
Matrix�Based Algorithms and an Analysis of

System Structure for Partially�Observable

Discrete�Event Systems

by

Adrian Victor Payne

A thesis submitted to the

Department of Electrical and Computer Engineering

in partial ful�llment of the requirements for

the degree of Master of Applied Science

Queen�s University

Kingston� Ontario� Canada

August ����

Copyright c� Adrian Victor Payne� ����

Abstract

The complexity issues associated with the �nite state machine �FSM	 framework

for analyzing partially
observable discrete
event system �DES	 control problems are

reviewed� Methods that take advantage of system structure to provide better es

timates of the size of the state space of FSMs which recognize the projection of

partially
observable systems are presented� The computational advantages or disad

vantages of each method are discussed� The applicability and e�ectiveness of these

methods are illustrated using a number of simple� yet illustrative� examples� The ex

ample problems illustrate cases where our methods are both e�ective and ine�ective

in improving upon the standard complexity results�

The existing set of DES software tools is reviewed� and used to form a basis for

the development of a new more exible and intuitive DES environment which may

be used to design� analyze and solve DES problems� The design of this tool is such

that it can be implemented in a reasonably simple manner using common proven

computational tools� and graphical user interface �GUI	 building tools�

In conjunction with the development of a new DES software tool� matrix
based

data structures and DES operations are presented and developed for a selection of

common DES functions� This approach is designed to take advantage of high
level

matrix operations available in a number of commercial o�
the
shelf �COTS	 software

applications� and to take advantage of sparse
matrix data structures which allow

DES information to be stored and processed in an e�cient manner� Finally� the set

of matrix�based DES operations is designed so that it is straightforward to write

high
level scripts which perform more complex DES analysis tasks�

Acknowledgements

I would like extend a special thank you to my thesis supervisor Dr� Karen Rudie for

her guidance� encouragement� and friendship throughout the past two years� without

whom this work would not have been possible�

Great appreciation goes to the School of Graduate Studies at Queen�s University

for its �nancial support through the Queen�s Graduate Awards program� and to Dr�

K� Rudie for the �nancial support she provided through her NSERC operating grant�

I would like to thank the members of my examining committee� speci�cally Dr�

N� Manjikian� Dr� R� Dawes� Dr� S� Tavares� and Dr� E� W� Grandmaison for their

very helpful comments and suggestions� regarding the content of this thesis�

I would also like to thank my family� especially my mother� Matthew and Annette�

and friends such as Moira� Justin� Lucy� and Michelle who helped me maintain a

positive outlook on life� and who were a constant source of moral support�

I thank my fellow students in the DES group� particularly Laurie� Gino� and Kari�

for sharing some of their ideas with me and generally making the DES group an

interesting place to work and learn�

Finally I want to extend a special thank you to my good friend Wade who� through

endless movies� pool nights and Wellington outings� ensured that I kept a proper

balance in my life�

i

Contents

List of Tables � v

List of Figures � vi

�� Introduction �

��� Partial Observability and DES �

��� Tools for Computing and Displaying Discrete Event Systems � � � � � �

��� Research Contributions �

��� Thesis Outline �

�� A Review of DES and Automata Theory � � � � � � � � � � � � � � � �

��� Automata Theory �

����� Deterministic Finite
State Automata � � � � � � � � � � � � � � �

����� Nondeterministic Finite
State Automata � � � � � � � � � � � � �

����� Nondeterministic Automata with �
Transitions � � � � � � � � � �

����� Minimum
State DFA �

��� Discrete
Event Systems ��

����� DES Building Blocks ��

������� Trim ��

������� Meet ��

������� Synchronous Product � � � � � � � � � � � � � � � � � � ��

����� Supervisory Control with Partial Observation � � � � � � � � � ��

����� Diagnosability ��

ii

��� Computational Complexity ��

����� Complexity Classes� Background � � � � � � � � � � � � � � � � ��

����� Working with NP
Complete Problems � � � � � � � � � � � � � � ��

����� Complexity Theory and DES � � � � � � � � � � � � � � � � � � ��

�� Structure�Based DES Analysis ��

��� Structures� Upper Limits on State
Space Explosion � � � � � � � � � � ��

����� The Signi�cance of Automata with �
Transitions � � � � � � � � ��

������� The Single �
Transition � � � � � � � � � � � � � � � � ��

������� Double �
Transition Geometries � � � � � � � � � � � � ��

����� Tree Structures ��

����� �
Reachability ��

������� ��
Reachability ��

������� Multiple �
Reachability � � � � � � � � � � � � � � � � ��

����� Related Work ��

��� Structures� Lower Limits on State
Space Explosion � � � � � � � � � � ��

����� Cyclic Structures ��

����� Acyclic Structures ��

�� Software Implementation � 	�

��� A Review of Current DES Software Tools � � � � � � � � � � � � � � � � ��

����� TCT and Object TCT ��

����� StateTime ��

��� A New Approach for DES Software Tools � � � � � � � � � � � � � � � � ��

����� Functional Requirements ��

������� High
Level Scripting and Batch Processing � � � � � � ��

������� Extendibility ��

������� Capability to Handle Large DES Problems � � � � � � ��

iii

����� Visual Requirements ��

������� The Visual Plant ��

������� FSM Interactions ��

��� A Matrix
Based Implementation of DES Operations � � � � � � � � � � ��

����� The File Format ��

����� Basic Matrix Operations ��

����� The TRIM Operation ��

����� The MEET Operation ��

����� The SYNC Operation ��

����� The PROJ Operation ��

����� The MINI Operation ��

	� Examples �
�

��� The Two
Train Problem ��

����� �
Reachability Analysis Results � � � � � � � � � � � � � � � � � ��

��� An HVAC System ��

����� �
Reachability Analysis Results � � � � � � � � � � � � � � � � � ��

��� The Tsitsiklis Problem ���

����� �
Reachability Analysis Results � � � � � � � � � � � � � � � � � ���

��� A ��
state Cycle Problem ���

����� �
Reachability Analysis Results � � � � � � � � � � � � � � � � � ���

�� Conclusions and Discussion ���

iv

List of Tables

��� An example of computational complexity � � � � � � � � � � � � � � � ��

��� �
reachability results for the two
train problem � � � � � � � � � � � � ��

��� �
reachability results for the HVAC system � � � � � � � � � � � � � � � ��

��� �
reachability results for the Tsitsiklis problem � � � � � � � � � � � � ���

��� �
reachability results for the cyclic example � � � � � � � � � � � � � � ���

v

List of Figures

��� A Simple Deterministic Finite
State Automaton � � � � � � � � � � � � �

��� A simple nondeterministic �nite
state automaton � � � � � � � � � � � �

��� A simple NFA with an �
transition �

��� A simple plant ��

��� A plant�supervisor system ��

��� Plants G� and G� ��

��� The meet of G� and G� ��

��� The synchronous product of G� and G� � � � � � � � � � � � � � � � � ��

��� A plant�supervisor system with partial observation � � � � � � � � � � ��

���� A system�diagnoser pair ��

���� Complexity classes �assuming P �� NP and NP �� co
NP 	 � � � � � � ��

���� An example of the hierarchical breakdown of an NP
complete problem ��

��� Unobservable event transitions ��

��� Tree structure example ��

��� �
reachability example ��

��� The cyclic NFA An ��

��� A DFA A�
n with � � �uo ��

��� A modi�ed DFA with � � �uo ��

��� A �n � n� construction for n ��

��� The TCT main menu ��

��� The TCT FSM output ��

��� Two example FSMs ��

��� The TRIM of FSM G� ��

vi

��� The MEET of FSMs G� and G� ��

��� The example FSMs with self
loops ��

��� The SYNC of FSMs G� and G� ��

��� The PROJ of FSM G� ��

��� A block diagram of the two
train problem � � � � � � � � � � � � � � � ��

��� The component models for the two
train problem � � � � � � � � � � � ��

��� A block diagram of the HVAC system � � � � � � � � � � � � � � � � � ��

��� The component models for the HVAC system � � � � � � � � � � � � � ��

��� Matrix structure for the unobservable events � � � � � � � � � � � � � ��

��� Matrix structure for the ��
reachability matrix � � � � � � � � � � � � ��

��� Matrix structure for the ��
reachability matrix � � � � � � � � � � � � ���

��� The adjacency matrix for the FON event � � � � � � � � � � � � � � � ���

��� Matrix structure for the ��
reachability matrix � � � � � � � � � � � � ���

���� The adjacency matrix for the ��� event � � � � � � � � � � � � � � � � ���

���� A cyclic FSM with �� states ���

���� The adjacency matrix for the � event � � � � � � � � � � � � � � � � � ���

���� Reachable state
sets via all �
length strings � � � � � � � � � � � � � � ���

vii

Chapter �

Introduction

The Discrete
Event System �DES	 framework can be used to model an increasing

number of engineering problems arising in industry today� Applications including

exible manufacturing systems �LMMB���� communications protocols �RW��a�� fail

ure diagnosis systems �SSL����� �SSL����� task scheduling� and database management

�Laf��� illustrate why a system that focuses on the discrete nature of these applica

tions is in increasing demand� While a body of research pioneered by �RW��� and

discussed in �RW���� �CLO���� �Thi��� has provided a basis for this type of system

modeling and control� a number of issues remain that prevent the broad acceptance

of this research in industry applications�

One of the key issues in the �eld of DES is the problem of state
space explosion�

which occurs when modeling large �typical	 systems� A number of methods have

been developed that attempt to address the problem of computational complexity in

large and�or partially
observable systems �BH���� �CLL���� �HL���� �LW���� �LW����

�OW���� In general� state
space explosion may occur while modeling the problem

or while devising a suitable controller� In various instances� the number of states

of the system that a controller must keep track of becomes intractable� making the

control problem di�cult to solve in a reasonable amount of time� or using a reasonable

amount of computer resources�

Our work represents an attempt to understand the reasons for state
space explo

sion� notably in the worst case scenario where a controlling agent is only aware of

a subset of the events occurring within a system�and thus must keep track of all

possible states of the system� We examine the structure of the modeled system� and

present reasons why� when developing the model� state
space explosion occurs or does

�

not occur� We then take advantage of this knowledge to devise a series of tests that

are performed while modeling the system to estimate the extent of the state
space

explosion� The results of these tests identify how the system model can be modi�ed

to minimize the problem� This would correspond to recommending that additional

sensors be installed in the system� or that various events be prevented from occurring

or eliminated entirely from the system� In devising these tests� it is necessary to take

care not to introduce computationally expensive procedures into our test algorithms�

thereby possibly invalidating the usefulness of the test�

Computational complexity issues are generally associated with the development

of e�cient algorithms that can then be implemented as software tools� Therefore� as

part of this thesis� we develop matrix
based data structures and algorithms which can

be used to model and analyze DES problems� By coupling complexity analysis with

these data structures and algorithms� we provide an e�cient and exible environment

for building and analyzing partially
observable discrete
event systems�

��� Partial Observability and DES

The work contained in this thesis focuses speci�cally on cases where only a sub

set of the events in a modeled system are observed by controlling agents �LW����

�CDFV���� �Tsi���� �RW���� �RW��b�� �RW���� Since in cases such as these� the con

trolling agent needs to keep track of all the possible states the system may be in at

any one time� the resulting supervisor may need to store control information for all

possible combinations of states of the system� This results in a supervisor which could

require up to �n amount of time to generate� and which could take up to �n amount

of storage space� where n is a measure of the size of the partially
observable system�

The exponential growth of the supervising agent is computationally intractable when

working with problems where n is large�

Partially
observable systems are common to DES problems� speci�cally in the

areas of decentralized control and fault diagnosis� The structures created when solving

these types of problems can exhibit the exponential growth described above� It has

�

been noted �SSL����� �SSL����� �OW��� that this type of exponential growth is seldom

observed�

��� Tools for Computing and Displaying Discrete Event Sys�

tems

Throughout the process of creating and analyzing example problems� we noted

that existing DES software tools were of limited use in a number of areas� In general�

there existed no simple method for processing large numbers of problems no method

for writing high level scripts for solving speci�c types of DES problems that require the

use of a number of di�erent basic DES operations no method for easily expanding the

functionality of existing tools by adding new DES functions as required and �nally

no method for displaying plants or controllers ��nite
state machines	 in a simple and

understandable format�

In this thesis� we provide some background on a number of existing DES tools for

reference� and then proceed to propose a DES software design based on prototype

software that we believe satis�es a number of our requirements� We also develop in

detail some matrix implementations of a subset of DES operations�speci�cally those

which relate to modeling partially
observable systems�

��� Research Contributions

The following list summarizes the research contributions of the material presented

in this thesis�

� Matrix
Based Tools� Matrix
based data structures� together with a set of matrix

based implementations of existing DES operations have been provided� These

data structures and operations have been implemented using MATLAB �Mat���

software�

�

� Front
End Graphical User Interface �GUI	 Requirements� A set of requirements

has been developed and a prototype GUI has been implemented using Tcl�Tk

�Ous��� software�

� Complexity Analysis for Partially
Observable DES Problems� A set of DES

structural properties that tighten the complexitybounds for solutions to partially

observable problems has been identi�ed�

��� Thesis Outline

� Chapter � provides a brief review of the areas of research which form the basis

for the results presented in this thesis� The Discrete
Event Systems �DES	

framework �rst introduced in �RW��� is presented� followed by some selected

background topics in the �elds of Computational Complexity� Automata Theory

and Graph Theory�

� Chapter � describes the speci�c problem of state
space explosion when consid

ering partially
observable DESs� and presents methods of analysis which take

advantage of the structure of the system to make worst
case estimates about the

resulting state
space explosion� A detailed analysis of the sensitivity of DESs

to various structural properties is presented� Finally� methods for identifying

and modifying problem structures within a system to minimize the resulting

state
space explosion are presented�

� Chapter � provides a review of existing DES software tools� proposes some high�

level architectural requirements for a new set of tools� and presents algorithms

used to implement the structure
based analysis presented in Chapter �� includ

ing a DES MATLAB toolbox with speci�c procedures for testing and analyzing

partially
observable systems�

� Chapter � illustrates how typical DES problems may be analyzed and� in some

cases� modi�ed for control based on partial observation using the tools presented

in this thesis�

�

� Chapter � provides conclusions about the work presented in this thesis�

�

Chapter �

A Review of DES and Automata Theory

��� Automata Theory

In general� the work done in DES does not require that the system be modeled

using any single methodology� Typically� however� much of the work done in the

�eld to date borrows models from the body of work in computer science on automata

theory�

����� Deterministic Finite�State Automata

A Deterministic Finite�State Automaton �DFA	 is formally denoted by the �
tuple

�Q��� �� qo� Qm	� where Q is a �nite set of states� � is a �nite input alphabet� � is

a partial transition function mapping Q � � to Q� qo is an initial state� and Qm is

a set of terminal states� In DES theory� terminal states are often called marked or

marker states� Figure ��� shows a simple example of a DFA� where an initial state

is indicated by a left
pointing arrow ��	 in the state box� and marked states are

indicated by right
pointing arrows ��	 in the state box� If the initial state is also a

marked state� then a double
headed arrow ��	 is used in place of the left
pointing

arrow�

�All the Finite�State Machines �FSMs� with labeled states are generated using the prototype

DES software toolkit presented in this thesis�

�

DFA

Idle

Not_Idle

Start

Stop Repair

Figure ���� A Simple Deterministic Finite
State Automaton

����� Nondeterministic Finite�State Automata

A Nondeterministic Finite�State Automaton �NFA	 is formally denoted by the

�
tuple �Q��� �� qo� Qm	� where Q� �� qo� and Qm have the same meaning as for a

DFA� and where � maps Q � � to �Q� Whereas the transition function in a DFA

maps Q � � to single elements in Q �e�g�� ��q�� �	 � q�	� the transition function for

an NFA maps Q � � to subsets of Q �e�g�� ��q�� �	 � fq�� q�� q�g	� It follows that a

DFA is a special case of an NFA� where � maps Q�� to single
element subsets of Q�

Figure ��� shows a simple example of an NFA� Note that the transition ��Idle�Start	 �

fWorking�Brokeng is the source of the nondeterminism in the automaton�

����� Nondeterministic Automata with ��Transitions

Nondeterministic Automata with ��transitions �NFA�	 are automata de�ned in

the same manner as NFAs� with the additional property that the automaton may

make a transition on the empty input �� Refer to Figure ��� for an example of a

simple nondeterministic automaton with �
transitions�

�

NFA

Idle

Broken

Working

Start
Start

Stop

Repair

Figure ���� A simple nondeterministic �nite
state automaton

NFAe

Idle

Working

Broken

Start

Stop
repair

ε

Figure ���� A simple NFA with an �
transition

�

����� Minimum�State DFA

Theorem ��� �HU��� �see below	 together with Algorithm ��� �also from �HU���	

provide a polynomial
time method for constructing an output DFA which is a minimum

state recognizer for the language recognized by an input DFA� It should be noted that

no such algorithm exists for NFAs� Indeed� it can be proven �JR��� that the deci

sion problem associated with the conversion of a DFA to a minimum
state NFA is

PSPACE
complete ��

Theorem ��� HU�
� The DFA constructed using Algorithm ���� with inaccessible

states removed �trim�� is the minimum state DFA for its language�

Algorithm ��� � Minimum�State DFA Construction

�� for qm � Qm and q � Q	Qm do flag�qm� q	�

�� for each unordered pair of states �qi� qj	� i �� j

define an empty list L�qi�qj�

end

	� for each pair of distinct states �qi� qj	

in Qm �Qm or �Q	Qm	� �Q	Qm	 do

if for some input symbol �� ���qi� �	� ��qj� �		 is flagged then

RecursiveFlag�qi� qj	 �Algorithm ����

else

for all input symbols � do

if ��qi� �	 �� ��qj� �	

put �qi� qj	 on L���qi������qj����

end

end

end

end

�Section ����� provides some discussion on PSPACE�complete problems

�

Algorithm ��� � The RecursiveFlag Function

�� input unordered pair �qi� qj	

��
ag �qi� qj	

	� for each unordered pair �qm� qn	 in the list L�qi�qj�

if the unordered pair �qm� qn	 is not
agged then

RecursiveFlag�qm� qn	

end

end

��� Discrete�Event Systems

A Discrete
Event System model can be thought of as a representation of a real

system which exhibits asynchronous� event
driven behaviour� Typically such a system

can be described using a state
transition structure� Abstractly� this model can be

represented by a �ve
tuple deterministic automaton �DFA	

G � �Q��� �� qo� Qm	

where Q is a set of states�

� is a set of event labels�

� � Q� � � Q� is a partial function de�ned for some states q � Q��

and for some events � � �� such that ���� q	 � q� where q� � Q�

qo is the initial state�

and Qm
 Q is the set of marked states�

Let �� denote the set of all strings over � � f�g� We extend the de�nition of � in

the usual manner� as follows�

�� � Q� �� � Q� where

��

���q� �	 � q for q � Q�

���q� �	 � ��q� �	 for q � Q�� � ��

���q� s�	 � �����q� s	� �	 for q � Q�� � �� s � ���

For simplicity� we use � to represent both � and ��� recognizing that when � operates

on a state and string �of length greater than �	� then we are implicitly using ���

