A-

SND-c, and Order-A-SND-d, respectively.

• Automata SND-A0, SND-A1, SND-A2, and SND-A3, Figure 4.39

These automata guarantee that any data frame received from the network

layer by agent A should be sent to the network layer by agent B.

• Automata SND-B0, SND-B1, SND-B2, and SND-B3, Figure 4.40

Automata SND-B0, SND-B1, SND-B2, and SND-B3 are the dual of au-

tomata SND-A0, SND-A1, SND-A2, and SND-A3, respectively.

We combine the modular automata to form two automata representing the

legal language and the plant. Let us start with automaton A.SNDR-t which is

shown in Figures 4.8-4.12. The automaton A.SNDR-t is designed to represent

the behavior of a part of the sender of agent A. This automaton shows when the

sender may get a frame from the network layer and may send it to the physical

layer and also how the sender advances its current window to a new window.

The automata A.SNDR-a, A.SNDR-b, A.SNDR-c, and A.SNDR-d are rep-

resented in Figure 4.13 and Figure 4.14. These four automata guarantee that in-

77

valid timeouts do not happen in agent A. Now, we construct automaton A.SNDR

as follows:

A.SNDR = A.SNDR-t ∩ A.SNDR-a ∩ A.SNDR-b ∩ A.SNDR-c ∩ A.SNDR-d

Given an automaton K, we define ΣK as the set of events contained in automaton

K. By this definition,

ΣA.SNDR = ΣA.SNDR−t ∪ ΣA.SNDR−to ∪ ΣA.SNDR−a ∪ ΣA.SNDR−b ∪ ΣA.SNDR−c ∪

ΣA.SNDR−d .

Using the set of events contained in automaton A.RCV R, that is, ΣA.RCVR,

we can define the following event set:

ΣSelf−A.SNDR = ΣA.RCVR − ΣA.SNDR

We add self-loops of the events of ΣSelf−A.SNDR to the states of the automaton

A.SNDR to construct a new automaton that we call A-SENDER. The automa-

ton A-SENDER represents the behavior of the sender of agent A.

Next, we model the receiver of agent A. Automaton A.RCVR shown in Fig-

ures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.24, 4.25, 4.26, is the representation of

the behavior of the receiver of agent A. This automaton illustrates under which

conditions the receiver may get a frame from the physical layer, send it to the

network layer, and send its corresponding acknowledgement to the other agent.

Also the automaton represents how the window of the receiver advances. We

define the set ΣSelf−A.RCVR = ΣA.SNDR−ΣA.RCVR. Then, we add self-loops of the

events in ΣSelf−A.RCVR to the states of the automaton A.RCVR to produce a new

automaton that we call automaton A-RECEIVER. This automaton represents

the behavior of the receiver of agent A.

So far, we have designed two automata which capture two modules of agent

A: the sender and the receiver. Any acknowledgment of the frame received from

agent B to agent A is piggybacked onto the frame being sent from agent A to

agent B. Automaton A.piggyback is shown in Figures 4.27, 4.28, and 4.29 and

78

guarantees the correct relation between the sender and the receiver of agent A.

We define the automaton A using the following combination:

A = A-SENDER ∩ A-RECEIVER ∩ A.piggyback.

Automaton A characterizes the sequences of events that may happen in agent

A. In the same way, we construct automaton B which represents the sequences

of events that may happen in agent B. Events in set ΣB are the dual of events

in set ΣA. Agent A and agent B communicate with each other over a channel.

Automata CHNL(i), where i = 1, 2, · · · , 56, are provided in Figure 4.30. Using

the shuffle-c operation, we construct the automaton

CHNL(1) ‖c CHNL(2) ‖c CHNL(3) ‖c . . . ‖c CHNL(56)

and convert it to an equivalent deterministic automaton, called CHNL. The

automaton CHNL represents the behavior of the channel. As a matter of fact,

the sequence aici is physically possible in a wireless channel, but this specification

of the channel cannot be represented by a regular expression. Therefore, we

cannot represent this using finite-state machines. Using Petri Nets concepts, we

would be able to model the actual channel.

Using automata A, B, and CHNL, we construct the plant as follows:

Plant = A ‖ B ‖ CHNL

Σ = ΣA ∪ ΣB ∪ ΣCHNL

Now, we determine the legal language: the aim of the protocol SW1 is to have

reliable data transmission between two agents over an unreliable channel and

data frames should be received by the network layer from an agent in the same

order as they were sent from the network layer to the other agent. We provide 24

automata, shown in Figures 4.31-4.40, that capture the protocol requirements.

We combine the automata as follows:

79

Legal-A-SND-a = SND-A0 ∩ SND-A1 ∩ SND-A2 ∩ Order-A-SND-a ∩

Order-B-RCVR-a

Legal-A-SND-b = SND-A3 ∩ SND-A0 ∩ SND-A1 ∩ Order-A-SND-b ∩

Order-B-RCVR-b

Legal-A-SND-c = SND-A2 ∩ SND-A3 ∩ SND-A0 ∩ Order-A-SND-c ∩

Order-B-RCVR-c

Legal-A-SND-d = SND-A1 ∩ SND-A2 ∩ SND-A3 ∩ Order-A-SND-d ∩

Order-B-RCVR-d

Legal-A-SND = (Legal-A-SND-a ∪ Legal-A-SND-b ∪ Legal-A-SND-c ∪

Legal-A-SND-d)∗.

Similarly, we find automaton Legal-B-SND. Then, we construct automaton Legal

using the following combination:

Legal = Legal-A-SND ‖ Legal-B-SND

The automaton representing the overall legal language, taking into account pos-

sible plant behavior, is

Legal-Language = Plant ∩ Legal.

80

Figure 4.8: Automata L-0, L-1, L-2, and L-3, which are applied in automaton

A.SNDR-t

81

Figure 4.9: Automata M-0, M-1, M-2, and M-3, which are applied in automaton

A.SNDR-t

82

Figure 4.10: Automata T-0, T-1, T-2, and T-3, which are applied in automaton

A.SNDR-t

83

Figure 4.11: Automaton A.SNDR-t, page 1 of 2

84

Figure 4.12: Automaton A.SNDR-t, page 2 of 2

85

Figure 4.13: Automata A.SNDR-a and A.SNDR-b

86

Figure 4.14: Automata A.SNDR-c and A.SNDR-d

87

Figure 4.15: Automaton A.RCVR, page 1 of 12

88

Figure 4.16: Automaton A.RCVR, page 2 of 12

89

Figure 4.17: Automaton A.RCVR, page 3 of 12

90

Figure 4.18: Automaton A.RCVR, page 4 of 12

91

Figure 4.19: Automaton A.RCVR, page 5 of 12

92

Figure 4.20: Automaton A.RCVR, page 6 of 12

93

Figure 4.21: Automaton A.RCVR, page 7 of 12

94

Figure 4.22: Automaton A.RCVR, page 8 of 12

95

Figure 4.23: Automaton A.RCVR, page 9 of 12

96

Figure 4.24: Automaton A.RCVR, page 10 of 12

97

Figure 4.25: Automaton A.RCVR, page 11 of 12

98

Figure 4.26: Automaton A.RCVR, page 12 of 12

99

Figure 4.27: Automaton A.piggyback, page 1 of 3

100

Figure 4.28: Automaton A.piggyback, page 2 of 3

101

Figure 4.29: Automaton A.piggyback, page 3 of 3

Figure 4.30: Automaton CHNL(i), i = 1, 2, ..., 56

102

Figure 4.31: Automata Order-A-SND-a and Order-A-SND-b

103

Figure 4.32: Automata Order-A-SND-c and Order-A-SND-d

104

Figure 4.33: Automata Order-B-RCVR-a and Order-B-RCVR-b

105

Figure 4.34: Automata Order-B-RCVR-c and Order-B-RCVR-d

106

Figure 4.35: Automata Order-A-RCVR-a and Order-A-RCVR-b

107

Figure 4.36: Automata Order-A-RCVR-c and Order-A-RCVR-d

108

Figure 4.37: Automata Order-B-SND-a and Order-B-SND-b

109

Figure 4.38: Automata Order-B-SND-c and Order-B-SND-d

110

Figure 4.39: Automata SND-A0, SND-A1, SND-A2, and SND-A3

111

Figure 4.40: Automata SND-B0, SND-B1, SND-B2, and SND-B3

Problematic Sequences

Referring to the event table, we can recognize whether an event is in Σc,A, Σc,B,