Given �� and � as de�ned above� the languages generated by G and marked by

G �denoted by L�G	 and Lm�G	� respectively	 are

L�G	 �� fs � �� j ��qo� s	 is de�ned g�

Lm�G	 �� fs � �� j ��qo� s	 � Qmg�

An example of a typical �nite
state plant is shown in Figure ���� For this example�

the event set is � � fstart job� �nish job� repair� break downg� the labels for the

state set Q are fIdle� Working� Brokeng� the initial state is qo � Idle and the marked

state set is Qm � fIdleg� The partial transition function is de�ned for this example

as

��Idle�start job	 � Working�

��Working��nish job	 � Idle�

��Working�break
down	 � Broken�

��Broken�repair	 � Idle�

The event set of a plant G can be partitioned for the purposes of supervisor design

into two disjoint subsets� the �rst set �c composed of all �controllable� events� and

the second set �uc composed of all �uncontrollable� events� Note that � � �c ��uc�

Controllable events are those events which a supervising agent �S in Figure ���	 may

enable or disable in accordance with some control strategy� Uncontrollable events

are considered to always be enabled� Enabled events are those events which may

occur in the plant� whereas disabled events are those events which are prevented from

occurring�

��

plant

Idle

Broken

Working

start_job

finish_job

break−down

repair

Figure ���� A simple plant

Figure ��	� A plant�supervisor system

A �nonempty	 plant G may be �controlled� by a supervising agent S� where the

supervising agent sends control commands to G which serve to enable or disable events

based upon the observed sequences of events occurring in the plant �Figure ���	� These

actions by the supervising agent limit the general behaviour of G to some speci�ed

legal or desired behaviour in a closed
loop system S�G� This is equivalent to saying

that S restricts the language L�G	 to some legal sublanguage L�S�G	�

Now� suppose that the legal behaviour is represented by the language K
 ���

Before a supervisor may be constructed� it is necessary to determine if it is possible

to restrict L�G	 to K� The language K is said to be controllable with respect to G if

��

and only if

K�uc � L�G	
 K

where K represents the pre�x
closure of K �i�e�� the language composed of all pre�xes

of K	� and the notation K�uc stands for the set fk� j k � K�� � �ucg� Thus�

controllability states that given any pre�x of K� there is no uncontrollable event

which when appended to the pre�x of K� generates a string which is contained in

L�G	� but which is not contained in K�

We now de�ne the supervising agent model as the pair S � �T��	� The supervisor

S is represented by an automaton

T � �X��� 	� qo�Xm	�

and a control mapping � � � � X � fenable�disableg� The automaton T accepts

as input the sequences of symbols in � generated by G� and then generates control

commands based on the control mapping �� which enables or disables controllable

events in G�

����� DES Building Blocks

The following sections review a set of operations which are used to construct and

manipulate DES models �Won���� The DES plants shown in Figure ��� will be used

in examples of how the meet and synchronous product operations work�

������� Trim

A trim automaton is de�ned to be an automaton with all states being �reachable�

and �coreachable�� For a state q to be reachable� there must exist a path �possibly of

length zero	 from the initial state qo to the state q� For a state q to be coreachable�

there must exist a path �possibly of length zero	 from q to a marked state qm � Qm�

��

G1

1

2

α,γ β

G2

1

2

α δ,γ

Figure ���� Plants G� and G�

������� Meet

The meet of n languages L�� L�� � � � � Ln is de�ned to be

Lmeet � L� � L� � � � � � Ln�

This de�nition can be used to construct a generator Gmeet which generates the lan

guage Lmeet based on generators Gi � �Qi��i� �i� qoi� Qmi
	 for i � � to n�

Qmeet � f�q�� q�� � � � � qn	 j qi � Qi� i � �� � � � � ng�

�meet �
Tn
i�� �i�

�meet � f��q�� q�� � � � � qn	� �� �p�� p�� � � � � pn		 j

pi� qi � Qi� i � �� � � � � n
Vn
i�� �i�qi� �	 � pig�

qomeet � f�qo�� qo�� � � � � qon	g�

Qmmeet � f�qm�
� qm�

� � � � � qmn	 j qmi
� Qmi

� i � �� � � � � ng�

����	

Thus� the automaton Gmeet generates �resp�� recognizes	 only those strings which can

be generated �resp�� recognized	 by all the Gi automata� In many applications� it is

desirable that Gmeet be a trim automaton� In this case� Gmeet only recognizes those

strings which are recognized by all the Gi automata� No similar claim can be made

for generated strings�

��

MEET

1,1

2,2

α

Figure ���� The meet of G� and G�

An example of the meet of the plants G� and G� in Figure ��� is shown in Fig

ure ���� Note that for this example� in plant G�� � and
 are distinct events which

take the system from state � to state �� For simplicity� we only show one arrow for

these two transitions� A similar simpli�cation is made in the plant G��

������� Synchronous Product

Whereas the meet of a group of languages captures only those strings which are

contained in all the languages� the synchronous product contains all possible interleav

ings of strings in the group of languages� A generator Gsync can be constructed which

generates the language Lsync based on the generators Gi � �Qi��i� �i� qoi� Qmi
	 for i �

� to n as follows�

Qsync � f�q�� q�� � � � � qn	 j qi � Qi� i � �� � � � � ng�

�sync �
Sn
i�� �i�

�sync � f��q�� q�� � � � � qn	� �� �p�� p�� � � � � pn		 j

pi � �i�qi� �	 if � � �i�

pi � qi if � �� �ig�

qosync � f�qo�� qo�� � � � � qon	g�

Qmsync � f�qm�
� qm�

� � � � � qmn	 j qmi
� Qmi

g�

����	

��

SYNC

1,1

2,1

2,2

1,2

α

δ

γ

β

Figure ���� The synchronous product of G� and G�

As with meet� in general� it is desirable to express the result of the synchronous

product operation as a trim automaton�

An example of the synchronous product of the plants G� and G� in Figure ��� is

shown in Figure ����

����� Supervisory Control with Partial Observation

In many applications� full knowledge about all the events occurring in a plant G

is not available to the supervising agent S� In these cases� it is useful to partition

the event set into two disjoint subsets� �o representing the set of observable events�

and �uo representing the set of unobservable events� Note that � � �o � �uo� and

also that there is no particular relationship between �o and the set of controllable

events �c� Practically� such a system would correspond to a plant where there exists

an array of sensors that are capable of detecting a subset of all the possible events

that may occur� In such cases� it may not be economically or practically feasible

��

Figure ��
� A plant�supervisor system with partial observation

to install enough sensors to monitor all plant events� Figure ��� illustrates such a

system� where a subset of the events occurring in the plant are passed �via sensors	

to the supervising agent�

Informally� if a plant is modeled using a �nite state machine �FSM	 G� containing

states q�� q� � Q� and ��q�� �uo	 � q�� where �uo is an unobservable event� then any

supervising agent upon seeing the plant enter state q� must provide for the possibility

that the plant could be in either state q� or state q�� since it is impossible to detect the

occurrence of the unobservable event �uo� Thus� it is useful to construct a modi�ed

model of the plant G� which erases all occurrences of unobservable events� and which

contains states �in the modi�ed model	 which correspond to subsets of states in G

which are indistinguishable to the supervisor S�

Formally� the process of removing events from strings contained in a language is

called natural projection

P � �� � ��
o

��

and can be recursively de�ned on strings as

P ��	 � ��

P ��	 �

���
��
� if � � �o

� otherwise
�

P �s�	 � P �s	P ��	 for s � ��� � � ��

����	

Since in many cases� problems in DES are described in terms of FSMs which

generate languages� it is useful to apply the concept of projection directly to FSMs�

To do this� �rst it should be observed that all partially
observable FSMs used in

DES applications can be thought of as nondeterministic �nite state automata with

�
transitions� where the �
transitions represent transitions in FSMs that cannot be

observed�

In �HU��� induction on the length of strings is used to prove the following two

theorems�

Theorem ��� HU�
� If L is accepted by a nondeterministic �nite automaton �NFA�

with ��transitions� then L is accepted by an NFA without ��transitions�

Theorem ��� HU�
� Let L be a set accepted by an NFA� Then there exists a de�

terministic �nite automaton �DFA� that accepts L�

Using these two theorems in combination� it is possible to convert an NFA with �

transitions to a DFA �without �
transitions	� By labeling all unobservable events in

the plant DFA as �
transitions� thereby creating an NFA with �
transitions� we can

then convert the resulting NFA with �
transitions to a DFA without �
transitions�

Thus� we have �erased� the occurrence of unobservable events� A construction method

based on the proofs given in �HU��� is provided below� Let G � �Q��� �� qo� Qm	 be

a DFA with � !��uo where !� stands for disjoint union� For a state q � Q� de�ne

�
CLOSURE�q	 � fr j �s � ��	��q� s	 � r and P �s	 � �g�

and

��q� �	 � fr j ��q� s	 � r� where p�s	 � �g�

��

Construct NFA G� � �Q��o� �
�� qo� Q

�
m	� The marked state set Q�

m and �� are

constructed as follows�

Q�
m �

���
��
Qm � fqog if �	 CLOSURE�qo	 contains a state of Qm

Qm otherwise

and ���q� �	 � ��q� �	 for q � Q and � � �o� Note that the size of the state space for

G� remains the same�

The second part of the construction requires that the NFA be converted to an

equivalent DFA� The construction is� Let G� � �Q��o� �
�� qo� Q

�
m	 be the above NFA�

Construct Gp � �Qp��o� �p� qop� Qmp	 where�

Qp � �Q �the power set of Q	�

qop � qo�

Qmp � fqp � Qp j q where q is contained in the label of qp and q � Qmg�

Thus� single states qp � Qp use some subset of states q � Q as labels� For example�

the label of some qp � Qp could be fq�� q�� � � � � qkg� Now de�ne�

���fq�� q�� � � � � qkg� �	 � �ki����qi� �	�

As it is rarely the case that all �Q states are reachable in Gp� the construction can be

made more e�cient �Rud��� using an iterative approach as follows�

� Flag the initial state qop as a �new��

� For each �new� state� remove the �new� ag from the state� and construct all

states reachable from that state via some � � �o� If these states do not already

exist� ag them as �new� states�

� Repeat the second step until no states with a �new� ag remain�

In this way� only those states which are reachable from the initial state are gener

ated� Note however� that it can be shown by example that the resulting DFA is not

necessarily a minimum
state DFA� To obtain a minimum
state DFA� the algorithm

presented in ��� can be used� If Gp is a DFA that recognizes the language P �Lm�G		

��

for some DFA G� we use the notation Gp � p�G	� A complete pseudo
code algorithm

for constructing p�G	 is provided in Algorithm ���� Note that for step ��c	� line � of

Algorithm ��� �which contains the statement �for each q � qp�	� the state
set qp is

itself a subset of Q�

Algorithm ��� � A Projection Algorithm for FSMs

�� Inputs� Automaton G � fQ��� �� qo� Qmg

�� Define a new automaton G� � fQ��o� �
�� qo� Q

�
mg

�a� if there exists qm � Qm such that qm � ��CLOSURE�qo� then

Q�
m � Qm � fqog

else

Q�
m � Qm

end

�b� set ����� �	 � �

for each qi � Q do

for each qj � Q do

for each � � �o do

if ��qi� �	 � qj then

���qi� �	 � qj

else if ��qi� s	 � qj for some s � ��

such that P �s	 � � then

���qi� �	 � ���qi� �	 � fqjg

end

end

end

end

	� Convert the NFA G� to a DFA Gp

�a� Set qop � qo

��

�b� flag qop as ��new		

set Qp � fqopg

set Qmp � �

�c� while states flagged as ��new		 exist� do

for each state qp � Qp flagged as ��new		� do

remove the ��new		 flag

for each � � �o do

set qpnew � �

for each q � qp do

qpnew � qpnew � �
��q� �	

end

if qpnew �� Qp and qpnew �� � then

let Qp � Qp � fqpnewg

flag qpnew as ��new		

if q � qpnew such that q � Qm then

let Qmp � Qmp � fqpnewg

end

end

if qpnew �� � then

define �p�qp� �	 � qpnew

end

end

end

end

�� Output the DFA Gp � �Qp��o� �p� qop� Qmp	 as p�G	

The Algorithm ��� is based upon the two existing algorithms discussed in �HU���

and �Rud���� While this algorithm constructs an output automaton that recognizes

the projection �as de�ned by ����		 of the language recognized by an input automaton�

��

some state information that can be useful to the observer is lost� We consider an

example FSM G where the initial state is qo� and where for some � � �uo� ��qo� �	 � q

is de�ned for some q � Q where q �� qo� In this case� the initial state in Gp � p�G	

is labeled by qop � qo� However� if the supervising agent does not observe any events

�and thus remains in the initial state	� the plant G could be in state qo or in state

q� The labeling of the initial state using Algorithm ��� does not provide this type of

information� In order to construct an automaton that both generates the projection

language and contains useful state label information� we present an algorithm from

�Rud��� in Algorithm ���� Algorithm ��� labels states so that each label identi�es the

states the plant could be in after the observation of a sequence of events�

Algorithm ��� � A Modi�ed Projection Algorithm for FSMs

�� Inputs� Automaton G � fQ��� �� qo� Qmg

�� Define a new automaton G� � fQ��o� �
�� Q�

o� Q
�
mg with a set of initial

states Q�
o

�a� let Q�
o � fqo� q�� q�� � � � � qn j qi � Q � s � �� such that ��qo� s	 �

qi� P �s	 � �g

�b� set ����� �	 � �

for each qi � Q do

for each qj � Q do

for each � � �o do

if ��qi� s	 � qj for some s � ��

such that P �s	 � � then

���qi� �	 � ���qi� �	 � fqjg

end

end

end

end

��

	� Convert the NFA G� to a DFA Gp

�a� Set qop � Q�
o

�b� flag qop as ��new		

set Qp � fqopg

set Qmp � �

�c� while states flagged as ��new		 exist� do

for each state qp � Qp flagged as ��new		� do

remove the ��new		 flag

for each � � �o do

set qpnew � �

for each q � qp do

qpnew � qpnew � �
��q� �	

end

if qpnew �� Qp and qpnew �� � then

let Qp � Qp � fqpnewg

flag qpnew as ��new		

if q � qpnew such that q � Qm then

let Qmp � Qmp � fqpnewg

end

end

if qpnew �� � then

define �p�qp� �	 � qpnew

end

end

end

end

�� Output the DFA Gp � �Qp��o� �p� qop� Qmp	 as p�G	

��

It should be noted that the check done at line � in step ��c	 of Algorithm ��� could

cause computational problems if not implemented e�ciently� There exist a number

of methods ��path compression� �CLR���� for example	 that can e�ciently check for

set inclusion�

����� Diagnosability

Diagnosability is a branch of DES theory which addresses the problem of fault

detection and isolation in large complex systems� In �SSL���� and �SSL����� a sys

tematic procedure for analyzing systems and constructing FSM diagnosers for the

purposes of fault detection is developed� with speci�c emphasis on application to

heating� ventilation and air�conditioning �HVAC	 systems� This section reviews the

fundamental concepts relating to diagnosability� and discusses why the application

of some of the theoretical results of this thesis are of interest in fault detection and

isolation applications�

When analyzing a system to determine if that system is diagnosable� we �rst need

to understand what it is that we are �diagnosing�� We start with a FSM G with

event set � which represents a plant containing observable and unobservable events

�� � �o !��uo	� A subset of events in � are considered to be �failure� events �call the

subset �f 	 in the system� The event �� event in Figure �����a	 is an example of such

a failure event� We are not concerned with the failure events which are observable

�i�e�� � � �f � �o	� since by de�nition a supervisor can observe these events� and

therefore �diagnose� that they have occurred� Thus� without loss of generality� we can

consider only those cases where all the failure events are unobservable �i�e�� �f
 �uo	�

Diagnosability theory considers the behaviour of a system after the occurrence of a

failure event� and determines if it is possible to know in some �nite amount of time

that the failure event has occurred� A more generalized scenario can be achieved by

partitioning the set of failure events into �classes� of failure events

�f � �f� !� � � � !��fm�

In this case� for all �f � �f � the diagnosing agent need only determine in a �nite