Σo,A, and/or Σo,B. Also, we have demonstrated how automata corresponding

to the plant and the legal language can be found. For the protocol SW1, we

can find two sequences of events, i.e., t and t′, and an event σ that violate

co-observability of the legal language with respect to the plant.

Event σ and the sequence t are given as follows:

σ = stn-A0

t = imp-snd-wind-a-A, gfn-A0, stp(A0, dummy ack), set-timer-p-A0, gfp(A0,

dummy), stn-A0, set-timer-n-B, imp-snd-wind-a-B, gfn-B0, stp(B0, ackA0), set-

timer-p-B0, gfp(B0, !ackA0), stn-B0, set-timer-n-A, gfn-A1, stp(A1, ackB0),

112

set-timer-p-A1, gfp(A1, ackB0), stn-A1, set-timer-n-B, gfn-B1, stp(B1, ackA1),

set-timer-p-B1, gfp(B1, ackA1), stn-B1, set-timer-n-A, gfn-A2, stp(A2, ackB1),

set-timer-p-A2, gfp(A2, ackB1), stn-A2, set-timer-n-B, gfn-B2, stp(B2, ackA2),

set-timer-p-B2, imp-RCVR-wind-b-B, gfp(B2, ackA2), stn-B2, set-timer-n-A,

time-out-n-A, stp(A2, ackB2), imp-RCVR-wind-b-A, imp-SND-b-A, gfp(A2,

ackB2), set-timer-n-B, imp-snd-wind-b-B, gfn-B3, stp(B3, NAK), set-timer-p-

B3, gfp(B3, NAK), stn-B3, set-timer-n-A, gfn-A3, stp(A3, ackB3), set-timer-

p-A3, time-out-p-A0, stp(A0, ackB2), gfp(A3, ackB3), stn-A3, set-timer-n-B,

gfp(A0, ackB2)

The sequence tσ leads to the failure of the protocol. This is illustrated as follows.

Suppose the window of the sender of agent A is advanced to a. The sender of

agent A gets A0 from the network layer, sends A0 to the physical layer, and

starts the timer of A0. Agent B receives A0 from the physical layer, sends A0

to the network layer, and sends the acknowledgment of A0 to the physical layer.

However, the acknowledgment of A0 is damaged in the channel and agent A gets

the damaged acknowledgment of A0. Agent A gets A1 and A2 from the network

layer consecutively, sends them to the physical layer, and starts the timer of A1

and A2. Agent B receives A1 and A2, sends them to the network layer, and

then sends an acknowledgment of A1 and A2 to the physical layer. Agent A

receives the acknowledgment of A1 and A2. Agent B advances the window of

its receiver to b. Agent A advances the window of its sender to b, gets A3 from

the network layer, sends it to the physical layer, and starts the timer of A3.

Agent B receives A3 and sends it to the network layer. The timer of A0 elapses

and agent A resends A0 to the physical layer. Agent B receives A0 from the

physical layer and sends A0 to the network layer, but the same data frame A0

has already been sent to the network layer. In fact, the receiver passes A0 to

the network layer because it has assumed that A0 is a new frame to be sent to

113

the network layer, which is not true. This is why the protocol fails.

On the other hand, had a correct data transmission between the two agents

happened instead, the following sequence t′ would have occurred:

t′ = imp-snd-wind-a-A, gfn-A0, stp(A0, dummy ack), set-timer-p-A0, gfp(A0,

dummy), stn-A0, set-timer-n-B, imp-snd-wind-a-B, gfn-B0, stp(B0, ackA0), set-

timer-p-B0, gfp(B0, !ackA0), stn-B0, set-timer-n-A, gfn-A1, stp(A1, ackB0),

set-timer-p-A1, gfp(A1, ackB0), stn-A1, set-timer-n-B, gfn-B1, stp(B1, ackA1),

set-timer-p-B1, gfp(B1, ackA1), stn-B1, set-timer-n-A, gfn-A2, stp(A2, ackB1),

set-timer-p-A2, gfp(A2, ackB1), stn-A2, set-timer-n-B, gfn-B2, stp(B2, ackA2),

set-timer-p-B2, imp-RCVR-wind-b-B, gfp(B2, ackA2), stn-B2, set-timer-n-A,

time-out-n-A, stp(A2, ackB2), imp-RCVR-wind-b-A, imp-snd-wind-b-A, gfp(A2,

ackB2), set-timer-n-B, imp-snd-wind-b-B, gfn-B3, stp(B3, NAK), set-timer-p-

B3, gfp(B3, NAK), stn-B3, set-timer-n-A, gfn-A3, stp(A3, ackB3), set-timer-

p-A3, gfn-A0, stp(A0, dummy ack), gfp(A3, ackB3), stn-A3, set-timer-n-B,

gfp(A0, dummy ack)

The scenario captured by the sequence t′σ is described as follows. Assume the

window of the sender of agent A is advanced to a. The sender of agent A gets

A0 from the network layer, sends A0 to the physical layer, and starts the timer

of A0. Agent B receives A0 from the physical layer, sends A0 to the network

layer, and sends the acknowledgment of A0 to the physical layer. Agent A re-

ceives acknowledgment of A0 from the physical layer. Then agent A gets A1

and A2 from the network layer consecutively, sends them to the physical layer,

and starts the timer of A1 and A2. Agent B receives A1 and A2, sends them

to the network layer, and then sends an acknowledgment of A1 and A2 to the

physical layer. Agent A receives the acknowledgment of A1 and A2. Agent B

advances the window of its receiver to b. Agent A advances the window of its

sender to b, gets A3 from the network layer, sends it to the physical layer, and

114

starts the timer of A3. Agent B receives A3 and sends it to the network layer.

Agent A gets new data A0 from the network layer and sends A0 to the physical

layer. Agent B receives A0 from the physical layer and sends it to the network

layer. The sequence t′σ would not have led to a protocol failure.

We observe that PB(t) = PB(t′), both t′, t ∈ Legal-language, t′σ ∈ Legal-lan-

guage, tσ /∈ Legal-language, and sequences tσ, t′σ ∈ Plant, where σ ∈ Σc,B\Σc,A.

Therefore, the pair (tσ, t′σ) violates co-observability of Legal-language with re-

spect to Plant. In other words, the sequence tσ is a problematic sequence of

the protocol, since it looks like the sequence t′σ, and t′σ is a successful run of

the protocol SW1.

4.2.2 SW2 Protocol

The SW2 protocol is a restriction of the SW1 protocol in the following sense:

• Agent A contains a sender and not a receiver.

• Agent B contains a receiver and not a sender.

Because of the previous two items, neither of the agents needs piggybacking

to send a data frame or acknowledgment to the other agent. Actually, the

existence of a dummy data frame or dummy acknowledgment is unnecessary,

but we consider them in the protocol SW2.

As with the protocol SW1, we can construct the automaton Plant and the

automaton Legal-language for the protocol SW2. We consider the sets Σc,A,

Σc,B, Σo,A, and Σo,B of this protocol and extract a pair of sequences of events,

namely (tσ, t′σ), that violate co-observability of Legal-language with respect to

Plant. Consider the following event σ and sequences t, t′:

σ = stn-A0

115

t = imp-snd-wind-a-A, gfn-A0, stp A0, set-timer-p-A0, gfp A0, stn-A0, stp

ackA0, gfp!ackA0, gfn-A1, stp A1, set-timer-p-A1, gfp A1, stn-A1, stp ackA1,

gfp !ackA1, gfn-A2, stp A2, set-timer-p-A2, gfp A2, stn-A2, stp ackA2, gfp

NAK, imp-RCVR-wind-b-B, time-out-p-A0, stp A0, set-timer-p-A0, gfp A0, stp

ack dummy, gfp ackA2, imp-snd-wind–b-A, gfn-A3, stp A3, set-timer-p-A3, gfp

A3, stn-A3

t′ = imp-snd-wind-a-A, gfn-A0, stp A0, set-timer-p-A0, gfp A0, stn-A0, stp

ackA0, gfp ackA0, gfn-A1, stp A1, set-timer-p-A1, gfp A1, stn-A1, stp ackA1,

gfp ackA1, gfn-A2, stp A2, set-timer-p-A2, gfp A2, stn-A2, stp ackA2, imp-

RCVR-wind-b-B, gfp ackA2, imp-snd-wind-b-A, gfn-A3, stp A3, set-timer-p-A3,

gfn-A0, stp A0, set-timer-p-A0, gfp A0, stp ack-dummy, gfp ackA3, gfp A3, stn-

A3

The pair (tσ, t′σ) cause failure of co-observability of Legal-laguage with re-

spect to Plant, because PA(t) = PA(t′), where sequences t′, t ∈ Legal-language,

t′σ ∈ Legal-language, tσ /∈ Legal-language, sequences tσ, t′σ ∈ Plant, and σ ∈

Σc,A\Σc,B. Therefore the sequence tσ is a problematic sequence of the protocol

SW2.

4.2.3 SW3 Protocol

The protocol SW3 mainly works like the protocol SW1, but differs in the fol-

lowing respects:

• The sequence numbers of the frames are in {0, 1}.

• The window size of the senders and the receivers is one.

The two automata representing the plant and the legal language of the pro-

tocol SW3 can be constructed in the same way as those for the protocol SW1.

We can find two sequences of events, tσ and t′σ, that violate co-observability,

as follows:

116

σ = stn-B1

t= gfn A0, stp(A0, ackB1), set-timer-p-A0, gfn B0, stp(B0, ackA1), set-

timer-p-B0, gfp(A0, ackB1), stn A0, gfp(B0, ackA1), stn B0, set-timer-n-B,

gfn B0, stp(B0, ackA0), set-timer-n-A, gfn A0, stp(A0, ackB0), set-timer-p-B0,

gfp(B0, ackA0), stn B0, gfp(A0, ackB0), stn A0, set-timer-n-B, gfn B1, stp(B1,

ackA0), set-timer-p-B1, gfp(B1, ack A0), stn B1, set-timer-n-A, gfn A1, stp(A1,

ackB0), set-timer-p-A1, time-out-p-B1, stp(B1, dummy ack), gfp(B1, ackA1)

t′ = gfn-A0, stp(A0, ackB1), set-timer-p-A0, gfn-B0, stp(B0, ackA1), set-

timer-p-B0, gfp(A0, ackB1), stn-A0, gfp(B0, ack A1), stn-B0, set-timer-n-B,

gfn-B0, stp(B0, ack A0), set-timer-n-A, gfn-A0, stp(A0, ackB0), set-timer-p-

B0, gfp(B0, ackA0), stn-B0, gfp(A0, ack B0), stn-A0, set-timer-n-B, gfn-B1,

stp(B1, ackA0), gfp(B1, ackA0), stn-B1, set-timer-n-A, gfn-A1, stp(A1, ackB0),

set-timer-p-A1, gfp(A1, ackB0), stn-A1, set-timer-n-B, gfn-B1, stp(B1, ackA1),

set-timer-p-B1, gfp(B1, ackA1)

The pair (tσ, t′σ) violates co-observability of Legal-laguage with respect to

Plant, because PA(t) = PA(t′), where sequences t′, t ∈ Legal-language, t′σ ∈

Legal-language, tσ /∈ Legal-language, sequences tσ, t′σ ∈ Plant, and σ ∈ Σc,A\Σc,B.

Therefore the sequence tσ is a problematic sequence of the protocol SW3.