��

G

1

2

3

4

5

α

β

β

σ1

γ

Gd

1

2,5F

5F3

β

α
γ

(a) The System (b) The Diagnoser

γ

Figure ����� A system�diagnoser pair

amount of time that a failure of type �fn� where �f � �fn� has occurred� It does

not need to determine exactly which failure event occurred� Figure ���� shows an

example system �G	 and diagnoser �Gd	� The diagnoser is a FSM that records the

possible states the system may be in after observing a string of events� and infers

what failures may have occurred�

For the example system G shown in Figure �����a		� �� is the only failure event�

Initially� the diagnoser Gd only knows that the system has started in state �� After

observing the � event� the diagnoser knows that the system could be in state �� with

no failures having occurred� or state � with failure �� having occurred� Thus� at this

stage the diagnoser is not able to determine if failure �� has occurred or not� However�

after observing the string ��� the system can only be in state �� and therefore the

failure �� cannot have occurred� If instead� the diagnoser observes the string �
� then

it knows that the failure �� must have occurred� Since it is possible to detect the

occurrence of all failure events in a �nite amount of time �i�e�� after a �nite number of

�The circle to the right of state 	 indicates that a self�loop of event � may occur�

��

events have occurred	 in this system� then the system is considered to be diagnosable�

with diagnoser Gd�

Note that the the diagnoser is a DFA which recognizes the language given by the

projection of the language recognized by the system� The method used to construct

the diagnoser DFA is slightly di�erent from the methods described in previous sec

tions� In this case� each state in the diagnoser represents the set of states in the system

which can be reached from an existing set of states via string s where s � suo�o� where

suo is a string of �possibly zero	 unobservable events� and �o is an observable event� In

all the other constructions presented in this thesis� the string s is constructed in the

opposite manner �i�e�� s � �osuo	� It can be shown that both methods of construction

recognize Lm�p�G		 �SSL����� �Rud����

Diagnosability theory can be extended to cover systems which are considered to

be �i
diagnosable�� I
diagnosability is a looser condition than diagnosability in that

after the occurrence of a failure event� the diagnoser need only identify that a failure

of that type has occurred after the occurrence of an observable indicator event� Thus�

for set of failure event types f�f�� � � � ��fmg there is a corresponding set of indicator

event types fI�� � � � � Img�

It is apparent from the informal description of the diagnoser presented above�

that diagnosability theory presents a direct application of the projection operation�

combined with a set of rules for the labeling of states in the diagnoser such that

they contain information relevant to the failure status of the system� and with a set

of conditions placed on the system to determine if such a system is diagnosable or

i
diagnosable� It is mentioned in �SSL���� that the �two crucial issues regarding the

applicability of our theory to HVAC units or other classes of systems are� �	 building

the system model and �	 dealing with the computational complexity of the diagnostics

process�� It is also noted however� that with regards to the computational complexity

issue� �our experience so far� while limited in scope� tends to indicate that the system

often has enough structure so that the worst case computational bounds may be rarely

attained�� Finally� �SSL���� states that if an approach which constructs diagnoser

states on
line �HL��� is adopted� the problem can be solved with a computation of

��

polynomial complexity at each observed transition of the system� Unfortunately�

if a system is not diagnosable or i
diagnosable� and if an o�
line analysis of the

system is not done� the on
line diagnoser may arrive at states where it will never be

possible to know if a failure has or has not occurred� We attempt to address this

problem by analyzing the previously
mentioned �structure� of the system to make

better estimates of the complexity of the computation required to construct a full

diagnoser�

��� Computational Complexity

Since the motivation for developing DES theory is to be able to solve control

problems in real systems� it is necessary to examine the e�ciency with which DES

operations can be implemented as algorithms� It may be a simple task to understand

how an algorithm which implements a DES operation works� However� when the

solution is actually computed� if the algorithm which does the computing takes an

unreasonably long period of time� or uses an unreasonably large amount of computing

resources� then the DES formalism becomes less useful as a control tool for real

systems� The following sections outline some of the key ideas and tools in complexity

theory which can be used to better understand the e�ciency of algorithms which are

used to solve common DES problems�

����� Complexity Classes� Background

Current research in complexity theory allows us to make some initial observations

about the computational di�culty associated with DES problems� To provide a

motivating example for why it is useful to group problems into complexity classes�

consider the cases presented in Table ��� taken from �GJ���� where the time for each

operation on some CPU is �s� For example� if a problem is of �size� n � �� and its

solution is O�n�	 complexity� then it would take �s � ��� � ������s to compute the

solution on a CPU�

��

Table ���� An example of computational complexity

Time

Complexity �� �� ��

Function

n ������� s ������� s ������� s

n� ������ s ������ s ������ s

n	 ����� s ����� s ����� s

n� ��� s ��� min ���� min

�n ��� s ���� days ��� centuries

�n �� min ���� centuries ���� ���	 centuries

If the values presented in Table ��� are interpreted to correspond to the amount

of time required to solve a problem of size ��� ��� and ��� where the solution takes

either a polynomial or exponential amount of time� it becomes clear that in general�

problems which require an exponential amount of time to solve become intractable

when the size of the problem gets large� What complexity theory allows us to do is�

� determine if problems are intractable� and

� suggest methods for simplifying intractable problems by examining approximate

solutions� or subproblems which can be solved in a polynomial amount of time�

Formally� decision problems can be grouped into complexity classes� An inclusion

diagram for these classes is provided in Figure ����� taken from �GJ���� Decision

problems are placed in group P if there exists an algorithm which can solve the de

cision problem in polynomial time� A decision problem is placed in the larger� NP

group if there exists an algorithm which can check the correctness of a �yes� answer

to that decision problem in polynomial time� In order to understand the concept of

the NP
complete �NPC	 group� we �rst discuss the idea of problem transformations�

Given two languages L� and L�� we say that L�
 ��
� � L�
 ��

� if there exists a

�It is widely believed
 but has not been proven
 that P is a strict subset of NP �

��

Figure ����� Complexity classes �assuming P �� NP and NP �� co
NP 	

function f such that f � ��
� � ��

�� and s � L� i� f�s	 � L�� and where f can be

computed in polynomial time� By extending the idea of the polynomial transforma

bility relation from languages to decision problems �refer to �GJ��� for details	� then

for two decision problems "� and "�� the relationship "� � "� can be interpreted

to mean �"� is at least as hard as "��� The two problems are considered to be

polynomially equivalent if "� � "� and "� � "�� Since it can also be proven that

polynomial transformability is transitive� then the relation ��� imposes a partial or

dering on all equivalence classes of decision problems in NP� where P represents the

computationally �easiest� problems� and NPC represents the computationally �hard

est� problems� Thus� a decision problem " � NP can be proven to be NP
complete if

for some "� � NPC� "� � "� This method is used in �Tsi��� where Tsitsiklis reduces

an instance of the ��
satis�ability� problem which is known to be NP
complete to a

speci�c class of partial
observation DES problems�

��

The complexity class co
NP represents the complement decision problems for all

the decision problems which comprise the class NP� Given a decision problem in NP

such as �Given I� is X true for I#�� the complementary decision problem would be

�Given I� is X false for I#�� It has not yet been proven that co
NP��NP� Indeed if this

could be proven� then it would have to be the case that P �� NP �

While the P versus NP complexity classes focus primarily on the time which

algorithms take to solve problems� the PSPACE and EXPSPACE complexity

groups focus on the amount of memory required to solve problems� Speci�cally

PSPACE �resp�� EXPSPACE	 decision problems require a polynomial �resp�� ex

ponential	 amount of memory to solve� By adopting a similar method as used

to de�ne NP�complete problems� problems can be ordered such that a subset of

problems in PSPACE �resp�� EXPSPACE	 represents the computationally most

di�cult problems in the set� These subsets are referred to as PSPACE �resp��

EXPSPACE	 complete problems� Again� as with the NP
complete class of decision

problems� a decision problem " � PSPACE �resp�� EXPSPACE	 can be proven to

be PSPACE�complete �resp�� EXPSPACE�complete	 if for some "� � PSPACE

�resp�� EXPSPACE	� "� � "�

����� Working with NP�Complete Problems

If a problem is proven to be NP�complete �or PSPACE�EXPSPACE
complete	�

then a method needs to be devised for solving that type of problem in a computa

tionally feasible manner� For example� it may be possible to construct an heuristic

algorithm which produces a correct result in most cases� However� current DES for

malisms primarily model safety
critical systems� and therefore require correct results

all of the time� Alternatively� it may be possible to restrict the set of problems to

a subset of allowable problems which we know �and can prove	 to be solvable in a

polynomial amount of time� If it is computationally feasible to test whether a prob

lem belongs to this subset� and if the subset captures a large enough class of DES

applications� then we will have found a computationally feasible method for solving a

��

Figure ����� An example of the hierarchical breakdown of an NP
complete problem

subset of partial
observation DES problems� Furthermore� for those problems which

do not fall into this subset of computationally feasible problems� it would be useful if

there were methods for identifying the characteristics of the problem which disqualify

it for inclusion in the subset� If we could identify �problem areas�� it is possible that

the component DES models could be modi�ed such that the solution can be com

puted in a computationally feasible manner� Figure ���� taken from �GJ��� provides

an example of the hierarchy of subproblems for some NP
complete problem�

����� Complexity Theory and DES

There are two areas in DES Theory where computational complexity issues make

the solutions to large problems intractable� First� as noted in �Won��� and �WR����

when the synchronous product or meet of n FSMs �G�� G�� � � � � Gn	 is computed� then

it is possible that the state space of the resulting FSM G � MEET �G�� G�� � � � � Gn	

could have a state space as large as kn� where k is the maximum of the sizes of the

state
spaces of G�� � � � � Gn� Since the number of states in G increases exponentially

with n� the problem becomes intractable for large n �i�e�� for a large number of

component models in a typical DES problem	� A Petri�net method for e�ciently

modeling a class of problems where many of the n component models are identical

��

�i�e�� parallel or additive machines	 is presented in �LW��� and �LW���� The results

to be presented in Chapter � of this thesis do not focus on DES complexity problem

where the components are identical FSMs�

The second area of DES theory which presents us with computationally intractable

problems is in the area of partially
observable and�or decentralized DES problems�

While in many cases it has been noted that the actual results obtained while working

with these types of DES problems are good� it was proven by Tsitsiklis �Tsi��� that

for a speci�c class of partial
observation problems� there exists a polynomial trans

formation which maps an instance of the Boolean logic �three satis�ability� problem

�a restricted version of Cook�s theorem for the satis�ability problem	� which has been

proven to be NP�complete �GJ���� to this class of partial
observation DES problems�

This means that unless it is proven that P � NP � there is no polynomial�time algo

rithm which can construct a FSM which marks the projection of the language marked

by a given FSM� However� even though this type of problem has been proven to be

NP�complete� the favourable results obtained in many partial
observation applica

tions suggest that there may exist a class of sub
problems �i�e�� a class of FSMs	 for

which there exists an algorithm which takes signi�cantly less than an exponential

amount of time to complete the same task� Chapter � of this thesis attempts to

identify some of the properties of this type of FSM�

��

Chapter �

Structure�Based DES Analysis

While in theory projection can lead to an exponential increase in the number of

states� in practice it has been noted �SSL����� �SSL����� and �OW��� that in many

cases the number of states generated is typically much less than the exponential limit�

This suggests that there exist subproblems which can be solved e�ciently� If these

types of subproblems can be characterized and identi�ed in a simple and time
e�cient

manner� then we would have a test we could run on large systems which would identify

whether the system will project e�ciently� or could identify problem structures within

the system which could cause exponential explosion�

In designing this type of test� two things need to be considered� First� an algorithm

�or series of algorithms	 needs to be designed which calculates upper limits for the

projection state
space� If such an algorithm can show that the projection state
space

is going to be small relative to the exponential limit� then we can go ahead and

calculate the projection� knowing that the resulting automaton can be found in a

reasonable amount of time�

When the upper bound algorithms do not show any signi�cant reduction on the

exponential limit on the projection state space� algorithms that indicate lower bounds

are helpful �for agging problem areas	� In these cases� we need to understand what

structures within the system are causing problems� in order to e�ect changes in the

model �perhaps by adding more sensors in the physical system	 so that when the upper

bound algorithms are re
run� the resulting estimate of the projection state
space is

signi�cantly better than the exponential limit� These lower bound algorithms would

indicate that the projection state space will be at least a certain size� and would

identify the structures which are primarily responsible for this lower bound�

��

It is conceivable that the results of the upper bound algorithms show no signi�cant

reduction relative to the exponential limit� and that the lower bound algorithms can

identify no structures which cause state
space explosion� To date� it is not clear how

many DES models which are based on physical problems �t into this category�

An important consideration when designing algorithms which establish either up

per or lower bounds is that all algorithms must be able to identify properties or

structures within plant models in an e�cient manner� Algorithms which run in low

order polynomial time will result in tests which are simple and fast to run on sys

tems� whereas high
order polynomial or exponential time algorithms serve no purpose�

since the projection operation itself is an exponential time algorithm� In e�ect� we

would be better o� just running the projection algorithm itself� rather than running

exponential�time algorithms that test how quickly projection can be done�

��� Structures� Upper Limits on State�Space Explosion

In establishing algorithms which can be used to identify upper limits on the pro

jection state space� we �rst consider how the presence of unobservable events a�ects

projection� For a system to be partially observable� there must exist at least one

unobservable event� We examine the properties of arbitrary systems containing sin

gle and double unobservable event transitions� and establish some upper bounds for

the size of the projection state
space� While these upper bounds don�t signi�cantly

reduce the projection state
space estimate below the exponential limit� they at least

serve as a starting point in our attempt to understand the e�ect of unobservable event

structures within DES models�

We then de�ne a property of a plant we call n��reachability to be the set of

states which can be reached by starting at any state in the plant� and following the

string s � �� where P �s	 is a string of n observable events� We use this concept

to calculate subsets of states which can be used to de�ne all possible subset
labels

in the projection state space� This has the e�ect of reducing the exponent used to

calculate the projection state space� and thus allows for some signi�cant reductions

��

in the estimated size of the state space �relative to the exponential limit	 to be made�

The computational complexity of this algorithm is O�j�ojn � jQj�	� where �o is the set

of observable events� and Q is the set of states�

Furthermore� by examining the cases when the estimated projection state size

is signi�cantly reduced� some conjectures may be drawn about desirable structural

properties of the system� These may be used as a guide when modifying systems

which do lead to exponential explosion�

����� The Signi�cance of Automata with ��Transitions

It has been shown that when an NFA is converted to an DFA which recognizes the

same language� the state set for the DFA is a subset of �Q� where Q is the state set of

the NFA� If jQj � n it is not necessarily the case that all �n	 � nonempty states will

be generated using the subset
construction method given in Algorithm ���� However�

it can be shown that in some cases� not only are all �n	� nonempty states generated�

but also that the DFA is� in fact� a minimal
state DFA according to �HU����

In DES theory� plants are represented as DFAs� Nondeterminism is introduced

when the unobservable events are relabeled as �
transitions� and the resulting NFA

with �
transitions is converted to an NFA without �
transitions� We want to take

advantage of the structure in this NFA to make some observations about the upper

limit on the number of states generated when converting the NFA to an equivalent

DFA� The �rst way this can be done is by examining the structure of the �
transitions�

The following list provides �ve separate �
transition structures �Figure ���	 which will

be discussed in further detail�

�a	 ��qi� �	 � qj� i �� j�

�b	 ��qi� �	 � qj and ��qi� �	 � qk� i ��� j �� k

�c	 ��qj� �	 � qi and ��qk� �	 � qi� i ��� j �� k

�d	 ��qi� �	 � qj and ��qk� �	 � ql� i ��� j �� k �� l

��

SUBGRAPH1

qi

qj

ε

SUBGRAPH2

qi

qkqj

εε

SUBGRAPH3

qj qk

qi

(a) (b) (c)

ε ε

SUBGRAPH4

qi

qj

qk

ql

ε ε

(d)
SUBGRAPH5

qi

qj

qk

ε
ε

(e)

Figure ���� Unobservable event transitions

�e	 ��qi� �	 � qj and ��qj� �	 � qk� i �� �j �� k

������� The Single ��Transition

An almost immediate observation that can be made about the construction in

Algorithm ��� is that if there is at least one transition labeled by an unobservable

event �Figure ����a		� then the state
space of the projection will never exceed �����jQj�

Proposition ��� Given plant G with event set Q� unobservable event set �uo� and

transition function �� and FSM Gp with event set Qp such that Gp � p�G	� If

��qi� �	 � qj for some qi� qj � Q� i �� j and for some � � �uo then

jQpj �
�

�
� �jQj 	 ��

Proof From Algorithm ��� lines ��� of step ��b	 and lines �
� of step ��b	� the set

Qp can not contain states with state
set labels that contain qi but do not contain qj�

��

Now� if Qp cannot contain state
sets which include qi but not qj� all we need to

do is count the number of states of this type� Simple combinatorics shows us that

this number is �jQj��� Discounting the empty state
set� we can show that jQpj �

��� � �jQj 	 ��

Example

Take an automaton G� with state set Q � fq�� q�� q	� q�g� and with an unobservable

event � where ��q�� �	 � q� is de�ned� Observe that any state label in Qp which

includes q� must also include q� since if the automaton G could be in state q�� then it

may also be in state q� via ��q�� �	 � q�� Thus the set of subsets of �Q which cannot

appear as labels in Qp are�

ffq�g� fq�� q	g� fq�� q�g� fq�� q	� q�gg�

and the set of labels which may be included in Qp is at most�

ffq�g� fq�� q�g� fq�� q�� q	g� fq�� q�� q�g� fq�� q�� q	� q�g� fq	g�

fq�g� fq�� q	g� fq�� q�g� fq	� q�g� fq�� q	� q�gg�

Since jQj � � we can see that Qp contains at most ��� � �jQj 	 � � �� elements�

������� Double ��Transition Geometries

In this section� we attempt to improve upon the results presented for single �

transition geometries by applying those results to the four geometries which can result

when at least two unobservable events appear in an arbitrary plant �Figure ����b	�

�e		�

Formally� we present Propositions �������� which provide upper bounds for plants

which contain structures illustrated in Figure ����b	��e	� respectively�

Proposition ��� Given plant G with event set Q� unobservable event set �uo� and

transition function �� and FSM Gp with event set Qp such that Gp � p�G	� If

��qi� ��	 � qj and ��qi� ��	 � qk for some qi� qj� qk � Q� i �� j �� k and for some

��� �� � �uo �Figure 	���b�� then

jQpj �
�

�
�jQj 	 ��

��

Proof As claimed earlier� if for some G� ��q�� �	 � q�� and � � �uo� then Qp as

constructed by Algorithm ��� can contain no states with state
set labels that contain

q�� and that do not contain q��� We can now break down a problem where ��qi� ��	 � qj

and ��qi� ��	 � qk for ��� �� � �uo� The transition ��qi� ��	 � qj implies that Qp will

contain no state
sets containing qi but not qj� Further� the transition ��qi� ��	 � qk

implies that Qp will contain no state
sets containing qi but not qk� By applying

combinatorics together with a counting argument� and providing that i �� j �� k� it

can be easily shown that

jQpj � �jQj 	 �jQj�� 	 �jQj�� $ �jQj�	�

where the �rst term represents all state
sets in the power set� the second term rep

resents all the state sets which include qi but not qj� the third term represents all

the state
sets which include qi but not qk� and �nally the fourth term represents all

the state
sets which include qi� but do not contain qj or qk �and therefore have been

counted twice when calculating second and third terms	� These calculations result in

Proposition ��� when the null state
set is discarded�

Example

Take an automaton G� with state set Q � fq�� q�� q	� q�g� and with unobservable

events �� and �� where ��q�� ��	 � q� and ��q�� ��	 � q	 are de�ned� Observe that any

state label in Qp which includes q� must also include q� and q	 since if the automaton

G could be in state q�� then it may also be in state q� �resp� q		 via ��q�� ��	 � q�

�resp� ��q�� ��	 � q		� Thus the set of subsets of �Q which cannot appear as labels in

Qp are�

ffq�g� fq�� q	g� fq�� q�g� fq�� q�g� fq�� q	� q�gg�

and the set of labels which may be included in Qp is at most�

ffq�� q�g� fq�� q�� q	g� fq�� q�� q�g� fq�� q�� q	� q�g� fq	g� fq�g� fq	� q�gg�

Note that this set contains exactly ��� � �jQj 	 � elements since the empty set is not

counted�

��

Proposition ��� Given plant G with event set Q� unobservable event set �uo� and

transition function �� and FSM Gp with event set Qp such that Gp � p�G	� If

��qj� ��	 � qi and ��qk� ��	 � qi in G for some qi� qj� qk � Q� i �� j �� k and for

some ��� �� � �uo �Figure 	���c�� then

jQpj �
�

�
�jQj 	 ��

Proof If for some G� ��q�� �	 � q�� and � � �uo� then Qp as constructed by Algo

rithm ��� can contain no states with state
set labels that contain q�� and that do

not contain q��� Therefore for this example� ��qj� ��	 � qi implies that no states �in

Qp	 can exist which contain qj but not qi� Similarly� ��qk� ��	 � qi implies that no

states �in Qp	 can exist which contain qk but not qi� Therefore� as with the previous

proposition� providing that i �� j �� k we have

jQpj � �jQj 	 �jQj�� 	 �jQj�� $ �jQj�	�

where the �rst term represents all state
sets in the power set� the second term rep

resents all the state sets which include qj but not qi� the third term represents all

the state
sets which include qk but not qi� and �nally the fourth term represents all

the state
sets which include qj and qk but not qi �and therefore have been counted

twice when calculating the second and third terms	� These calculations result in

Proposition ��� when the null state
set is discarded�

Proposition ��� Given plant G with event set Q� unobservable event set �uo� and

transition function �� and FSM Gp with event set Qp such that Gp � p�G	� If

��qi� ��	 � qj and ��qk� ��	 � ql in G for some qi� qj� qk� ql � Q� i �� j �� k �� l

and for some ��� �� � �uo �Figure 	���d�� then

jQpj �
�

��
�jQj 	 ��

Proof If for some G� ��q�� �	 � q�� and � � �uo� then Qp as constructed by Algo

rithm ��� can contain no states with state
set labels that contain q�� and that do not

contain q��� Therefore for this example� ��qi� ��	 � qj implies that no states �in Qp	

��

can exist which contain qi but not qj� Similarly� ��qk� ��	 � ql implies that no states

�in Qp	 can exist which contain qk but not ql� Therefore we have

jQpj � �jQj 	 �jQj�� 	 �jQj�� $ �jQj���

where the �rst term represents all state
sets in the power set� the second term repre

sents all the state sets which include qi but not qj� the third term represents all the

state
sets which include qk but not ql� and �nally the fourth term represents all the

state
sets which include qi and qj but not qk or ql �and therefore have been counted

twice when calculating the second and third terms	� These calculations result in

Proposition ��� when the null state
set is discarded�

Proposition ��	 Given plant G with event set Q� unobservable event set �uo� and

transition function �� and FSM Gp with event set Qp such that Gp � p�G	� If

��qi� ��	 � qj and ��qj� ��	 � qk in G for some qi� qj� qk � Q� i �� j �� k and for

some ��� �� � �uo �Figure 	���e�� then

jQpj �
�

�
�jQj 	 ��

Proof If for some G� ��q�� �	 � q��� and � � �uo� then Qp as constructed by Algo

rithm ��� can contain no states with state
set labels that contain q�� and that do not

contain q��� Therefore for this example� ��qi� ��	 � qj implies that no states �in Qp	

can exist which contain qi but not qj� Similarly� ��qj� ��	 � qk implies that no states

�in Qp	 can exist which contain qj but not qk� Therefore we have

jQpj � �jQj 	 �jQj�� 	 �jQj���

where the �rst term represents all state
sets in the power set� the second term rep

resents all the states which include qi but not qj� the third term represents all the

state
sets which include qj but not qk� Note that in this case� no terms are double

counted since all the states counted by the �rst term do not contain qj� and all the

states counted by the second term do contain qj� These calculations result in Propo

sition ��� when the null state
set is discarded�

��

����� Tree Structures

We de�ne a tree to be an automaton that contains a unique path between any

two states� Note that if automata of this type are �nite� then they mark only �nite

languages� This is true for the following reason� If ��qi� s	 � qj is de�ned for some

s � ��� then there is no other s� � �� for which ��qi� s�	 � qj is also de�ned �true by

de�nition of a tree structure	� Therefore� if the tree structure G is trim� then for each

qm � Qm� there exists a unique s � �� such that ��qo� s	 � qm� Thus� the marked

language is composed of exactly jQmj unique strings� and is therefore �nite�

Given a tree structure G� some observations can also be made about the size of

the state space of p�G	�

Proposition ��� Given a tree structure G with state set Q and Gp with state set Qp

such that Gp � p�G	� then the following is true

jQpj � jQj�

Proof

Claim Any state q � Q in tree G may appear in at most one of the labels of Qp�

Assume otherwise� take some state q � Q such that q appears in the labels of states

q�� and q�� where q��� q
�
� � Qp� Since Gp is by de�nition a DFA� there must be two

strings s��� s
�
� � ��

o where s�� �� s�� such that �p�qop� s
�
�	 � q�� and �p�qop� s

�
�	 � q��� Thus

by de�nition there must be two strings s�� s� � �� where p�s�	 � s�� and p�s�	 � s��

such that ��qo� s�	 � q and ��qo� s�	 � q� Since s�� �� s�� then s� �� s�� If this is the

case� there are two distinct paths between the initial state qo and state q� thereby

contradicting the de�nition of a tree�

Finally� using a simple counting argument� it can be shown that the size of the

state space jQpj � jQj� Each state q� � Qp must be labeled by a nonempty subset

of Q� By the above claim� each state q � q� is unique to q�� and appears in no other

state in Qp� If this is the case� then there must exist at least jQpj unique states in Q�

i�e�� jQj � jQpj�

��

TREE Structure

1

2

3

4

5

6

α

ε
β

ε

α
7

8

β

β

Figure ���� Tree structure example

Example

An example of a tree
structure is presented in Figure ���� In this example� Q �

f�� �� �� �� �� �� �� �g and �uo � f�g� By inspection� it can be seen that the state
space

of the projection of the tree structure is Qp � ff�� �g� f�� �� �g� f�g� f�� �gg�

����� ��Reachability

While the concepts of single and double � geometries provide us with some upper

bounds which apply to all FSMs� because the reduction is a simple constant varying

from ��� to ���� the resulting e�ect on complexity results is negligible when dealing

with large systems� By contrast� if the system we are considering is a tree �as de�ned

in Section �����	� then we have shown that the complexity of the projection algorithm

is O�n	 or linear� While this result is computationally good� the tree FSM structure

captures a very small subset of possible FSMs� What is needed to make practical

analysis of DES partial
observation problems possible is something which can be

applied to a large subset of FSMs� and which provides a signi�cant �i�e�� O��n	 or

��

exponential	 improvement on complexity results� In the following sections we present

a method which we believe provides signi�cant improvements on complexity estimates

and which is not limited in applicability to tree structures�

������� ���Reachability

The following intuition can be used to tighten the upper bound for the size of the

state space of a projected DES� Any state subset� say qp� that appears as a state label

in a projected FSM resulting from Algorithm ��� is� by construction� a reachable

state� This means that some observable event � leads from some set of states in

the original DES to the set qp� The set qp cannot be any larger than the set of

states that could be reached via � from the set of all states in the original DES� This

observation leads to a concept called ��
reachability�� de�ned as follows� Given FSMs

G � �Q��� �� qo� Qm	 and Gp � �Qp��o� �p� qop� Qmp	� where Gp � p�G	� then we say

that the set of all nonempty subsets of the set of states Q� � fq� j q � Q� ��q� �	 � q�g

are ���reachable states in G� That is� �Q� contains all the states in Qp which the

system could be in after observing the � event� For example� for the FSM G given

in Figure ��� with Q � f�� �� �� �� �g� the �
reachable set is �Q� � ff�� �g� f�g� f�gg�

and the �
reachable set is �Q� � ff�� �� �g� f�� �g� f�� �g� f�� �g� f�g� f�g� f�gg� and

�nally the

reachable set is �Q� � ff�gg� Finally� we need to include the initial state

f�� �g� since it may not be included as a subset of any of the Q� sets� Therefore� a

new estimate on the maximum number of states in p�G	 is ��� compared with the

��� � �� 	 � � �� state estimate using the upper limit de�ned in Proposition ����

Note� however that in calculating this number� no attempt is made to account for

the duplication of state sets� Thus� for this example� the state sets f�g and f�� �g

are counted twice� The actual limit �i�e�� without double counting	 for the number

of state sets is ��� For all �
reachable based state
estimates presented in Chapter ��

note that state set duplication has not been accounted for� and thus� the estimates

could be smaller than indicated� Theorem ��� formalizes the �
reachability concept

for the case described above� where a single observable event is seen by a supervising

agent�

��

G

1

2

3

4

5

ε

β

β

ε

γ

α

Figure ���� �
reachability example

Theorem ��� Given FSMs G � �Q��� �� qo� Qm	 and Gp � �Qp��o� �p� qop� Qmp	�

where Gp � p�G	� then

Qp

�
��

�Q� � qop

Proof

Recall that the states in Qp are subsets of Q� Consider an element qp � Qp�

Case �� qp � qop� Then by observation� qp � Qp�

Case �� qp �� qop�

Then there is a q�p � Qp and � � �o such that �p�q�p� �	 � qp �since qp � Qp means qp

is reachable from qop via �p	� Since q�p � Qp� by de�nition� q�p
 Q�

According to the construction given in Algorithm ���� �p�q�p� �
�	
 Q�� for all �� � �o�

Therefore� in particular� �p�q�p� �	
 Q�� That is� qp
 Q�� which implies that qp �

�Q� �

��

������� Multiple ��Reachability

The �
reachability property described in Section ������� while providing useful

properties by itself� can be iteratively applied in such a way as to provide improved

estimates for some FSMs� The key observation is as follows� ��
reachability dictates

that after the occurrence of some event ��� the set of states which the plant may be in

must be a subset of Q��� Now consider the following� call the next observable event

�following ��	 ��� We have established that after ��� the system must be in some

subset of the states contained in the set Q��� We can now further reduce the subset

of states that the system could be in by substituting Q�� for Q in the expression

Q�� � �p�Q���	� Thus� the possible subsets of states which the system could be in

after observing two transitions must be subsets of the following�

��� � �o���� � �o � Q���� � fq� j q � Q��� ��q� ��	 � q�g�

For the example given in Figure ���� the Q���� subsets are�

Q�� � f�� �g�

Q�� � f�� �� �g�

Q�� � ��

Q�� � ��

Q�� � ��

Q�� � f�g�

Q�� � ��

Q�� � ��

Q�� � f�g�

For this example� the total for all the nonempty subsets for all the Q���� sets �without

correcting for state
set duplication	 is �� �including the additional state
sets repre

senting the initial state
set and the three state
sets which can be reached after ob

serving the �rst transition	� If state
set duplication is accounted for� the estimate

reduces to ��� Thus� for this example� no improvement is obtained by iterating the

�
reachability procedure�

��

Note that if we iterate I times� then
PI

i�� j�oji computations must be done� Thus�

the complexity of this type of test is exponential in I� Based on the results presented

in Chapter �� we have found that for the systems analyzed� the best results �without

correcting for state
set duplication errors	 are achieved with two or three iterations�

and therefore� only a small number of computations is required�

����� Related Work

After completing the work presented in this thesis on �
reachability� it came to

our attention that work by %Ozveren and Willsky �OW��� uses a very similar approach

for analyzing the structure of FSMs and making improved estimates for projection

state
space�

Speci�cally� �OW��� shows that if we have some system with state space Q� then

Q can be partitioned into n distinct subsets Q�� � � � � Qn� A notion called the persistent

part of the state
space of some FSM can be informally de�ned as that part of the

state
space which captures the long
term behaviour of the FSM� The size of the

persistent part of the projection state
space QpR is given by

jQpRj �
X

i�����n

�jQnj�

Since this method partitions the event set Q into disjoint subsets� the double
counting

problem which we encounter in �
reachability �discussed in Section �������	 is avoided�

��� Structures� Lower Limits on State�Space Explosion

We have shown in the previous sections that �
geometries� �
reachability and �in

special cases	 tree structures can be used to establish upper limits on the possible size

of the projection state
space� We now proceed to structures which can be proven to

produce at least a certain number of states in the state
space of the projected DES�

If it is possible to e�ciently identify such structures within plant models� then we

would be able to modify the plant so that the structure no longer causes the problem

to be considered computationally intractable�

��

NFA An

qo

q1

q2

qn

0

0

0

1

1

1

0 .
.
.

Figure ���� The cyclic NFA An

����� Cyclic Structures

We �rst present a result from �Leu��� regarding the class of automata presented

in Figure ���� It is proven in �Leu��� that for NFA An with states Q� the smallest

DFA which recognizes Lm�An	 has �n states� First it is shown that for such an

automaton� all the �Q states are generated using a standard subset construction

method� Second� it is shown that no two di�erent subsets of states are �equivalent�

in the sense identi�ed by the Myhill
Nerode theorem �HU���� and therefore the DFA

is a minimum
state recognizer for the language�

Now� it remains to show that there exists a DFA with a nonempty set of unob

servable events �uo such that when the unobservable events are converted to �
moves�

the resulting automaton recognizes the same language as the NFA in Figure ���� A

DFA of this type is shown in Figure ����

��

DFA A’n

qo’

qo’’

q1

q2

qn

0

0

0

1

1
0

σ

1

.

.

.

Figure ��	� A DFA A�
n with � � �uo

��

Thus� for an NFA An with n $ � states� a DFA A�
n whose projection is An has

n $ � states� More generally� for a DFA of this type with states Q� we have shown

that the size of the projection state
space Qp is

jQpj � �jQj�� 	 �

� ��� � �jQj 	 ��

We conjecture that by choosing a slightly di�erent type of cyclic structure �Fig

ure ���	 for the plant� it is possible to get exactly

jQpj � ��� � �jQj 	 �� ����	

This structure was chosen since it intuitively allows for all single
state state
sets� all

double
state state
sets� etc� � � to be generated using Algorithm ���� Note that �as is

the case in this example	� if there exist two or more transitions between two states �for

example� ��q�� �	 � q�� ��q�� �	 � q�� and ��q�� ��	 � q�	� the transitions are indicated

by a single arrow� and a label containing a list of all the events �for example �� �� ��	

is attached to the arrow� The n distinct ��� ��� � � � � �n events appear to prevent DFA

reduction via Algorithm ����

����� Acyclic Structures

The results presented in the previous section suggest that particular types of cyclic

structures cause computational problems when computing projections� If we exclude

all those FSMs which contain cycles� we are left with acyclic FSMs� Formally� we

de�ne a plant G � fQ��� �� qo� Qmg to be acyclic if there does not exist s � �� and

there does not exist q � Q such that ��q� s	 � q�

Tsitsiklis constructs such an acyclic type of plant in �Tsi���� Tsitsiklis goes on

to prove that a supervising agent would require an exponential number of states to

keep track of all the possible states the plant could be in� The example in �Tsi���

�Figure ���	 is constructed so that for the parameter n� the number of states in the

plant is on the order of n�� and the number of states in the projection automaton

��

DFA A’’n

qo

q1

q2

q3

qn

0,α1

0,1,α2

0,1,α30,1,α0,σ

1

...