4.3 Verification of Telecommunication Proto-

col Examples

Theoretically, the program implemented using the some-paths method can be

applied to verify the protocols mentioned in Section 4.2. However, since they are

large examples, they need either an unreasonably long time or a large amount

of memory due to the computational complexity of the program. Both time

and memory are limited resources and we cannot expect to be able to run the

117

program for inputs of any size with limited memory or during a reasonable time.

For instance, our available memory is insufficient for the protocol in [4].

Because our memory is less than 8 GB, there is not enough room to execute the

first step of the some-paths method, which is the construction of the automaton

M. A depth-first search algorithm is used in the implementation of the algorithm

introduced in [21] to construct automaton M. The program generates a long

chain of consecutive states while constructing the automaton M of the above

example. The number of consecutive states of the chain can be close to e3g,

where e = 616 and g = 412 are the number of states of the automaton E and

the automaton G, respectively. If we consider the length of the chain and the

amount of memory required to contain the information for each state of the

chain, the available memory is not sufficient to provide results for this example

using our program.

On the other hand, computing time, as opposed to memory, becomes the

limiting factor in the data transmission protocol of [24]. To model the data

transmission protocol of [24], we use the same automata SNDR and RCVR as

those in [24] and use the automaton in Figure 4.41 to represent the CHNL. In

this case, automaton E and G each contain 150 states. The program successfully

constructs the automaton M for the example. The automata E and G are

minimized, and then used to construct automaton M. Also, the automaton M

is trimmed. Thus, the number of its states is decreased as much as possible. In

the example, automaton M contains 54154 states. According to the second step

of the some-paths method, the program would need to find the corresponding

regular expression for the automaton M. The computational complexity of the

second step is O(m3), where m is the number of states of the automaton M. We

let the program run on a SUN ULTRA 1 machine for four days and terminated it

because it could keep running for several months, due to the size of the problem

118

and the computational complexity of the method.

Figure 4.41: Automaton CHNL of [24], where a ∈ {send0}, b ∈

{rcv0, lose, cksumerr}, c ∈ {send1}, d ∈ {rcv1, lose, cksumerr}, e ∈ {sendack},

and f ∈ {rcvack, lose, cksumerrack}.

119

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, we have studied an algorithm that checks whether a legal language

is co-observable with respect to a plant. We proved that the algorithm also

checks controllability of the legal language with respect to the plant.

Based on this algorithm, a method we have called the all-paths method

was developed to find all the sequences of events that violate controllability

or co-observability. Manipulations of the all-paths method introduces a second

method, the some-paths method, which finds some of the sequences of events

causing failure in co-observability or controllability. The some-paths method

consists of fewer steps and is easier to implement than the all-paths method.

The results obtained are a non-empty subset of the results of the all-paths

method, when controllability or co-observability is violated. The computational

complexity of the some-paths method is O(n12). This can be shown that the

computational complexity of the all-paths method is O(n12) too.

We implemented the some-paths method to determine whether, for a given

plant and a legal language, there were any sequences of events as a counter-

120

example to controllability or co-observability. Several small examples were ver-

ified using our computer program. Telecommunication protocols were also con-

sidered. These can be verified by checking controllability and co-observability of

their legal behavior with respect to all possible behaviors of the system. Some

data-link layer protocols, which are a class of telecommunication protocols, were

modelled by Discrete-Event Systems concepts and verified manually. The pro-

tocols modelled were very large and therefore, while using the implemented

program to verify the data link layer protocols is theoretically possible, it was

not practically feasible.

5.2 Future Work

Given a fixed desired language, the all-paths method can be applied to find

all tuples of sequences of events that violate co-observability or controllability

of the desired language with respect to the plant. It would be helpful if an

algorithm could be developed to use the results of the all-paths method to offer

some modifications to the plant to get a new plant so that the desired language

would be co-observable and controllable with respect to the new plant.

121

Bibliography

[1] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed.

Addison-Wesley Publishing Company, 1999.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.

Boston, Kluwer Academic, 1999.

[3] K. M. Chandy and J. Misra, Parallel Program Design: A Foundation.

Addison-Wesley Publishing Company, 1988.

[4] M. Chang, “Verification of Go-Back-N protocol’s modulus problem us-

ing discrete event system,” Term-paper of ELEC 843, Queen’s University,

Kingston, Canada, December 14, 2001.

[5] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory control

of discrete-event processes with partial observations,” IEEE Transactions

on Automatic Control, Volume 33, Number 3, pages 249-260, 1988.

[6] W. H. J. Feijen and A. J. M. Van Gasteren, On a Method of Multiprogram-

ming (Monographs in Computer Science). Springer Verlag, 1999.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley Publishing Com-

pany, 2nd edition, 2000.

122

[8] R. Kumar and M. Fabian, “On supervisory control of partial specification

arising in protocol conversion,” in Proceedings of 1997 Annual Allerton

Conference, Urbana, IL, pp. 543-552, September 1997.

[9] R. Kumar, S. Nelvagal, and S. I. Marcus, “A discrete event systems ap-

proach for protocol conversion,” Discrete Event Dynamical Systems: The-

ory and Applications, Volume 7, Number 3, pages 295-315, June 1997.

[10] S. Lafortune, Software UM-DES for Discrete Event Systems,

http://www.eecs.umich.edu/umdes, 1999.

[11] F. Lin and W. M. Wonham, “On observability of discrete event systems,”

Information Sciences, Volume 44, Number 3, pages 173-198, 1988.

[12] M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems.

Prentice Hall, 2nd Edition, 1999.

[13] A. Puri, S. Tripakis, and P. Varaiya, “Problems and examples of decentral-

ized observation and control for discrete event systems”, in Synthesis and

Control of Discrete Event Systems, Kluwer Academic Publishers, Edited

by B. Caillaud and P. Darondeau and L. Lavagno and X. Xie, pages 37-55,

2001.

[14] P. J. Ramadge and W. M. Wonham, “Supervision of discrete event pro-

cesses,” in Proceedings of the 21st IEEE Conference on Decision and Con-

trol, Volume 3, pages 1228-1229, December 1982.

[15] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of

discrete-event processes,” SIAM Journal of Control and Optimization, Vol-

ume 25, Number 1, pages 206-230, 1987.

[16] P. J. Ramadge and W. M. Wonham, “The control of discrete-event sys-

tems,” in Proceedings of the IEEE, Volume 77, pages 81-98, 1989.

123

[17] S. L. Ricker, Knowledge and Communication in Decentralized Discrete-

Event Control, PhD thesis, Queen’s University, Kingston, Ontario, Canada,

December 1999.

[18] K. Rudie, “Applications of discrete event system control theory to com-

munication protocols,” Internal Report, Bell-Northern Research, Toronto,

August 12 , 1988.

[19] K. Rudie and J. C. Willems, “The computational complexity of decen-

tralized discrete-event control problems,” Technical Report from the IMA

Preprint Series #1105, Institute for Mathematics and Its Applications, Uni-

versity of Minnesota, 1993.

[20] K. Rudie and J. C. Willems, “The computational complexity of decentral-

ized discrete-event control problems,” IEEE Transactions on Automatic

Control, Volume 40, Number 7, pages 1313-1319, 1995.

[21] K. Rudie and J. C. Willems, “Decentralized discrete-event systems and

computational complexity,” Discrete Event Systems, Manufacturing Sys-

tems, and Communication Networks. Edited by P. R. Kumar and P. P.

Varaiya, Volume 73 of the IMA Volumes in Mathematics and Its Applica-

tions Series, Springer-Verlag, pages 225-241, 1995.

[22] K. Rudie and W. M. Wonham, “Supervisory of communication processes,”

Protocol Specification, Testing and Verification, X. Edited by L. Logrippo

and R. L. Probert and H. Ural, Elsevier Science Publishers (North-Holland),

IFIP, 1990.

[23] K. Rudie and W. M. Wonham, “Think globally, act locally: decentralized

supervisory control,” IEEE Transactions on Automatic Control, Volume

37, Number 11, pages 1692-1708, November 1992.