Figure ���� A modi�ed DFA with � � �uo

��

Figure ���� A �n� n� construction for n � �

is on the order of �n� It is shown in �Tsi��� that no reduction in the size of the

supervisor is possible� Note that in Figure ���� the transitions labeled in brackets

indicate transitions which are de�ned in the plant� but which are not de�ned in the

legal language�

��

Chapter �

Software Implementation

In practice� discrete
event models describing real systems may require hundreds

or thousands of states� In order to e�ectively manipulate these large plant models in

an e�cient manner� we need to make use of algorithms which can be implemented

as software programs� While e�cient algorithms have been identi�ed for many of

the operations which are required to solve DES problems �Rud���� to the best of

our knowledge there does not exist a software implementation which provides these

operations in a exible� intuitive manner�

In this chapter� we review some of the currently available DES software packages�

we present a number of architectural and functional requirements for a new software

implementation based on a prototype package developed to aid in the research pre

sented in this thesis� and �nally we present a series of DES functions implemented

in MATLAB �a commercial software package	 �Mat��� which would be the computa

tional core of the proposed software implementation�

��� A Review of Current DES Software Tools

����� TCT and Object TCT

The software package TCT �Won��� represents the �rst DES software tool to be

developed� It provides a wide variety of basic DES operations �Figure ���	 and an

interactive environment where these operations can be used� Recent development

e�orts have focused on making the software capable of reliably working with large

DESs� One immediate drawback of the TCT software tool can be seen in Figure ����

��

Figure ���� The TCT main menu

The TCT software relies on the user to interpret lists of states and transitions which

can be a time consuming process� It should be noted that all FSMs must be entered

as lists of states� marker states� and transitions� Furthermore� TCT does not allow

for the labeling of states or transitions� Finally� due to the design of the interactive

environment� it is impossible to run scripts of commands� If the user wants to repeat

a sequence of calculations �perhaps with some slight modi�cations to an initial plant	�

all the work must be done manually�

Object TCT �OTCT	 �O�Y��� is a more recent DES software tool written in C$$

which� while providing essentially the same DES operation functionality� is designed

to process batch �les which contain sequences of commands for solving particular

DES problems� The OTCT software is also designed to work with DES problems

with timing constraints� Unfortunately� it is still necessary to use lists of states�

marker states� and transitions �representing DES plants	 as input and output�

��

Figure ���� The TCT FSM output

��

����� StateTime

The StateTime prototype DES software toolset �Ost���� which has been designed

to work with timed DES problems �i�e�� timed transition models combined with a

real
time temporal logic framework	� provides some of the visual state descriptions

which allow the user to more easily design and modify inputs� and interpret outputs�

This feature has been lacking in both of the previously
discussed software packages�

StateTime is designed to work with a type of Statechart �Har��� �with timing infor

mation	 instead of with FSMs� Statecharts are another type of state
machine which

allow for a more compact visual representation of a regular language� It does not ap

pear that the StateTime tool currently has any capability for generating or running

scripts or batch �les�

��� A New Approach for DES Software Tools

After using some of the other software tools for solving example problems related

to the work presented in this thesis� it quickly became apparent that a new� more

exible tool was required� A new tool should be able to process script �les containing

�possibly a large number of	 basic DES operations� The tool should also be capable

of accepting �resp�� producing	 DES plants as input �resp�� output	 in a format which

is intuitive to the user�in this case� as �nite state machines where the states and

transitions are displayed graphically� not as lists of data�

These two new high
level DES software requirements e�ectively determine how

the high
level implementation should be done� A core series of DES operations need

to be implemented in some well
established language which is reasonably well
suited

to solving mathematical problems� If this can be done properly� then this language� in

conjunction with the implemented set of DES operations� would provide the required

scripting environment� We present a set of functional requirements for such a DES

toolkit in Section ������ We have also included matrix
based algorithms for a subset

of the set of DES operations currently available in other DES software tools�

A front�end software tool also needs to be designed to create and interpret DES

��

plant �les� and to send commands to the computational engine in an interactive

manner� This allows the user to immediately see and understand the structure of

DES FSMs which result from using DES operations on an original set of plants� We

present a set of visual requirements in Section ����� which provide a more detailed

description of how such a front�end software tool should function�

����� Functional Requirements

In this section� we discuss in more detail what is required in the design of the core

computational engine�

������� High�Level Scripting and Batch Processing

In the existing set of DES software tools� it is di�cult and time�consuming to

process a large number of plants using an identical DES operation or a sequence of

DES operations� Essentially� for each plant the user would be required to interac

tively enter the plant information� and specify the operation or sequence of operations

required to process that plant� While this method is suitable for processing a small

number of plants� it quickly becomes untenable in cases where the number of plants

is large� Such a situation could occur where large numbers of plants are processed to

obtain statistical information�

In addition to enabling large batches of plants to be processed� a design which

allows for scripting enables the user to de�ne higher
level DES procedures as required

to solve speci�c types of problems� It is conceivable that the user could design a

MATLAB procedure which solves a control problem with partial observation� where

the user is asked for a speci�c set of input automata relating to plant and legal

languages� The procedure would be composed of basic DES operations which do all

the computations required to solve this type of problem�

Finally� by designing a core computational engine that accepts a scripted input�

it would be possible to record information about interactive sessions in a log �le

which would be able to reproduce the set of calculations using only the MATLAB

��

interpreter� This simpli�es the process of recording information regarding how speci�c

results were obtained� and of reproducing those results�

������� Extendibility

Discrete Event Systems theory is still an expanding �eld� As more research is done

in this area� it may be desirable to add new procedures and operations to the basic

DES software tool� Also� although we only require a subset of the DES operations

to be implemented in the prototype tool �i�e�� only those functions required for the

research presented in this thesis	� we want to ensure that when more MATLAB DES

operations are implemented� it will be simple to incorporate them in the prototype

tool�

������� Capability to Handle Large DES Problems

As we mentioned earlier� models of realistic industrial problems typically use hun

dreds or thousands of states� Thus� any DES software tool must be able to solve

these larger problems in a reliable manner� In the prototype tool developed for this

thesis� we took advantage of the sparse matrix functionality available in MATLAB to

minimize the amount of information about an automaton which needed to be stored�

In the matrix
based implementation� transitions in automata are represented using

adjacency matrices� where a ��� entry represents a transition between states �the

speci�c states are inferred from the row and column of the entry in the matrix	� and

a ��� entry represents no transition between states� Since in our experience� only a

small number of entries contain ���s representing transitions� it is e�cient to store

only the information corresponding to ��� entries� Thus for an n
state machine with

��qm� �	 � qm�� for m � �� � � � � n 	 � being the only de�ned transitions� storing the

whole transition matrix for the � transitions would require O�n�	 space and would

��

appear as �
�����������	

� � � � � � �

� � � � � � �
���

���
���

� � �
���

� � � � � � �

� � � � � � �

������������

where� for example� the transition ��q�� �	 � q� is captured by the ��� entry in row �

column � �i�e�� a transition starting at the state corresponding with the row number�

and terminating at the state corresponding to the column number	�

Storing only those locations in the adjacency matrix which correspond to de�ned

transitions would require only �� n space� and would appear as

�q�� q�	�

�q�� q		�
���

�qn��� qn	�

where the �rst entry in the ordered pair represents the state where the transition

starts �the row for the ��� entry in the sparse matrix	� and the second entry repre

senting the state where the transition terminates �the column for the ��� entry in the

sparse matrix	� When the number of transitions is small� the space savings can be

considerable�

By storing information about the transition structure of plants in the manner

outlined above� and by using e�cient algorithms for DES operations� we believe that

the MATLAB environment will be able to process DES automata which are large

enough to model complex problems�

����� Visual Requirements

We now present some details about the front
end software package which has been

developed as a �rst attempt to satisfy the high�level requirement that DES automata

��

should be able to be constructed and viewed by the user in a simple and intuitive

manner�

������� The Visual Plant

This section lists a number of desirable features which have been implemented in

the prototype software tool�

State Characteristics

� Each state in an automaton should be able to be moved to any desired location

within the workspace �by the user	 so that the automaton may be presented in

a readable manner�

� Each state in an automaton should be capable of being labeled in a meaningful

manner� It should be possible to modify this information in a simple and direct

manner�

� Each state should display information regarding its initial and marked status�

It should be possible to modify this information in a simple and direct manner�

Transition Characteristics

� Each transition should appear as an arrow originating at a state� and terminat

ing at �pointing to	 a state�

� Each transition should be capable of being labeled in a meaningful manner�

This label should correspond to an existing alphabet element� If a new label

is entered� a corresponding alphabet element should be added� It should be

possible to modify this information in a simple and direct manner�

� It should be possible to modify �in a simple manner	 the shape of the transition

line in order to make the overall automaton simpler to interpret and easier to

visualize

��

Plant Characteristics

Some work has been done in the area of drawing directed graphs in an aesthetically

pleasing manner� for example �GKNV���� While the prototype DES tool which we

have developed does not provide this function� the data structures have been designed

in such a way so that it would be simple to add a MATLAB routine which could

arrange visible states in an intuitive and understandable manner� This type of layout

function would be useful speci�cally in cases where a DES function �PROJ� MEET

or SYNC for example	 generates new state
sets which have a non
trivial relationship

to the state sets of their argument FSMs�

������� FSM Interactions

In the same way that it is possible to trace how a variable is calculated in a

spreadsheet� it would be useful to be able to trace how an automaton is calculated

in our interactive DES software environment� Furthermore� it would be useful to

be able to automatically update automata which are derived from other automata

when any information regarding the input automata or the type of DES operation

performed on the input automata changes� Finally� it would be useful to have a block

diagram representing the relationships between all automata currently loaded in the

interactive environment�

��� A Matrix�Based Implementation of DES Operations

The following subsections outline the vector and matrix data structures along with

the matrix
based algorithms which were developed as part of this thesis� In order to

illustrate these structures and algorithms� we use the two FSMs in Figure ��� as

running examples� For the remainder of this section� G� refers to the FSM shown in

Figure ����a	 and G� to the FSM shown in Figure ����b	�

We point out that although we chose to implement the structures and algorithms

described in this subsection in MATLAB� there is no reason why they may not be

implemented in other matrix
based mathematical environments� Therefore� in the

��

G2

Full

Empty

α
γ

G1

Idle

Working

Broken

α
ββ

(1)

(2)

(1)

(2)

(3)

(a) (b)

Figure ���� Two example FSMs

following subsections we focus on the matrix operations and manipulations which

comprise the DES operations� and omit many of the MATLAB
speci�c implementa

tion details�

Also� for clarity we use full matrix representations when describing how the various

steps of the matrix algorithms apply to the example FSMs� However� in the MATLAB

implementations of these algorithms� all the matrix manipulations are done using the

sparse matrix form�

����� The File Format

The �le format used to store DES plants is essentially a MATLAB �m �le� As no

MATLAB operations are performed in this �m �le� the ordering of the various vectors

and matrices which de�ne the FSM is not important� Further� the front
end prototype

program has also been designed such that the order of the vectors and matrices is not

important� The �le contains the vectors and matrices described below�

The Plant Name Vector

This vector contains the name of the �nite state machine� This name is used as

��

a su�x when naming all the plant vectors and matrices� Thus� for a plant named

�G��� the variable would be de�ned as

PNG�
� ��G���

in the plant �le�

The Stacked Transition Matrix

The Stacked Transition Matrix is essentially an �m �n	�n matrix� where n is the

number of states in the FSM� and m is the number distinct events� Thus� the �rst n�n

block represents the adjacency matrix for the �rst event in the event set �� the second

n � n block represents the adjacency matrix for the second event� and so on� Since

MATLAB does not easily store lists of information as matrix elements� and the current

version does not support n
dimensional matrices where n � �� this method of data

storage was chosen as the simplest method for storing all the transition information

in a single data structure� The following is an example of a stacked transition matrix

for the example FSM G�� �
��������������	

� � �

� � �

� � �

� � �

� � �

� � �

���������������

�

which appears in sparse matrix form as

TRG�
� sparse��� �	�

TRG�
��� �	 � ��

TRG�
��� �	 � ��

TRG�
��� �	 � ��

For this example� the �rst event �say �	 occurs as a transition between states � and ��

and the second event �say �	 occurs as transitions between states � and �� and states

��

� and �� Note that in the sparse matrix representation� a ��� signi�es the occurrence

of a transition starting at the state indicated by the row number �modulo m	 and

terminating at the state indicated by the column number� whereas a ��� �i�e�� the

matrix element is not explicitly de�ned in a sparse matrix	 represents the absence of

a transition�

The Transition Location Matrices

The Transition Location Matrix is used to de�ne the �x�y	 screen positions of the

spline points for each de�ned transition occurring between two states� Note that since

there needs to be only one physical line�arrow to represent a number of transitions

between the same start and termination states� the matrix does not need to be stacked

to accommodate an adjacency matrix for each event� However� the matrix is stacked

horizontally to accommodate the x and y location information� and can be stacked

vertically to accommodate �x� y	 locations for splines with multiple points� Thus

TSG�
�

�
�������	

�X loc� matrix� spline point �� �Y loc� matrix� spline point ��

�X loc� matrix� spline point �� �Y loc� matrix� spline point ��
���

���

�X loc� matrix� spline point n� �Y loc� matrix� spline point n�

��������
�

In the example below �shown in sparse matrix form	� the spline associated with

the ���� �	 � � transition has �x�y	 coordinates ��������	� which correspond to the

sparse matrix elements TSG�
��� �	� and TSG�

��� �	� Adding the elements for the other

transitions in G� we get

TSG�
� sparse��� �	�

TSG�
��� �	 � ����

TSG�
��� �	 � ����

TSG�
��� �	 � ����

TSG�
��� �	 � ����

TSG�
��� �	 � ����

��

TSG�
��� �	 � ����

The State Label Vector

The State Label Vector is a list of names corresponding to FSM states� The

ordering of the state labels corresponds to the ordering of the transitions in the

transition matrices� and in the initial and marked state vectors� Thus� states indicated

by the nth row or column of a matrix are labeled by the nth label in the state label

vector� An example of a state label vector for the FSM G� is

SNG�
�

�
����	

�Idle�

�Working�

�Broken�

����� �

The Initial State Vector

The Initial State Vector indicates the set of initial states by using a ��� at the

locations corresponding to the states in the set� Note that in DES theory� there can be

only one initial state� although the software makes no such restrictions� An example

of this vector for FSM G� is

SIG�
�

� � �

�
�

which indicates that the �rst state �state �Idle� as de�ned in the State Label Vector	

is the initial state of the FSM�

The Marked State Vector

The Marked State Vector is de�ned in a similar manner to the initial state vector�

the two di�erences being that this vector indicates the marker states of the FSM�

and that it is possible in standard DES theory to have multiple marker states� An

example of this vector for the FSM G� is

��

SMG�
�

� � �

�
�

which indicates that the �rst and second states �states �Idle� and �Working� as

de�ned in the State Label Vector	 are both marker states of the FSM�

The State Visibility Vector

The state visibility vector is also de�ned in a similar manner to the initial and

marked state vectors� In this case� the vector indicates those states which are to be

displayed using the front
end display program� An example of this vector for the

FSM G� is

SVG�
�

� � �

�
�

which indicates that all the states are to be displayed�

The State Location Vector

The state location matrix is an n � � matrix with each row containing an �x�y	

location for the state which corresponds to the nth element of the State Label Vector�

An example of this vector for the FSM G� is

SLG�
�

�
����	

��� ��

��� ���

��� ���

����� �

which indicates that state � �or �Idle�	 is located at screen position �������	� state �

�or �Working�	 is located at screen location ��������	 and so on�

The Alphabet Label Vector

The Alphabet Label Vector is similar to the State Label Vector in that it provides

a list of labels which correspond to the occurrence of the mth n � n block in the

stacked transition matrix� The Alphabet Controllability and Observability Matrices

��

�de�ned below	 also make use of column locations which correspond to this list of

alphabet labels� An example of this type of vector for the FSM G� is

ANG�
�

�
�	 �

�

�� �

which indicates that the �rst n�n block in the stacked transition matrix corresponds

to an event labeled ���� and the second block corresponds to an event labeled ����

The Alphabet Controllability Matrix

For both the Alphabet Controllability and Observability Matrices� we introduce

the notion of multiple supervising agents� Each supervising agent has its own view of

what occurs in a system and a set of events that it can control in that system� While

the data
structure de�ned here allows for multiple agents� the MATLAB implementa

tion of the DES operations currently considers only those cases where a single agents

is de�ned�

The Alphabet Controllability Matrix is a k�m matrix which contains information

about the controllability of each of the alphabet elements �m total	 for each of the k

supervising agents� This matrix contains a ��� at row i� column j if� for supervisor

i� the jth alphabet element �labeled by the jth entry in the Alphabet Label Vector	 is

controllable� otherwise it contains a ��� at this location� An example of this matrix

for the FSM G� is

ACG�
�

�
�	 � �

� �

�� �

which indicates that for the �rst supervising agent� the �rst alphabet element ����

as de�ned in the example alphabet label vector	 is controllable� and the second al

phabet element ����	 is not controllable� For the second supervising agent� ��� is

not controllable� while ��� is controllable�

��

The Alphabet Observability Matrix

The Alphabet Observability Matrix is de�ned in a manner analogous to the Al

phabet Controllability Matrix� the di�erence being that ���s in this matrix represent

alphabet elements �indicated by the column	 which are observable by some supervis

ing agent �indicated by the row	� Thus the example matrix

AOG�
�

�
�	 � �

� �

��

indicates that the �rst agent cannot observe the �rst alphabet element ���� as de�ned

in the example alphabet label matrix	 but it can observe the second alphabet element

����	� For the second supervising agent� the opposite is true�

����� Basic Matrix Operations

Before we can discuss the details of the various DES matrix
based algorithms� it

is necessary to de�ne some terminology� First� let adjacency matrix A represent the

transitions in a FSM� By computing An� a matrix which represents the number of

distinct �walks� of length n between any two states can be obtained �Epp���� A walk

between two states qi and qj is a string s � �� such that ��qi� s	 � qj� If

A �

�
�	 � �

� �

�� �

then

A� �

�
�	 � �

� �

�� �

which can be interpreted to mean that there is one walk of length � from state �

to state � �in this case via state �	� and similarly one walk of length � from state

� to state �� There are no walks of length � between state � and state �� The An

matrix can be modi�ed so that it keeps track of accessibility� instead of counting the

numbers of walks between pairs of states� First� we de�ne the function NORM to be

��

a function which replaces any non
zero matrix element with a �� If A represents the

adjacency matrix for a FSM� then de�ne

A� � A�

An � NORM�An $ An��	�

Thus� if An has a � at location �i�j	� then there exists a walk of length less than or

equal to n between states i and j�

The matrix operator ��� is de�ned as follows� Given two matrices B� and B�

with the same dimensions� where the entries of B� and B� are ��s or ��s� the resulting

matrixB � B��B� has the same dimensions as matricesB� and B� with each element

B�i� j	 being de�ned as the logical �and� of elements B��i� j	 and B��i� j	�

The matrix operator ��� is de�ned as follows� Given two matrices C� and C�

with the same dimensions� where the entries of C� and C� are ��s or ��s� the resulting

matrix C � C��C� has the same dimensions as matrices C� and C� with each element

C�i� j	 being de�ned as the logical �or� of elements C��i� j	 and C��i� j	�

The matrix operator ��� is de�ned to be the standard operator for calculating a

matrix product�

Finally� the notation jDj indicates the number of entries in a vector D�

����� The TRIM Operation

A matrix
based implementation of the trim operation de�ned in Section �������

is presented in this section� We present a pseudo
code algorithm� followed by a

discussion of some of the key steps in the algorithm� and conclude with a simple�

illustrative example�

Algorithm ��� � GTRIM � TRIM�G	

�� input G � �PN�TR� TS� SN� SI� SM�SV� SL�AN�AC�AO	

�� TX � ��

��

	� for i � �� � � � � jAN j

TX � TX
W
TR���i	 �	 � jSN j$ �	 � � � �i � jSN j	� � � � � jSN j�

end

�� R � NORM�SI � TX $ SI	

�� Rold � ��� jSIj	 all zeros vector

�� while R �� Rold do

Rold � R

R � NORM�R � TX $ R	

end

�� SM � SM
V
R

�� CR � NORM�SM � TX � $ SM	

�� CRold � �� � jSIj	 all zeros vector

��� while R �� Rold do

CRold � CR

CR � NORM�CR � TX � $ CR	

end

��� PNTRIM � PN

SNTRIM � SN

SLTRIM � SL

SITRIM � SI

SMTRIM � SM

SVTRIM � SV

TRTRIM � TR

TSTRIM � TS

ANTRIM � AN

ACTRIM � AC

AOTRIM � AO

��

��� for each nonzero entry i in R
V
CR do

remove corresponding rows from SNTRIM and SLTRIM

remove corresponding columns from SITRIM� SMTRIM and SVTRIM

remove corresponding rows and columns from TRTRIM and TSTRIM

end

�	� return GTRIM � �PNTRIM � TRTRIM� TSTRIM� SNTRIM � SITRIM� SMTRIM�

SVTRIM � SLTRIM� ANTRIM � ACTRIM� AOTRIM	

Algorithm ��� creates a FSM which recognizes the same languages as the input

FSM� but which contains only those states which are both �reachable� and �co

reachable�� A state q is de�ned to be reachable if there exists a string s such that

��qo� s	 � q� A state q is de�ned to be co�reachable if there exists a string s such that

��q� s	 � qm for some marker state qm � Qm�

In order to calculate reachable states� the matrix
based implementation of the

TRIM operation needs to know only that there exists some transition between a

given set of states� It does not need to know the label of the transition� For that

reason� the MATLAB function creates a new n � n adjacency matrix based on the

stacked m �n�n transition matrix of the original DES� This matrix is the logical OR

of each n�n block �representing the adjacency matrix for a single alphabet element	

in the stacked transition matrix� Formally� for some arbitrary FSM with a stacked

transition matrix TR� a matrix TX is de�ned as follows�

TX � TR�� � � � n� � � � � n	
�
� � �
�
TR���m	 �	 � n $ �	 � � � �m � n	� � � � � n	�

This TX matrix now represents an adjacency matrix where an unlabeled transition

is de�ned between two states q� and q� if ��q�� �	 � q� is de�ned for any � � ��

The second part of the matrix
based function for TRIM calculates FSM reacha

bility using the TX matrix� Trivially� the initial state �represented by the vector SI	

is reachable� The algorithm then uses the TX matrix to calculate the set of states�

represented by vector R� which are reachable from the initial state via at most a single

transition as follows�

R � NORM�SI � TX $ SI	� ����	

��

In general� if TX is an adjacency matrix� and SI is a matrix representing a subset

of states �with a ��� representing the inclusion of the corresponding state in the

subset	� then SI � TXn is a vector where the value of each element corresponds to

the number of distinct paths between states in the subset represented by SI and the

state represented by the element of the vector SI � TXn� Since we are also interested

in states which were already reachable �the initial state vector in this case	� we add

the previously reachable states to our result� Finally� as we are not concerned about

how many ways a state is reachable� only that it is reachable� we use the NORM

function to replace any non
zero elements of a matrix with the value ����

In order to check for states which are reachable via strings of arbitrary length�

this process is repeated� substituting the R vector for the initial state vector SI in

the previous equation� Thus�

R � NORM�R � TX $ R	� ����	

This is repeated until the number of non
zero entries in R matrix does not increase

after the application of ����	� Note that for our simple FSM G�� all the states are

reached after the application of ����	� and therefore� in this particular case� no itera

tions of ����	 are required�

We have calculated all the reachable states� The function now calculates the subset

of reachable states which are also co
reachable� The algorithm used to calculate this

is very similar to the algorithm used to calculate reachable states� First� the function

calculates the transpose of the TX matrix �call it the TX � matrix	� This matrix

represents the adjacency matrix of a directed graph where the direction of all the

�observable	 transitions is reversed� The function then calculates a modi�ed marker

state set by taking the logical AND of the marker state vector SM and the reachable

state vector R �i�e�� we do not care about marker states which are not reachable	�

SM � SM
�
R� ����	

The initial equation used to calculate states which are co
reachable from the new

SM vector is

CR � NORM�SM � TX � $ SM	� ����	

��

and the equation which is iterated until the co
reachability matrix CR no longer

increases in its number of non
zero entries is

CR � NORM�CR � TX � $ CR	� ����	

By removing all elements in all state and transition vectors and matrices which cor

respond to zero entries in the R and CR vectors� we now have a set of states which

are both reachable and co
reachable�

Example

To illustrate how this matrix
based algorithm works� we will use the FSM G� in

Figure ��� as an input�

For the FSM G� �i�e�� n � �	� the TR matrix appears as

TRG�
�

�
��������������	

� � �

� � �

� � �

� � �

� � �

� � �

���������������

�

and thus� the corresponding TX matrix is�

TXG�
�

�
����	

� � �

� � �

� � �

�����
�
�
����	

� � �

� � �

� � �

�����

�

�
����	

� � �

� � �

� � �

����� �

The reachability vector R is calculated for the FSM G� as follows�

RG�
�

� � �

�
�

�
����	

� � �

� � �

� � �

�����$

� � �

�

�

� � �

�
�

��

Then the new SM reachable marked state vector is

SMG�
�

� � �

��
� � �

�

�

� � �

�
�

Finally� the coreachability vector CR is

CRG�
�

� � �

�
�

�
����	

� � �

� � �

� � �

�����$

� � �

�

�

� � �

�
�

We note that as with the reachability calculation� no iterations of ����	 are required

for this example� as the number of non
zero elements in the CR vector does not change

after the application of ����	� The �nal CRG�
vector tells us that only the �rst two

states are coreachable� The �nal step in our example is to remove rows and columns

which correspond to zero elements in the RG�
�CRG�

vector �i�e� states which are not

reachable and not coreachable	� Thus� for example� the modi�ed TR matrix would

appear as

TRTRIM �

�
�������	

� �

� �

� �

� �

��������
�

and the SI and SM vectors would appear as

SITRIM �

� �

�
�

SMTRIM �

� �

�
�

and �nally� the resulting FSM is shown in Figure ����

����� The MEET Operation

A matrix
based implementation of the meet operation de�ned in Section �������

is presented in this section� We present a pseudo
code algorithm� followed by a

��

TRIM(G1)

Idle

Working

α
β

(1)

(2)

Figure ���� The TRIM of FSM G�

discussion of some of the key steps in the algorithm� and conclude with a simple�

illustrative example�

Algorithm ��� � GMEET � �G�� G�	

�� input G� ��PNG�
� TRG�

� TSG�
� SNG�

� SIG�
�

SMG�
� SVG�

� SLG�
� ANG�

� ACG�
� AOG�

	

G� ��PNG�
� TRG�

� TSG�
� SNG�

� SIG�
�

SMG�
� SVG�

� SLG�
� ANG�

� ACG�
� AOG�

	

�� TRMEET � ��

TSMEET � �jSNG�
j � jSNG�

j � � � jSNG�
j � jSNG�

j	 all zeros matrix

SNMEET � ��� jSNG�
j � jSNG�

j	 label vector

SIMEET � ��

SMMEET � ��

SVMEET � ��

SLMEET � ��

ANMEET � ��

ACMEET � ��

AOMEET � ��

	� for i � � � � � jSNG�
j do

for j � � � � � jSNG�
j do

��

if SIG�
�i	 � � and SIG�

�j	 � � then

SIMEET��i	 �	 � jSNG�
j$ j	 � �

else

SIMEET��i	 �	 � jSNG�
j$ j	 � �

end

if SMG�
�i	 � � and SMG�

�j	 � � then

SMMEET��i	 �	 � jSNG�
j$ j	 � �

else

SMMEET��i	 �	 � jSNG�
j$ j	 � �

end

end

end

�� for each �p� q	 such that ANG�
�p	 � ANG�

�q	 do

ANMEET �

�
�	 ANMEET

ANG�
�p	

��

ACMEET �

ACMEET ACG�

�p	

�

AOMEET �

AOMEET AOG�

�p	

�

A�G�

� TRG�
��p	 �	 � jSNG�

j$ � � � � p � jSNG�
j� � � � � jSNG�

j	

A�G�

� TRG�
��q 	 �	 � jSNG�

j$ � � � � q � jSNG�
j� � � � � jSNG�

j	

for i � � � � � jSNG�
j do

for j � � � � � jSNG�
j do

A���i	 �	 � jSNG�
j$ � � � � i � jSNG�

j �

�j 	 �	 � jSNG�
j$ � � � � j � jSNG�

j	 � A�G�
�i� j	 �A�G�

end

end

TRMEET �

�
�	 TRMEET

A�

��

end

��

Note TSMEET � SVMEET � SNMEET � and SLMEET all contain information which

pertains to the display of the FSM� The information contained in these matrices

and vectors is not presented here� However� in the MATLAB implementation�

these vectors are computed using heuristics for screen locations and labeling

rules�

�� return GMEET ��PNMEET � TRMEET � TSMEET � SNMEET � SIMEET � SMMEET �

SVMEET � SLMEET � ANMEET � ACMEET� AOMEET	

Algorithm ��� creates a FSM that recognizes a language composed of strings which

are recognized by all of the the FSMs used as the arguments to the operation� Thus

for some arbitrary number of FSMs where

Gmeet � MEET�G�� G�� � � � � Gn	�

Gmeet recognizes only those strings� and all those strings� which are recognized by

G�� G�� � � � � Gn�

The FSM which generates the meet language as de�ned in ����	 can be constructed

as a jQG�
j � jQG�

j � � � �� jQGnj state machine� Since it can be shown that

MEET �MEET �G�� G�	� G		 � MEET �G��MEET �G�� G			

�i�e�� it is associative	� we can simplify our example� without loss of generality� by

considering MEET to be the meet of only two FSMs �say G� and G�	�

The matrix
based MEET routine builds the various FSM matrices and vectors as

follows� First� the alphabet label vector and the stacked transition matrix for Gmeet

are constructed� Since the language that describes the meet of two input languages

contains only those elements which are contained in both the input languages� any

strings in either of the two input languages which contain events which are unique to

that language will not be included in the meet language� Thus� �meet � �G�
� �G�

�

Next� the alphabets of the two FSMs are compared� and for each set of common

event labels� the event label is added to the alphabet label vector ANmeet� and a

new jQG�
j � jQG�

j � jQG�
j � jQG�

j block is added to the new stacked transition matrix

��

TRmeet� For some � � �G�

T
�G�

� the jQG�
j � jQG�

j adjacency matrix for � in G�

�call it A�G�
	� and the jQG�

j � jQG�
j adjacency matrix for � in G� �call it A�G�

	 are

combined to create an adjacency matrix �call it A�	 for the new FSM in the following

manner� For i� j � � � � � jQG�
j�

A���i	�	�jQG�
j$� � � � i�jQG�

j � �j	�	�jQG�
j$� � � � j �jQG�

j	 � A�G�

�i� j	�A�G�

� ����	

Equation ����	 can also be described in a more graphical manner as follows

A� �

�
�������	

A�G�
��� �	 �A�G�

A�G�
��� �	 �A�G�

� � � A�G�
��� jQG�

j	 �A�G�

A�G�
��� �	 �A�G�

A�G�
��� �	 �A�G�

� � � A�G�
��� jQG�

j	 �A�G�

���
���

� � �
���

A�G�
�jQG�

j� �	 �A�G�
A�G�

�jQG�
j� �	 �A�G�

� � � A�G�
�jQG�

j� jQG�
j	 �A�G�

��������
�

The new stacked transition matrix TRmeet is then constructed� with each A�

adjacency matrix block corresponding to some � � �G�
� �G�

�

TRmeet �

�
��������	

A��

A��

���

A�n

���������
� ����	

The initial state vector is constructed as follows� For each vector element in the

initial state vector for G�� jQG�
j vector elements are added to the new initial state

vector by multiplying the vector element for G� by the entire initial state vector

�containing jQG�
j elements	 for G�� Thus� a state in the meet FSM is an initial state

if both the corresponding states in G� and G� are initial states�

The marked state vector is constructed using the same method that was used for

constructing the initial state vector� Thus� a state in the meet FSM is a marked state

if both the corresponding states in G� and G� are marked states�

The alphabet controllability and observability properties for those alphabet ele

ments � � �G�
which form �meet are taken as the default values for the controllability

and observability matrices in the new Gmeet FSM� State and transition locations are

generated automatically according to a simple heuristic algorithm�

��

As discussed in Section �������� we are primarily interested in trim languages�

Thus� the MEET routine includes as a �nal stage a call to the TRIM routine� before

it returns the FSM to the user�

Example�

We use the two example FSMs G� and G� from Figure ��� as inputs to the MEET

operation to illustrate how this operation works� Equations ����	 and ����	 are used

to construct the new TRmeet stacked transition matrix� Since G� and G� have the �

event in common� the adjacency matrix A� for Gmeet will contain non
zero elements�

and is constructed using ����	� The adjacency matrix can be thought of as a � � �

group of �� � submatrix blocks�

A� �

�
����	

�� � �� � �� �

�� � �� � �� �

�� � �� � �� �

����� �

The ��� submatrix blocks are computed as follows� Given that the adjacency matrix

for the � event in G� is

A�G�

� TRG�
�� � � � �� � � � � �	

�

�
�	 � �

� �

�� �

and the adjacency matrix for the � event in G� is

A�G�

� TRG�
�� � � � �� � � � � �	

�

�
����	

� � �

� � �

� � �

����� �

��

For each zero entry in the A�G�

adjacency matrix� an all
zero � � � submatrix block

is inserted in the corresponding entry in the A� adjacency matrix as follows�

A� �

��� �	

��� �	

��� �	

��� �	

��� �	

��� �	

�
��������������	

� �

� �
�� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

���������������

�

Note that for each row in the A� matrix� a state
pair has been included which illus

trates how the rows in the matrix correspond to the elements of the Cartesian product

QG�
� QG�

� A similar labeling applies to the columns of the matrix� Since the top

middle entry of the A�G�

adjacency matrix is ���� then the A�G�

adjacency matrix

is inserted in the corresponding top middle block of the new A� adjacency matrix�

completing the matrix�

A� �

��� �	

��� �	

��� �	

��� �	

��� �	

��� �	

�
��������������	

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

���������������

�

Since in this case� the only event that G� and G� have in common is �� then the

TRmeet stacked transition matrix is simply the A� adjacency matrix

TRmeet � �A�� �

Had G� and G� had more events in common� then the TRmeet matrix would be a

stack of all the newly calculated adjacency matrices as indicated by ����	� We also

note that in this example� after the �nal stage when Gmeet is trimmed� the resulting

FSM shown in Figure ��� contains only two states�

��

MEET(G1,G2)

Idle,Full

Work.,Empt

α

Figure ��	� The MEET of FSMs G� and G�

����	 The SYNC Operation

A matrix
based implementation of the synchronous product operation de�ned in

Section ������� is presented in this section� We present a pseudo
code algorithm�

followed by a discussion of some of the key steps in the algorithm� and conclude with

a simple� illustrative example�

Algorithm ��� � GSY NC � SY NC�G�� G�	

�� input G� ��PNG�
� TRG�

� TSG�
� SNG�

� SIG�
�

SMG�
� SVG�

� SLG�
� ANG�

� ACG�
� AOG�

	

G� ��PNG�
� TRG�

� TSG�
� SNG�

� SIG�
�

SMG�
� SVG�

� SLG�
� ANG�

� ACG�
� AOG�

	