124

[24] K. Rudie and W. M. Wonham, “Protocol Verification Using Discrete-Event

Systems,” in Proceedings 31st IEEE Conference on Decision and Control

(CDC) , Tucson, AZ, December 16-18, pages 3770-3777, 1992.

[25] M. Sipser, Introduction to the Theory of Computation. Brooks Cole Pub-

lishing Company, 1996.

[26] W. Stallings, Data and Computer Communications. New Jersey: Prentice

Hall, 6th Edition, 2000.

[27] A. S. Tanenbaum, Modern Operating Systems. New Jersey: Prentice Hall,

1992.

[28] A. S. Tanenbaum, Computer Networks. New Jersey: Prentice Hall, 4th

Edition, 2002.

[29] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and

Paradigms. New Jersey: Prentice-Hall, 1st edition, 2002.

[30] A. S. Tanenbaum and S. Woodhull, Operating Systems Design and Imple-

mentation. New Jersey: Prentice-Hall, 1986.

[31] W. M. Wonham, Software CTCT for Discrete Event Systems,

http://www.control.utoronto.ca/cgi-bin/dlctct.cgi, 2001.

[32] W. M. Wonham, Notes on Discrete Event Systems,

www.control.utotonto.ca, 2002.

[33] W. M. Wonham and P. J. Ramadge, “On the supremal controllable sub-

language of a given language,” SIAM Journal of Control and Optimization,

Volume 25, Number 3, pages 637-659, 1987.

125

[34] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of

discrete-event systems,” Mathematics of Control, Signals, and Systems,

Volume 1, pages 13-30, 1988.

126

Appendix A

Regular Expression

A regular language is the language accepted by a finite-state automaton. Regu-

lar expressions are a notation system used to denote regular languages. Regular

expressions describe languages composed of trivial basic components such as

characters using the operations of union, concatenation, and Kleene star (repe-

tition). They are represented using the following symbols:

+ for union,

· for concatenation, and

∗ for Kleene star (repetition).

Thus, regular expressions are defined by the following context-free grammar:

R −→ R +R|R ·R|R∗|(R)|ε|symbol

Some examples of regular expressions are as follows:

b · ε · (b∗) + (ε)∗ (A.1)

((a+ b)∗ · b∗)∗ (A.2)

b · (b∗) + ε (A.3)

127

An infinite number of regular expressions may correspond to the same regular

language. For instance, the regular expressions (A.1) and (A.3) are equivalent

and both denote the same regular language. However, expression (A.3) is shorter

than expression (A.1). The following collection of rules can be used to simplify

a regular expression:

R←− R · ε|ε ·R|R +R

RR1R2 ←− R(R1R2)

R1R2R←− (R1R2)R

ε←− ε · ε|ε+ ε|(ε)∗

where R, R1, and R2 are arbitrary regular expressions and ε is a regular expres-

sion with length zero.

The above context-free grammar, examples, and simplification rules intro-

duce in-order regular expressions. An in-order regular expression can be easily

converted to its equivalent post-order or pre-order format.

128

Vita

Arezou Mohammadi

Education

2001-2003: Master of Science in Electrical and Computer Engineering,

Queen’s University at Kingston, Canada

1991-1995: Bachelor of Science in Computer Engineering, Isfahan Uni-

versity of Technology, Isfahan, Iran, 1995

Experience

September 2001- 2003: Teaching Assistant, Electrical and Computer

Engineering Department, Queen’s University at Kingston, Ontario, Canada

April 1998 -August 2000: Member of the Board, Sazegan Arvin Sepa-

han Company, Isfahan, Iran

June 1995 - April 1998: Design Engineer, I.S.I.E. Company, Isfahan,

Iran

June 1995 - April 1998: January 1995 - June 1995: Software Engineer,

Underwater Research Center, Isfahan University of Technology, Isfahan,

Iran

January 1995 - August 2000: Part Time Instructor, High school for

Gifted Students and Daneshgahi College, Isfahan, Iran

129