�� for each entry � in ANG�
which does not appear as an entry in ANG�

do

Put ��s along the diagonal of the A� adjacency matrix

within the TRG�
stacked transition matrix

end

for each entry � in ANG�
which does not appear as an entry in ANG�

do

Put ��s along the diagonal of the A� adjacency matrix

within the TRG�
stacked transition matrix

end

	� calculate GMEET � MEET �G�� G�	

��

�� GSY NC � GMEET

�� return GSY NC

Algorithm ��� combines the MEET operation with an operation �step � of Algo

rithm ���	 that adds event self
loops at each state of an FSM� to obtain an output

FSM that synchronizes on common events� and otherwise allows for all possible in

terleavings of events� as de�ned by ����	� For example� if two FSMs G� and G� are

used as input� the output FSM GSY NC can be informally described as follows� If G�

is at some state q�� and G� is at some state q�� then for state �q�� q�	 in Q� which

corresponds to G� being in state q� and G� being in state q�� then ���q�� q�	� �	 is

de�ned if any of the following are true�

� �G�
�q�� �	 is de�ned and �G�

�q�� �	 is de�ned� or

� �G�
�q�� �	 is de�ned and � �� �G�

� or

� �G�
�q�� �	 is de�ned and � �� �G�

�

The matrix
based SYNC routine �rst goes through the event labels for G� ��G�
	�

and adds self
loops of events to each state in G� if for � � �G�
� � �� �G�

holds� It

does an analogous step for each state in G�� The procedure then computes the meet

of these two modi�ed FSMs� and returns it to the user�

Example�

We again consider the example where the two input FSMs are G� and G�� In

this case� a
 self
loop event is added to G�� and a � self
loop event is added to G��

resulting in the two modi�ed automata �G�
� and G�

�	 shown in Figure ����

The MEET of G�
� and G�

� is computed using the algorithm presented in Sec

tion ������ The resulting A�� A�� and A� matrices represent the adjacency matrices

��

(1)

(2)

(1)

(2)

(3)

(a) (b)

G2’

Full

Empty

β

β

α
γ

G1’

Idle

Working

Broken

α
ββ

γ

γ
γ

Figure ���� The example FSMs with self
loops

for �� � and
 in the new FSM Gsync �

A� �

�
��������������	

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

���������������

�

A� �

�
��������������	

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

���������������

�

��

SYNC(G1,G2)

Idle,Full

Idle,Empt Work,Full

Work,Empt

α

β

γ

γ

β

Figure ���� The SYNC of FSMs G� and G�

A� �

�
��������������	

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

���������������

�

Therefore� the resulting TRsync stacked transition matrix �before trimming	 is

TRsync �

�
����	
A�

A�

A�

����� �

The other FSM vectors and matrices are calculated in the same manner as for the

MEET operation� Note� however� that for the SYNC operation� �sync � �G�
� �G�

�

The trimmed FSM which is constructed using this procedure is shown in Figure ����

��

����
 The PROJ Operation

A matrix
based implementation of the projection operation de�ned in Algorithm ���

is given in this section� We present a pseudo
code algorithm� followed by a discus

sion of some of the key steps in the algorithm� and conclude by discussing a simple�

illustrative example�

Algorithm ��� � GPROJ � PROJ�G	

�� input G � �PN�TR� TS� SN� SI� SM�SV� SL�AN�AC�AO	

�� TRPROJ � ��

TSPROJ � ��

SNPROJ � ��

SIPROJ � ��

SMPROJ � ��

SVPROJ � ��

SLPROJ � ��

ANPROJ � ��

ACPROJ � ��

AOPROJ � ��

	� for i � � � � � jAN j do

if AO�i	 � � then

AOPROJ �

AOPROJ AO�i	

�

ACPROJ �

ACPROJ AC�i	

�

ANPROJ �

�
�	 ANPROJ

AN�i	

��

end

end

�� let TXUO be an all�zero jSN j � jSN j matrix

for i � � � � � jAN j do

��

if AO�i	 � � then

TXUO � TXUO

W
TR���i	 �	 � jSN j$ �	 � � � �i � jSN j	� � � � � jSN j	

end

while the number of non�zero elements in TX is increasing do

TX � NORM�TXUO � TXUO $ TXUO	

end

�� MAP � �SI � TXUO $ SI� �new���

while there exists some row �j� labeled �new� in the MAP matrix� do

for i � � � � � jAN j do

if AO�i	 � � then

S �MAP �j� � � � � jSN j	�

TR���i	 �	 � jSN j$ �	 � � � �i � jSN j	� � � � � jSN j	�

TXUO

end

if S �� MAP �k� � � � � jSN j	 for some k then

MAP �

�
�	 MAP

S �new��

��

add a new element to the SNPROJ � SIPROJ � SMPROJ � SVPROJ

and SLPROJ vectors

add new rows and columns to the TRPROJ and TSPROJ matrices

end

change entries in the TRPROJ and TSPROJ matrices to ���

to re
ect transitions between state sets in GPROJ as required

end

remove the �new�
ag from the jth row of the MAP matrix

end

Note TSPROJ � SVPROJ � SNPROJ � and SLPROJ all contain information which

pertains to the display of the FSM� The information contained in these matrices

��

and vectors is not presented here� However� in the MATLAB implementation�

these vectors are computed using heuristics for screen locations and labeling

rules�

�� return GPROJ ��PNPROJ � TRPROJ � TSPROJ� SNPROJ � SIPROJ � SMPROJ �

SVPROJ � SLPROJ � ANPROJ � ACPROJ � AOPROJ	

Algorithm ���� which is a matrix
based implementation of Algorithm ���� con

structs a FSM which generates the projection of the language generated by an input

FSM�

First� the routine creates a �n� n	 TXUO matrix� In this case� the TXUO matrix

is based on the �m �n�n	 Stacked Transition Matrix� but includes only unobservable

events� Thus� for I � fi j AO�i� � �� i � � � � �mg�

TXUO �
�
�i�I

TR���i	 �	 � n $ �	 � � � �i � n	� � � � � n	� ����	

The TXUO matrix as de�ned above can be interpreted to be an adjacency matrix

for any single unobservable event� What we now require is a modi�ed adjacency

matrix which accounts for strings of unobservable events� To accomplish this� we

iterate the equation

TXUO � NORM�TXUO � TXUO $ TXUO	 ����	

until the number of non
zero elements in the TX matrix stops increasing� We have

now created an adjacency matrix where a transition is de�ned between two states if

there exists a chain of unobservable events connecting the two states in the original

FSM�

The PROJ routine then creates a � � n MAP matrix that will contain subset

information for all the states in the new FSM� This matrix starts as a � � n matrix�

but will grow as new states are added to a k � n matrix� with each of the k rows

corresponding to a state in the projection state
space� Row � of the MAP matrix

�the only row at this stage	 is de�ned as

MAP ��� � � � � n	 � SI � TXUO $ SI� �����	

��

This is equivalent to the subset of states de�ned by �
CLOSURE�qo	� or the set of

states the input FSM could be in after the occurrence of a �possibly zero length	

string of unobservable events �i�e�� no observable events have yet occurred in the

input FSM	� This subset represents the initial state in the output FSM�

This �rst row of the MAP matrix is agged as �new�� The routine then enters an

iterative stage� Here� for each �new� row in the MAP matrix� the routine determines

what subset of states S can be reached from the subset of states represented by the

�new� row in the MAP matrix via each � � �o followed by a string of unobservable

events� The equation is as follows�

S � MAP �j� � � � � n	 � TR���i	 �	 � n $ �	 � � � �i � n	� � � � � n	 � TXUO� �����	

This equation uses the subset of states represented by the jth ��new�	 row in the

MAP matrix� and the observable event with an adjacency matrix represented by the

ith n� n block in the stacked transition matrix TR� If the S vector does not match

any of the existing rows in the MAP matrix� then it is added as a new row to the

MAP matrix� and is agged as �new� as follows�

MAP �

�
�	 MAP

S �new��

�� � �����	

As the MAP matrix is being constructed� corresponding TR� SN � SM � SI� and

SL matrices �which represent data for the new FSM	 are updated as required with

new transitions and states� The states represented by the vector elements in the SN �

SM � SI� and SL vectors correspond to the rows in the MAP matrix� that is� the �rst

row in the MAP matrix corresponds to the state represented by the �rst element in

the SN � SM � SI and SL matrices �and the �rst row and column in each block of the

the TR matrix	

Although in general� it is desirable to obtain a minimum state representation of

the language generated by the output FSM� this routine does not do this by default�

This allows us to examine the structure and size of the resulting FSM� and make

conjectures about how the structure of the input FSM impacts the size of the output

FSM �before minimizing	�

��

Example�

To illustrate how the PROJ matrix algorithm works� we partition the event set �

of G� in Figure ��� into �uo � f�g and �o � f�g� The TX matrix resulting from

����	 and ����	 is

TX �

�
����	

� � �

� � �

� � �

����� �

and the �rst row for the MAP matrix as de�ned in �����	 is

MAP � SIG�
� TX

�

� � � New

�
�

Now� we iteratively apply �����	 to each �new� row in the MAP matrix� For the �rst

iteration� we consider the �rst row of the MAP matrix� and the � event� The � event

maps the �rst state to the third state� and the second state to the �rst state� Note�

however that it is possible to reach the second state from the �rst state via a string

�namely �	 of unobservable events� Thus� � also� in e�ect maps the second state back

to the second state� Therefore� the MAP matrix becomes

MAP �

�
�	 � � �

� � � New

�� �

We now consider the second row of the MAP matrix� which contains the only

�new� ag� After applying �����	 to the row� no new rows are added to the MAP

matrix� We can therefore conclude that the only two state
sets which make up the

projection state space are fIdle�Workingg and fIdle�Working�Brokeng� The adjacency

matrices for each of the observable events are constructed as the MAP matrix grows�

Thus� if at some stage during the procedure� the MAP matrix contains n rows� then

for each observable event� there exists an n � n adjacency matrix� The FSM which

recognizes the projection of L�G�	 is shown in Figure ���� For simplicity� we have

renamed the state �fIdle�Workingg� as ���� and the state �fIdle�Working�Brokeng�

as ����

��

PROJ(G1)

1

2

β

β

Figure ���� The PROJ of FSM G�

����� The MINI Operation

The matrix
based MINI operation presented here implements Algorithm ���� The

algorithm takes an input DFA� and provides an output DFA which recognizes the same

language� but which contains the minimum number of states required to recognize that

language� The matrix
based implementation of this algorithm has been developed to

work with matrix representations of FSMs�

First� the MINI routine constructs a three
column matrix FLAG� The �rst two

columns of each row of this matrix contain unique i� j pairs� i �� j� where i� j represent

distinct states in the FSM� Thus� there are as many rows as there are combinations

of two distinct states in the FSM �speci�cally� �n � �n	 �	��	 rows	� The entry in the

third column of each row �with entries i� j in the �rst two columns	 is de�ned using

the Marked State Vector SM as follows�

Column � entry � � if SM�i	 �� SM�j	� or

Column � entry � � if SM�i	 � SM�j	�

The routine then goes through each row of the FLAG matrix� and for each row

containing a zero in the third column� it �nds the state
pair �qii� qjj	 where qii �

��qi� �	 and qjj � ��qj� �	� qi �� qj� � � �� and qi� qj corresponding to i� j in the �rst

two columns of the FLAG matrix� If the row in the FLAG matrix which corresponds

��

to the state pair �qii� qjj	 has a ��� in the third column� then the routine enters a ���

in the third column of the row corresponding to the �qi� qj	 state pair� This process

is iterated until no new ��s are entered in the third column of any row in the FLAG

matrix�

Finally� those pairs of states which have not been �agged� in the above iterative

process� are considered to be equivalent states� The matrix
based routine therefore

combines these states� and outputs a minimum DFA to the user�

It should be noted that this implementation of the Myhill
Nerode theorem� while

fairly simple to code in MATLAB� is not the most computationally
e�cient way to

calculate the minimum DFA �Hop���� Speci�cally� Algorithm ��� �step �� line �	

uses recursion on lists to e�ciently ag unagged pairs� In contrast� our matrix

based routine cycles through the list of state pairs to test� and in some cases ag�

unaggeded pairs� This cycle continues until a complete test of all the state pairs is

done with no further agging�

��

Chapter �

Examples

Before we present a series of example� we �rst need to de�ne the two types of �gures

which are used to present some of our results� First� we display a form of adjacency

matrix which illustrates how states map to other states after the occurrence of an

observable event �� followed by a string of unobservable events� Both the x
axis and

y
axis represent the set of states in these matrices�

We also use an n�
reachability matrix �sometimes referred to as a summary ma

trix	� where nonzero �i�e�� dotted	 elements in the matrix represent occurrences of

strings of length n in the plant� Thus� while the y
axis still represents the set of

states� the x
axis represents all possible strings of observable events of length n�

	�� The Two�Train Problem

For our �rst example� we chose the simple problem where two trains must share

a common length of track �RW���� �Won���� In this problem� parts of the track

have sensors which can detect the passage of the trains� and parts of the track have

stop lights which may prevent the trains from entering the following sections of track

�Figure ���	�

The plant language can be modeled by taking the synchronous product of two �nite

state machines �GV � and GV �� each representing the behaviour of a train	 which are

provided in Figure ���� Let V be the language recognized by the resulting automaton

GV GV recognizes

GV � SYNC�V �� V �	�

��

Figure 	��� A block diagram of the two
train problem

V1

V1−stn−A

V1−sec−1

V1−sec−2

V1−sec−3

V1−sec−4

V1−stn−B

α1

α2

α3

α4

α5

V2

V2−stn−A

V2−sec−1

V2−sec−2

V2−sec−3

V2−sec−4

V2−stn−B

β1

β2

β3

β4

β5

Vehicle 1 Vehicle 2

Figure 	��� The component models for the two
train problem

��

In controlling this system� we require that the two trains not occupy the same segment

of track at the same time� thus the legal language is de�ned as the language E

recognized by the automaton GV after the states ��� �	� ��� �	� ��� �	� and ��� �	 have

been removed together with all transitions leading into and out of the removed states�

This provides a FSM which recognizes a language which does not include strings

corresponding to train movements which result in the two trains occupying the same

section of track at the same time�

Now� as Figure ��� indicates� there is no sensor before section � of the track� This

means that the unobservable event set is �uo � f��� ��g� As part of the solution to

the control problem� it is useful to take the projection of all those strings which are

considered to be illegal� The language V 	 E represents all the possible strings of

events in the plant minus the legal strings� leaving only those strings which are illegal�

An automaton GV�E which recognizes the language V 	 E can be constructed� so

that the FSM which recognizes P �V 	 E	 can be calculated�

Gp � p�GV�E	�

As GV�E has �� states� it is possible that the FSM which generates the projection of

V 	 E could have on the order of ��� states�

	���� ��Reachability Analysis Results

Table ��� summarizes the results obtained for the �
reachability analysis of the

two
train problem� It is interesting to note that while in the worst case� the size of

the state
space could be on the order of ����� even a ��
reachability test indicates

that due to the structure of the problem� the upper limit is no greater than ������ A

��
reachability test further reduces this upper limit to ���� states�

Although �
reachability analysis does not allow us to strictly do better than make

exponential predictions about the size of the state
space of the projection FSM� the

structure of this problem allows us to improve our state
space estimate signi�cantly�

Speci�cally� by using the number and type of transitions coupled with the number

��

Table 	��� �
reachability results for the two
train problem

���reach� ���reach� ���reach� ���reach� ���reach�

State Estimate ����� �	�
 ���� �
	� ����

Max� Subset ��

 � �

Complexity Oj�oj� Oj�oj
�� Oj�oj

	� Oj�oj
�� Oj�oj

��

Figure 	��� A block diagram of the HVAC system

of states� instead of simply using the number of states� as the parameter for the

exponential estimate we can reduce our state
space estimate by a factor of ��	� Thus�

the ��
reachability test indicates that the size of the projection state
space is of order

��	 versus the state
space of the FSM which by itself indicates that the size of the

projection state
space could be of order ���� In this case� the �
reachability test has

reduced the exponent by a factor of ��

	�� An HVAC System

A heating� ventilation and air
conditioning �HVAC	 DES diagnosability problem

from �SSL���� �Figure ���	 was chosen as an example of a system where a large

number of the transitions occurring in the FSM are unobservable� In this case� ���

of ���� or more than ��& of the transitions in the ��
state FSM are unobservable�

In our analysis of the problem� we assume that all the failure events are strictly

��

Table 	��� �
reachability results for the HVAC system

���reach� ���reach� ���reach� ���reach� ���reach�

State Est� ��		
� ��

�� ���
�� 	�	�	�
��	

Max� Subset �	 �	 �	 �	 �	

Complexity Oj�oj� Oj�oj
�� Oj�oj

	� Oj�oj
�� Oj�oj

��

unobservable� and that all other events are observable� For simplicity� we do not make

use of additional sensors which are used in �SSL���� when checking for diagnosability�

The plant can be modeled by computing the synchronous product of six compo

nent FSMs� These component FSMs represent models of a Pump� a Valve� a Fan� a

Boiler� a Load� and a Controller �Figure ����a	��f	� respectively	� By taking the syn

chronous product of these components� a ��
state� ���
transition FSM is obtained�

We then note that the set of observable events is

�o � fPON�POFF�FON�FOFF�OV�CV�BON�BOFF�SPD�SPIg�

with a combined total of ��� transitions in the composed ��
state FSM� and the set

of unobservable failure events is

�uo � fPFON��PFON��PFOFF��PFOFF��SC��SC��SO��SO�g�

with a combined total of ��� transitions in the composed ��
state FSM�

	���� ��Reachability Analysis Results

Table ��� summarizes the results obtained for the �
reachability analysis of the

HVAC problem� In this example� while the best results are obtained using a ��

reachability test� the maximum subset size does not reduce past the initial ��

reachability value of ��� Thus� a simple ��
reachability test results in a reduction by

a factor of �ve of the exponent ��� versus ��� � ���	 used to estimate the size of the

projection state
space�

��

PUMP

P1

P2

P3P4

POFF

POFF
POFF

POFF PON

PON

PON

PON

PFON1

PFON2PFOFF2

PFOFF1

VALVE

V1

V2

V3V4

CV

OV

OV

CV
CV
OV

CV
OV

SC1

SC2

SO1

SO2

FAN

F1

F2

FONFOFF

FOFF

FON

(a) (b)

(c)

LOAD

L0

L1

L2SPDFOFF

SPI

FOFF

SPI

SPD

(d)
BOILER

B1

B2

BONBOFF

BOFF

BON

(e)
CONTROL

C1

C10

C9

C8

C7 C6

C5

C4

C3

C2

FON

SPI

OV

PON

BONSPD
CV

POFF

BOFF

FOFF
SPD

SPI

(f)

Figure 	��� The component models for the HVAC system

��

It is also of interest to look at the matrix structure for some of the transition ad

jacency matrices and some of the summary matrices� Figure ��� shows the adjacency

matrix representing a NFA containing all the unobservable events as de�ned in the

HVAC problem� plus additional unobservable transitions between states as follows�

��q�� �	 � q� if s � ��
uo such that ��q�� s	 � q��

The adjacency matrix can be interpreted to mean the following� For some state

represented by a matrix row� the adjacency matrix shows all the states �represented

by the matrix columns	 which can be reached by some string of unobservable events�

For example� if there is a dot in row �� column � and in row �� column �� then there

are two strings of unobservable events starting at state �� with one string leading to

state � and the other to state ��

Figure ��� summarizes the data obtained while doing the ��
reachability test�

The matrix rows correspond to states in the FSM in the usual manner� Each column

however corresponds to a unique � � �o� Thus� the matrix can be interpreted to

mean that after observing some event � �followed by some string of unobservable

events	� the system can be in at most some �not necessarily strict	 subset of the

states corresponding to the matrix rows containing dots� We can see from Figure ���

that the FON event �corresponding to matrix column �	 results in the system being

in at most a subset of �� states in the ��
�� row range� whereas the FOFF event

�corresponding to matrix column �	 results in the system being in a subset of � states

in the ��
�� row range� In fact� since the FON event maps to a subset of �� events�

it is the event which bounds the ��
reachability estimate �i�e�� since there are no

other events which map to more than �� states� then FON is one of the events which

provides the O���	 value	�

We have also included the ��
reachability matrix �Figure ���	� which is inter

preted the same way as was the ��
reachability matrix� with the exception being

that each column now corresponds to some unique group of two observable events

�i�e�� FON�FON or FOFF�CV� etc� � � 	� It is interesting to note here that while each

of the ten observable events mapped to some nonempty subset of states in Figure ����

��

0 20 40 60 80

0

10

20

30

40

50

60

70

80

90

nz = 166

Figure 	�	� Matrix structure for the unobservable events

��

0 5 10

0

10

20

30

40

50

60

70

80

90

nz = 109

Figure 	��� Matrix structure for the ��
reachability matrix

only �� of a possible ��� groups of double events map to nonempty subsets of states�

Unfortunately� the largest of these subsets is still �� states� and thus� no signi�cant

improvement can be expected over the ��
reachability projection state
space size esti

mate� Indeed� this maximumsubset size does not drop before the state
space estimate

starts increasing due to the double counting e�ect discussed in Section ��������

Finally� the adjacency matrix for the FON event �Figure ���	 has been included

to illustrate how each event maps to a small subset of states in this system� The ad

jacency matrix for the other observable events are similar in structure to this matrix�

��

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

nz = 146

Figure 	��� Matrix structure for the ��
reachability matrix

���

0 20 40 60 80

0

10

20

30

40

50

60

70

80

90

nz = 24

Figure 	��� The adjacency matrix for the FON event

Note that for this example� there is a signi�cant amount of nondeterminism due to

strings of unobservable events following the FON event�

	�� The Tsitsiklis Problem

It has been proven �Tsi��� that building supervisors for partially
observable sys

tems can be computationally intractable� In devising the proof for this� an arbitrarily

large DFA �Figure ���	 parameterized by n is constructed� with an unobservable event

���

set �uo � fu�� d�� u�� d�� � � � � un� dng� The control problem in this example is to dis

able the events in brackets in Figure ���� In order to do this� the supervisor must

remember the sequence of ��s and ��s which have occurred� Based on which �i event

it observes� the supervisor then must examine the ith event� If the ith event is a �

then the supervisor must disable � otherwise it must disable ��

When larger versions of the FSM shown in Figure ��� are constructed� the size

of the state
space of the FSM grows with n�� However� as the supervisor must at

each stage remember the sequence of ��s and ��s which have occurred� the constructed

supervisor must be of order �n� This example� while contrived� is of signi�cant interest

to us because it provides a scalable example of a case where �
reachability does not

improve the estimate of the size of the projected state
space signi�cantly�

The ��
state� ��
transition example in Figure ��� is constructed by scaling the

general problem to n � �� For this example� the number of states in the FSM is

� � n� $ � � n $ � or O�n�	� The proof found in �Tsi��� shows that the size of a

supervisor for such a system is O��n	� Since there are � � n� $ n occurrences of �

transitions and the same number of occurrences of � transitions� the ��
reachability

test will always return two sets of size �� n� $n� Thus� the ��
reachability estimate

grows exponentially worse as n increases� We conjecture that the n�
reachability

tests will also produce estimates which grow exponentially with n�

While �Tsi��� shows that the size of a supervisor must be O��n	� ��
reachability

analysis shows that the size of the projection state space of the system �upon which

the supervisor is based	 could be as high as O����n
��n	� Thus� it is clear that in this

type of example where the number of occurrences of a speci�c observable event is

high� �
reachability does not o�er any improvements to state
space size estimates�

	���� ��Reachability Analysis Results

Table ��� summarizes the results obtained for the �
reachability analysis of this

example� It is interesting to note that signi�cant improvements on the size estimates

are made up to and including the ��
reachability test� We conjecture that due to the

���

Table 	��� �
reachability results for the Tsitsiklis problem

���reach� ���reach� ���reach� ���reach�

State Estimate ��
���� ��	� ��� ����

Max� Subset �� 	 � �

Complexity Oj�oj� Oj�oj
�� Oj�oj

	� Oj�oj
��

nature of the construction� the best estimate will occur at approximately the nth�

reachability test �with some correction for the double
counting e�ect	� where n is the

parameter used for the construction of the system�

Figure ��� shows how both the � and � events �corresponding to the �rst two

columns in the matrix	 map to a large subsets of states� This corresponds to the large

number of occurrences of ��s and ��s in the system� This matrix also shows how each

of the �i
events �corresponding to the last � columns of the matrix	 maps to exactly

� states� as expected� In addition� the adjacency matrix presented in Figure ����

illustrates how the ��� event is de�ned for a large subset of states� compared to

Figure ��� in the HVAC example� where the non
zero elements of the adjacency matrix

are more localized� It is also of interest to note that unlike the HVAC example� no

nondeterminism has been introduced in this matrix� as there are no places where a

��� can occur followed by a string composed of unobservable events�

	�� A ���state Cycle Problem

The somewhat contrived example DES model shown in Figure ���� is an instance

of the class of FSMs presented in Figure ��� for n��� It has been included in this

section as an example of a case where �
reachability o�ers no improvement over the

single �
transition geometry result presented in Section ��������

���

0 5

0

5

10

15

20

25

30

35

40

nz = 48

Figure 	�
� Matrix structure for the ��
reachability matrix

���

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 21

Figure 	���� The adjacency matrix for the ��� event

���

G_cycle

state1

state2

state3

state4

state5

state6

state7

state8

state9

state10

α

α

α

α

α

α

α

α

α

α ε

β

β

β

β

β

β

β

β

β

β

Figure 	���� A cyclic FSM with �� states

���

Table 	��� �
reachability results for the cyclic example

���reach� ���reach� ���reach� ���reach� ���reach�

State Est� ���� �	�
 �

 	
�� ��	��

Max� Subset �� �� �� �� ��

Complexity Oj�oj� Oj�oj
�� Oj�oj

	� Oj�oj
�� Oj�oj

��

	���� ��Reachability Analysis Results

Table ��� presents the results of the �
reachability tests which were done on the

FSM in Figure ����� We can immediately see that the ��
reachability test gives a

worse estimate than the ��� � ��� 	 � � ��� upper limit for the number of projection

states� and that each subsequent iteration of the test serves only to roughly double

the projection state�space estimate�

To try and understand why our �
reachability results do not improve the projec

tion state
space estimate� we look at the adjacency matrix for the observable event

� �Figure ����	� Note that as in the previous cases� this adjacency matrix represents

not only the occurrence of � events� but also the occurrence all possible unobservable

event strings which may follow an � event� Whereas in the previous example� one

of the events maps to a large subset of states� in this example Figure ���� illustrates

the less desirable case when an event �in this case the � event	 maps to the entire

set of states� It follows that when this type of mapping occurs� we can conclude

that no number of iterations of the �
reachability test will reduce this set� since the

occurrence of an arbitrarily long string of � events will always map to the entire set

of states� This is exhibited in Figure ���� for ��
reachability�

���

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

nz = 11

Figure 	���� The adjacency matrix for the � event

���

0 5 10 15 20 25 30

0

2

4

6

8

10

nz = 272

Figure 	���� Reachable state
sets via all �
length strings

���

Chapter �

Conclusions and Discussion

The DES software requirements and the set of matrix�based algorithms presented

in this thesis constitute a basis for the design and implementation of a DES software

toolbox which provides a exible and visual environment for the design and analysis of

discrete�event systems� This design attempts to combine some of the useful features

of existing software packages with the proven reliability of a high
level matrix
based

computational engine �MATLAB	� In addition� the thesis outlines a series of user

interface requirements which enable the user to design� modify and analyze discrete

event systems in a simple and intuitive manner�

We have proposed a method for storing DES models �in the form of FSMs	 in

a matrix
based computational environment� We have also provided a set of matrix

based DES operations which serve as building blocks for modeling DES problems�

The logical continuation of this work would include completing the set of matrix

based DES operations� At a higher level� the software has been designed so that it

could be possible to include modules which incorporate additional DES requirements�

such as timing or knowledge� into the basic DES toolbox�

Our set of requirements and prototype software implementation served as a tool for

investigating the e�ects of structure on the computational complexity of constructing

FSMs which generate projected languages� A number of methods �based on DES

structures	 which attempt to improve the estimate of the size of the projection state

space have been presented� The e�ectiveness of this type of analysis is illustrated

through a series of simple yet illustrative examples� These examples have been chosen

to show cases where our analysis improves and does not improve the estimate of the

projection state
space�

���

It is our belief �con�rmed by the work presented in �OW���	 that by analyzing in

more detail the FSM properties related speci�cally to �
reachability� the results pre

sented here could be improved upon� Further� we believe that to fully take advantage

of the work done here� some work could be done which would identify exactly how

problem structures �such as cycles	 could be modi�ed so that computational problems

can be avoided�

Finally� the computational complexity analysis presented in this thesis could be

implemented in the prototype software tool as a package of pre
�ltering tests which

would provide estimates of the computational complexity of doing projection before

the projection operation is run�

���

References

�BH��� Y� Brave and M� Heymann� Control of discrete event systems modeled as

hierarchical state machines� IEEE Transactions on Automatic Control�

�����	����������� �����

�CDFV��� R� Cieslak� C� Desclaux� A� S� Fawaz� and P� Varaiya� Supervisory control

of discrete
event processes with partial observations� IEEE Transactions

on Automatic Control� ����	��������� March �����

�CLL��� S� L� Chung� S� Lafortune� and F� Lin� Limited lookahead policies in

supervisory control of discrete event systems� IEEE Transactions on Au�

tomatic Control� �����	����������� �����

�CLO��� C� G� Cassandras� S� Lafortune� and G� J� Olsder� Introduction to the

modelling� control and optimization of discrete event systems� In Pro�

ceedings of the ���� European Control Conference� pages ����� Springer

Verlag� September �����

�CLR��� T� H� Cormen� C� E� Leiserson� and R� L� Rivest� Introduction to Algo�

rithms� Massachusetts Institute of Technology� Massachusetts� �����

�Epp��� S� S� Epp� Discrete Mathematics with Applications� PWS Publishing

Company� Boston� �����

�GJ��� M� R� Garey and D� S� Johnson� Computers and Intractability A Guide

to the Theory of NP�Completeness� W� H� Freeman and Company� San

Francisco� �����

�GKNV��� E� R� Gansner� E� Koutso�os� S� C� North� and K� P� Vo� A technique for

drawing directed graphs� IEEE Transactions on Software Engineering�

����	��������� �����

���

�Har��� D� Harel� Statecharts� A visual formalism for complex systems� Science

of Computer Programming� ���	��������� �����

�HL��� M� Heymann and F� Lin� On
line control of partially observed discrete

event systems� Discrete Event Dynamic Systems� ���������� �����

�Hop��� J� Hopcroft� An n log n algorithm for minimizing states in a �nite automa

ton� In Theory of Machines and Computation� pages �������� Academic

Press� New York� �����

�HU��� J� E� Hopcroft and J� D� Ullman� Introduction to Automata Theory�

Languages� and Computation� Addison
Wesley� Reading� MA� �����

�JR��� T� Jiang and B� Ravikumar� Minimal NFA problems are hard� SIAM

Journal of Computation� ����	����������� �����

�Laf��� S� Lafortune� Modeling and analysis of transaction execution in database

systems� IEEE Transactions on Automatic Control� ����	��������� May

�����

�Leu��� H� Leung� Separating exponentially ambiguous NFA from polynomially

ambiguous NFA� In Algorithms and Computation� Lecture Notes in Com

puter Science� No� ���� pages �������� Springer
Verlag� Berlin� �����

�LMMB��� S� C� Lauzon� A� K� L� Ma� J� K� Mills� and B� Benhabib� Application of

discrete
event systems to exible manufacturing� Algorithmica� ���	�����

���� �����

�LW��� F� Lin and W� M� Wonham� On observability of discrete
event systems�

Information Sciences� ����������� �����

�LW��� Y� Li and W� M� Wonham� Control of vector discrete
event systems I�

the base model� IEEE Transactions on Automatic Control� ����	������

����� �����

���

�LW��� Y� Li and W� M� Wonham� Control of vector discrete
event systems

II�controller synthesis� IEEE Transactions on Automatic Control�

����	��������� �����

�Mat��� The Mathworks� Inc�� Natick� MA� MATLAB User�s Guide� �����

�Ost��� J� S� Ostro�� A visual toolset for the design of real
time discrete event

systems� IEEE Transactions on Control Systems Technology� ���	�����

���� May �����

�Ous��� J� Ousterhout� Tcl and the Tk Toolkit� Addison
Wesley� Reading� MA�

�����

�OW��� C� M� %Ozveren and A� S� Willsky� Observability of discrete event dynamic

systems� IEEE Transactions on Automatic Control� ����	��������� July

�����

�O�Y��� S� D� O�Young� Object TCT� User�s guide� Systems Control Group Re

port� Department of Electrical Engineering� University of Toronto� �����

�Rud��� K� G� Rudie� Software for the control of discrete event systems� A com

plexity study� Master�s thesis� Department of Electrical Engineering� Uni

versity of Toronto� �����

�RW��� P� J� Ramadge and W� M� Wonham� Supervision of discrete event pro

cesses� In Proceedings of the ��st IEEE Conference on Decision and

Control� volume �� pages ���������� December �����

�RW��� P� J� G� Ramadge and W� M� Wonham� The control of discrete event

systems� Proceedings of the IEEE� ����	������� January �����

�RW��� K� Rudie and W� M� Wonham� The in�mal pre�x
closed and observable

superlanguage of a given language� Systems � Control Letters� ����	�����

���� �����

���

�RW��a� K� Rudie and W� M� Wonham� Protocol veri�cation using discrete
event

systems� In Proceedings of the 	�st IEEE Conference on Decision and

Control� pages ���������� Tucson� Arizona� December �����

�RW��b� K� Rudie and W� M� Wonham� Think globally� act locally� Decen

tralized supervisory control� IEEE Transactions on Automatic Control�

�����	����������� November �����

�RW��� K� Rudie and J� C� Willems� The computational complexity of decentral

ized discrete
event control problems� IEEE Transactions on Automatic

Control� ����	����������� �����

�SSL���� M� Sampath� R� Sengupta� S� Lafortune� K� Sinnamohideen� and

D� Teneketzis� Diagnosability of discrete
event systems� IEEE Trans�

actions on Automatic Control� ����	����������� �����

�SSL���� M� Sampath� R� Sengupta� S� Lafortune� K� Sinnamohideen� and

D� Teneketzis� Failure diagnosis using discrete
event models� IEEE

Transactions on Control Systems Technology� ���	��������� �����

�Thi��� J� G� Thistle� Supervisory control of discrete event systems� Mathematical

Computer Modelling� �����	������� �����

�Tsi��� J� N� Tsitsiklis� On the control of discrete
event dynamical systems�

Mathematics of Control� Signals� and Systems� ��������� �����

�Won��� W� M� Wonham� Notes on control of discrete
event systems� Unpublished

course notes� �����

�WR��� W� M� Wonham and P� J� Ramadge� Modular supervisory control of

discrete
event systems� Mathematics of Control� Signals� and Systems�

�������� �����

���

VITA

Name� Adrian Victor Payne

Place and Year of Birth� Ottawa� ����

Education� Queen�s University� �������

B�Sc� �Honours� Engineering Physics	 ����

Queen�s University� �����present

M�Sc��Eng	

Experience� Software Developer

Calian Technical Services� �������

On contract to the Canadian Space Agency

Teaching Assistant

Department of Electrical and Computer Engineering

Queen�s University� �������

Awards� James A� Rattray Memorial Scholarship� '���

Queen�s University� �������

Queen�s Graduate Award� '���� per annum

Queen�s University� �������

���

